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Abstract. In this article, the authors introduced pre-Lorentz sequence spaces with
bicomplex terms and studied their properties. They encountered difficulty when they
considered applying the known properties of pre-Lorentz function spaces to sequence spaces
with bicomplex terms. They managed to overcome these difficulties by using idempotent
representations of bicomplex numbers. After comprehensively examining the distribution and
rearrangement functions in the space of sequences with bicomplex terms in their first study,
presented in the references, it was time to examine pre-Lorentz spaces, and this study
emerged.
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1. INTRODUCTION

Bicomplex numbers were mentioned for the first time in [1]. A comprehensive review
of the bicomplex spaces and the relevant context was given in [2]. Alpay et al. [3] developed
bicomplex versions of functional analysis with complex scalars, and this was an important
step for subsequent works on the theory of functions of bicomplex variables. Bicomplex
numbers have new applications in areas such as neural networks [4], smart radio access
networks [5], electromagnetic wave propagation [6], integral transformations and fractional
calculus [7]. Thus, researchers working on bicomplex analysis reveal the importance of these
numbers in real-world problems. Other recent notable applications can be found in [8-12].

We will now present a basic overview of bicomplex numbers. We also refer to books
[2,3, 13] for more comprehensive information.

The elements of the set represented by BC = {z; + jz,: z4, z, € C} is called bicomplex
numbers, where C is the set of complex numbers with the imaginary unit i, and also where
iand i # j are commutative imaginary units, i.e., ij = ji = k,i* = j> = —1 and

K? = (i))? = (D)) = (G = i@) = (D)) = & = 1.

Any two elements z = z; + jz, and w = wy + jw, in the set BC can be added and
multiplied as follows:

Z4+w= (21 +wq1)+j(zz +wy) and z.w = (z.w1 — Z,w3) + j(Z1W;2 + Z,w4).
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According to the two operations described above, the set BC is a commutative and
unitary ring with 1z = 1 + j. 0. In addition, when z, = 0 in z = z; + jz,, that is, z = z;, the
set of these numbers is represented by C(i). If the coefficients z, and z, are real numbers, that
IS, z = x + jy with x,y € R, then the set of those numbers is represented by C(j). C(i) and
C(j) are isomorphic fields.

The set of hyperbolic numbers is described by

D={x+ky:x,y € Rk=1ij}

where k is a hyperbolic imaginary unit, i.e., k? = 1. In the studies conducted in the current
literature, hyperbolic numbers are sometimes called duplex, double, or bireal numbers. The
following subsets D* and D*\{0} of D are called non-negative and positive hyperbolic
numbers, respectively:

D* = {x + ky:x* —y* > 0,x = 0},
D*\{0} = {x + ky:x?> — y? > 0,x > 0}.
Similarly, non-positive and negative hyperbolic numbers are defined as follows:
D™ ={x+ky:x*—y*>0,x < 0}and D"\{0} = {x + ky:x* — y* > 0,x < 0}.

Given u,v € D*. If u — v € D*, then we write u > v or v < u, and say that u is D-
greater than or D-equal to v, or that v is D-less than or D-equal to u. If u = u,e; + uze, and
v = v.e1 + vz, With real numbers wuq,u,, v, and v,, we can write v<u e v; <
uiandv, <u, W<uoe vy <ujandv, <uy). If u is a (strictly) positive hyperbolic
number, then it is inversible, and its inverse is also positive. Additionally, if u > 0 and u < v,
thenv™ > 0and v™* < u ' [14].

1+ij

Consider the bicomplex numbers e; = -~ and e, = 1_2—” It can be easily seen that

e; e, =e, e, =0. There are also equations (e;)"™ = e;, (e,)™ = e, with n € N. For any
bicomplex number u = u,; + ju, € BC, we have

u1+iu2+u1—iu2 ,u2+iu1+u2—iu1

= 2 J 2
Uy — Uy U +HiU, [ up—iu, | uqtiu,

-T2 T2 ( 2 2 )
=B () + B (1)

== (u1 - iuz)el + (u1 + iuz)ez = 6191 + 5292

with §; = (u; —iu,) and 6, = (u; + iu,) in C(i). This equality is named as C(i) idempotent
representation of the bicomplex number u.

Similarly, along with the coefficients in C(j), there is also a representation of the
bicomplex number u with respect to e; and e,.

As a result, any bicomplex number has an idempotent representation with its
coefficients in any of C(i) or C(j), that is, u = &,e; + 8,e, = p1e; + pye, Where 6;,6, €
C() and py, p, € C().
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If a function |.|; from BC to D* is defined by |z|, = |z1|e1 + |z2]ez for each z =
z1e1 + z,e, € BC and provides the following properties, then it is called a D-Norm or a
hyperbolic-valued norm:
N1) Since |z1| =0 and |z,| =0 for a z = (z1e1 + z2e2) € BC, |z|, = |z1]e1 + |z2]e2 =
061 + Oez = 0.
N2) |z|, = |z1|le1 + |z2]e. = 0 = O0ey + Oe, if and only if |z =0 ve |zz] =0, and so
Z=Oel+082=0.
N3) [zl = ([ules + |2zle2)(|z1les + |22lez) = |2l |zl for A € D.
N4) |z + wl, < |zl + |W], for z = z1e1 + z2e5,Ww = wie; + wae, € BC.

We will now establish the basic theory of pre-Lorentz spaces. Duyar and Isik [6] laid
the foundations of Lorentz sequence spaces. For more information on classical Lorentz
sequence spaces, one can be examined [8,15].

Let wyc be denoted the set of all sequences with bicomplex terms, and G be the power
set of N, namely G = 2N, and u be the counting measure on G. Also, let (G,G,u) be a
measure space and M (G, G) be the set of all G-measurable complex-valued functions on G.
The distribution function D, (1) of a function g in M(G, §) is given in [4,9] by

Dy(A) = u{x € G:|g(x)| > 1= 0}.

We now define the D-distribution function, using a sequence with bicomplex terms
instead of the measurable function and the non-negative hyperbolic numbers instead of the
non-negative real numbers in the definition of the distribution function, and the counting
measure instead of the measure.

The following two definitions, lemma and theorem, are known [9].

Definition 1.1. Let z = (z(n)) be an arbitrary sequence in wge With z(n) = z;(n)es +
z,(n)e, for all n € N and an arbitrary number Aie; + A,e, = 1 € D* be given. The D-
distribution function D, of z is defined by

D,(4) = D, (A)es + D,,(1z)e.

Definition 1.2. A function h on D* into itself is called a D-decreasing function, if there is a
D-inequality h(8) < h(a), whenever a < .

Lemma 1.1. Let A be an element in D with A = A,e; + A,e, and & be another element in D
with § = §1e1 + 62e2, 81 # 0 and 6, #0. There exists the equality

A/181, = (A1/161Des + (A2/182Deo.

Theorem 1.1. Let z=(z(n)) and w = (w(n)) be two sequences in wgc and 4,5 and ¢ be the
elements of D*. Then, the following features are satisfied:

(a) D-distribution function is D-decreasing.

(0) If |z(n) |, < lw)|, foralln = 1, then D,(1) < D,(4).

(¢) D.,(A) = D,(1/|c|y) forall c = cie1 + c2e; € DY with ¢; # 0,¢; # 0.

(d) Dz4w (4 + 68) < D,(A) + D, (8).

(€) Dz4w(A.6) < D,(1) + Dy, (6).

ISSN: 1844 — 9581 Mathematics Section
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Definition 1.3. If there is a p € D such that g < p(p < g) forall g € G, then it is said that a
subset G c D is a D-bounded from above(below). This number p € D is called a D-upper(D-
lower) boundary of G. If G € D is a D-bounded set from above, then we describe its D-
supremum, showed by D — supG, the smallest upper bound of G, and its D-infimum, showed
by D — infG, largest lower bound of G. Given a set G c D, let the set G, and G, be defined by

Gl = {gl:glel + gq€2 € G} and Gz = {gz:glel + gz€2 € G}

If G is a D-bounded set from above(below), then the D — supG (D — infG) can be
computed by the formula

D — supG = supGie, + supG,e, (D — infG = infGe; + infG,e;).
If G and H are two D-bounded set from below, then so is G + H and
D—-inf(6G+H)=D-infG+ D —infH.
If two subsets G € D* and H c D" are D-bounded from below, then so is G. H and
D —inf(G.H) = (D — infG). (D — infH).

For the D-bounded subsets from above of D, the last two equations are still true when
D — sup is written instead of D-inf [8,14].

Definition 1.4. The D-decreasing rearrangement of a sequence z = (z(n)) in wge IS a
function z*, defined by

z*(t) =D —inf{A€e D" D,(1) < t}

from D7 into itself. It is known that z* is the left inverse of D,. Moreover, If z(n) =
Zl(n)el + Zz(n)ez,A = /1161 + /1262 and t = tieq + tyey, then

z°(t) = 71" (t1)es + 22" (t2)e;

9.

Definition 1.5. The pre-Lorentz sequence space €, q), 1 <p < o, 1 < q < o is the set of
all complex sequences |[[ul[,,q) < o, where

) 1/q
B (Z nla/p)-1 [u*(n)]q) , 1<p<ool1<g<wm
lullpg) = n=1

SuPp=1nMPut(n),1 < p < o0,q = o

The pre-Lorentz sequence space £ 4), 1 <p <, 1 < g < o is a linear space and
II- llp,q) is @ quasinorm. Also, £, 4), 1 <p < o, 1 < q < oo is complete with respect to the
quasi-norm ||. || ,q) and £ 4y, 1 < g < p < , 1 < g < oo is a complete normed linear space
with respect to |[|. ||, q) [14].
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Theorem 1.2. Let z = (z(n)) be a sequence in wge and 1 = Aye; + Are, and t = tieq + L€,
be two elements in D*. The D-decreasing rearrangement function z* of z has the following
properties [9]:

(@) z* is D-decreasing.

(b) z*(t) > Aiff D,(A) > t.

(©) (kz)*(t) = |k|xz"(t) with k € D".

(d) Let (z(n)) and (w(n)) be two sequences in wgc. If |z()l, < [w(n)|, for every
n=12,..thenz* (t) < w* (t).

) [lzIz]*(m) = (z")P(n) withp = 1.

Lemma 1.2. Let (G, G, 1) is a measure space, further g and h be two measurable functions.
Then, the inequalities

(g+th(a+p)<g(a)+h(p)

and

(9-B)*(a+pB) < g*(a).h*(B),
are true for all a, § =0 [9].

Theorem 1.3. Let (N,G,u) be a measure space, where u is the counting measure, and
z = (z(n)),w = (w(n)) be two sequences in wgc. Then, the D-inequalities

z+w)'(a+pB) <z'(a) +w*(B)

and

(zw)'(a+p) <z'(a).w*(B)

occur [9].
2. MAIN RESULTS

As it is known, classical pre-Lorentz sequence spaces are defined for sequences with
complex terms. We use the set of sequences with bicomplex terms in D-pre-Lorentz space. To
define this space, we give firstly the definition the D- quasinorm and its some properties.

We secondly define the ID-pre-Lorentz space of sequences with bicomplex terms using
the D-quasinorm and examine its some properties.

We finally construct the D-norm using the D-rearrangement functions, and create -
pre-Lorentz sequence space consisting of the sequences with bicomplex terms, and examine
some characteristic properties of this space.

Definition 2.1. A function ||.|| from wgc into D* is called a D-quasinorm, if it satisfies the
following properties:

(QNY) ||z]l =0 & z = 0 for z € wpc.

(QN2) ||Az]] = |Alxl|z]] for A € BC and z € wpc.

ISSN: 1844 — 9581 Mathematics Section



858 Exploring Pre-Lorentz Bicomplex Sequence... Gokhan Isik and Cenap Duyar

(QN3) |z + w|| < p(|z|| + ||w]]) for a fixed p € R* and every z,w € wgc (D-triangle
inequality).

Lemma 2.1. Let a = (a,) be a sequence with complex termsand 1 < p < q < . Then, there
exists the inequality

Yo @D g* (r/2)]9 < 29/P 3 @D g ()],
Proof: Since function y: [0, ) = R, Yi(t) = t9 is a convex function, we can write
(x+y)/2)1 < 1/ +y9)

for all x,y > 0. If p<q, then (q/p) — 1 > 0, and hence s(@/P)~1 < (s + 1)(@/P)~1 for all
s € N. Thus, we have

ZOO r@/)=1{a*(r/2)]9 = 1@/P)~1[g*(1/2)]4
=1

+20@/P)=1[q*(2/2)]9 + 3W@/P)~1[a*(3/2)]7+...
< 2@/P)=1[g*(1)]9 + 2@/P)~1[g*(1)]? 4+ 4@/P)~1[q*(2)]?
+4/P)~1g*(2)]7 + 6/P)~1[q*(3)]9+...
= z(z(q/p)—l[a*(l)]q + 4@/P)-1[g*(2)]7 + 6(q/p)—1[a*(3)]q+___)

= 24/p Zw r@/m-1[g*(1r)]q.
r=1

Definition 2.2. Let us think of the set of all sequences in wgc With idempotent representation
z = (z(s)) = (z1(s)e1 + z2(s)ez)ss4 Such that ||z||(p o < %, whenever

00 1/q
(z s@/m-1 [z*(s)]q) ;1<p<owl<q<o
21 = | \ems 1

D — sups>15Pz*(s); 1 <p < 0,q = oo.

This set is denoted by £(p D"

Theorem 2.1. f(p o 1S @ complex linear space under vector summation and scalar product
operations defined as follows:

+: €y X Loy = Lipay +@W) =2+ w = (22(s) + wa(s))ex + (22(5) + wa(s))ez,
= C X {’(p D (p o (62) =tz =tz;(s)es + tza(s)e,.
Proof: If z = (z(s)) € wpc and t € C, then we have

oo 1/q
(Z s@/m-1(t. z)*(s)]q> ; 1<p<o1<g<ow
r=1

D — supgs,s*P(t-2)*(s); 1 <p < 00,q = oo,

”t Z”(pq)
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) 1/q
~ {Itl. (Z sta/m-1 [z*(s)]q) 1<p<wl<g<ow
- r=1

|t]. D — supgs15Pz*(s); 1 <p < o0,q = oo,
|t|”Z||(pq)

Let 1<p<o and 1<q<o. If z=(z(s)) € wge, W= (W(s)) € wgc and
1 < p < q < o, then, using Lemma 2.1, we have

1

Iz +wiiEe = (37 SO G+ wrene)’
0 1/q
(q/p)-171,* *
< (Zs=1s a“p)=tlz*(s/2) +w (5/2)]‘7) y
= (D s (@572 4w (5/D)es + (227 (5/2) + wy (5/D)e])

= (zoo S(Q/p)—lzq l(zl*(s/z) ‘|Z'W1*(S/2)> e,

. « q\ 1/a [
+ <Z2 (5/2) -;WZ (5/2)> 82] ) < (Z s(a/p)-19q-1 [((Zl*(S/Z))q

+ (0" 65/2)Ver + (22" (5/2) "+ (5/2) s )
= 21714 (e, s@P1 (((z1(s/2)" + (wis/2)) Ves + (z3(s/2)) " + (wi s/
2))‘1)62))1/(1

- 1/q
< 21-1/4 <2q/p Z sa/m-1 (((z{(s))q +(wi () Des + ()" + (W;(S))q)ez)>

1/ 1/q
= 21_%4'5 <z S(Q/P)—l (((ZI(S))q + (WI(S))q)el + ((ZS(S))CI + (W;(S))q)ez)>
s=1
= 21_E+5 <(ZS=1S(Q/I?)—1((ZI(S))Q + (Wf(s))q)> e,
1/q
+ (Z S(Q/P)—l((zg(s))q + (Z;(S))q)> €2>
1.1 o o 1/
-2 p{(Z A+ s o))
+(Z s@/P=1(z3())* +Z s@P-1(w3(s)) ) 32}

1 1 oo 1/ 0 1/
<274a7p ( S(Q/p)_l(z{‘(s)) ) ! + <Z S(q/p)_l(w{‘(s))q) q) e,
= s=1

(2 smmsen) (3 st )
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+ ((Z;sw/v)-l(w;(s))")”q e + (Z;s<q/p>-1(w;(s))q)l/q e)}
= 2"a% {((Z;sw/w—l(z;(s))q) e+ (D) sm(23)") ez>1/q
((Z“’ sOP (i) e+ (). s@Pwi()") ez>1/q}
{((2“’ @1 (52(5)) e, + (z;(s))qez]))l/q
(3 oo + (w;<s>)"ez])>l/q}

= q 5{(Zils(‘m’)"l[z{(s)el+z§(s)ez]q>1/q
+ (Eilswp)*[w;<s)e1+w;<s>e2]q)l/q}

_ 2t atp {((Z: S(q/p)—l(Z;(s))q>1/q e, + (Zw_l s@/P)=1(z (s))q)l/q ez>

1

A5 o) o5 Hwor)”

s=1

1 1
1-11
=24 p(”Z”?p(?q) + ”W”Fp(?q) :

If @ = oo, then, using Theorem 1.3, we have

|z + WII&Bp(FOO) =D — sup (nl/p(z + W)*(/I’L)) <D - sup (nl/p(z*(n/Z) + W*(n/Z)))
nz1 nz1
= sup (nl/p(z{(n/Z) + Wf(n/Z))) e, + sup (nl/p(zg(n/Z) + W§(n/2))) e,
nz1 nz1
< 21/p {sup (ml/p(z{(m) + w{‘(m))) e, + sup (ml/p(z’z*(m) + w}(m))) ez}
m=1 m21
= 21/p {(sup ml/pzf(m)) e, + <Supm1/pz’2*(m)> e, + <Sup ml/pwf(m)> e,
m21 mz=1 mz=1
+ (sup ml/pwé“(m)> ez}
m21

=21/ {]D) — sup (ml/pz*(m)) + D — sup (ml/pW*(/m))}
m=1 mz1
= Zl/p{”Z”](Bp«‘:oo) + ”W”]Fp«,:oo) :

Now, let 1 < q < p < oo. Since (q/p) — 1 < 0 in this case, we can write

2@/P)-1 < 1(a/p)-1 3(a/P)-1 < 2(a/P)-1 4la/P)-1 < 2(a/p)-1 5(a/P)-1 < 3(a/P)-1 gla/p)-1
< 3G@/p)-1 ..,

and so, we have
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Z‘” n(@/P=1(z,(n/2))" = 1@W/21(z:(1/2))* + 20/P1(z;(2/2))*
n=1

+30/)=1(22(3/2))" + 44/01 (25 (4/2))"
+5(q/p)—1(zltk(5/2))q + 6(q/p)—1(zg<(6/2))q + ..
< 1(q/p)—1(zi*(1))q + 1(q/p)—1(Zlfk(1))q + 2(q/p)—1(zz<(2))q
_|_2(q/p)—1(zg<(2))q + 3(Q/P)—1(Zlf‘(3))q + 3(Q/P)—1(Zli*(3))q + ..
= 2{1(67/17)—1(2;(1))‘1 + Z(q/p)_l(z;‘(Z))q + 3(61/7))—1(2:(3))‘7 -}

namely,
z n@/m-1(zx(n/2))? <2 z n@/m-1(zx(n))*
n=1 n=1
and similarly
z n@/m-1(w(n/2))? <2 z n@/P-1(wi (n))"
n=1 n=1

fori = 1,2. Thus, we obtain

o) 1/
”Z + W”I(Bp((,:q) = (znzln(‘”p)—l[(z + W)*(Tl)]q) q
0 1/q
(a/p)—17,* *
< (anln UP)=Hz*(n/2) +w (n/Z)]q>

IS} 1/
= (Z n(q/p)—l[(z{‘(n/Z) + Wf(n/Z))el + (z;‘(n/Z) + W}‘(n/Z))ez]q> !

n=1

0 1/
= (z P (77(n/2) + wi(n/2)) ey + (3(n/2) + W;(n/z))qez]) ’

< (200 n@/m=124-1((z;(n/2))" + (wi /2)) ey
n=1 . . 1/q
+(@012)" +(w3 (/) er])
=203 w1 (/)" + wirD) ey

+(#02)" + (ws0/2)")e,))"

< 21_% (2 211 nla/p-1 (((z{(n))q + (W{‘(n))q)el n ((Z;(n))q n (W}‘(n))q)ez))
=2 (Z:zln("“’)* (((z1 )" + (wim) ey + ()" + (W;(m)Q)ez))”q

=2 <(Zj=1n(q/p)_l((zf("))q + (W{‘(n))q)> .
# (2, () + rio0)) e2>1/q

1/q
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=2 {(Zw n@/n=1(z1 ()" + Z‘” R @1 (i (n))q)l/q .
= (Zw n@/"=1 (75 )" + Z"" R @D (18 (n))q>1/q ez}
<2 {((Z;n(‘I/p)‘l(zi‘(n))q>1/q + (ijln(q/p)_l (w; (n))q>1/q> .
) ((ziln(q/p)_l(zz(n))q)l/q (e p)‘l(w;(n))")l/q> ez}
N {<(2w e (n))q>l/q “av (Zj_l n(@/P (23 (n))q)m )

(X o)) e+ (Y nomswim)) )]
= 23((X i) e+ (3 o sm)') )

+ ((szl n(q/p)—l(Wik (Tl))q) e; + (szl n(Q/p)—l(W; (n))q) ez>q

- {((Z:;ln(CI/p)_l((Zik(n))qel + (Zik(n))qez)»l/q
+ ((Ziln(q/p)—l((Wf(n))qel n (W;(n))qez)»l/q}

1) 1/
= z{(z R ey 2 (e

n=1
o 1/
+(O nem i e, +ws(me,)?) q}
n=1
0 1/ 00 1/
:2{<Z n(Q/p)—l(Z*(n))q> q+<z n(q/P)—l(z*(n))q) q}
n=1 n=1
= 2(llzllgyiq) + Wl G-

This shows that t’(p o 1S closed under vector summation and scalar product. Other
properties of being a linear space for the set {’(p o ¢an be easily denoted.

Proposition 2.2. The transformation |. ||}, is @ D*-valued ID-quasinorm on the space £(}).

Proof: Firstly, let 1 <p <o and 1 < q < oo. If z(s) = z1(s)e; + z,(s)e; IS a bicomplex-
valued sequence, then z*(s) = zi(s)e;1 + z5(s)e: [6]. Hence, we have

Iy = (D s [z*(s)]q)l/q ~0

0 qa_, 1/q 0 a_, 1/q
o (z sp [z{(s)]q> e, + (Z sp [z}‘(s)]q> e, = 0e; + Oe,
r=1 r=1
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e (Z;Sg_l [z;(s)]‘I)l/q =0and (" o [25(5)]q)1/q =0

s=1

© z1(s) =0and z;(s) = 0,s =1,2,...© D, () =0and D, (1) =0, =0
& zi(n)=0and z,(n) =0,n=12,...z=0.

Other two properties are immediately seen from the proof of Proposition 2.1. As a

result, ||. ||[(Bp‘?q) is a quasinorm for 1 < p,q < co.

Corollary 2.1. If an element in the form z = z,e; + z,e, with z; = zz in {’I(Bp‘?q) is taken into
account, then the classical pre-Lorentz space is obtained.

Definition 2.3. Let z = (z(r)) be a sequence in wgc. If, given any € = g,e4 + €,e, € D* with
€1 > 0 and e, > 0, there exists N € N such that |z(r) — z(s)|x < € for all r,s > N, then z is
called a D-Cauchy sequence.

Lemma 2.2. A sequence z = (z(r)) = (z1(r)e1 + zz(r)e;) is a D-Cauchy sequence in wpc if
and only if (z,(r)) and (z,(r)) are the Cauchy sequences in C(i).

Proof: If z = (z(r)) = (z1(r)e; + z»(r)e;) is a D-Cauchy sequence in wgc, then, given any
€ > 0, thereisa N € N such that

1z(r) — z()| = |(z1(r)es + z2(r)ez) — (z1(s)er + z2(s)ez) |k
= |(Z1(T) - Z1(5))91 + (Zz(”") - Zz(s))92|k
= |z:(r) — z1(8)]e1 + |z2(r) — z2(s) ez
< g=¢e,+ €e,

for all r,s = N and hence we have |z1(r) —z1(s)| < € and |z,(r) — zx(s)| < € for all r,s >
N, showing that (z,(r)) and (z»(r)) are Cauchy sequences in C(i).

Conversely, if (zl(r)) and (z,(r)) are two Cauchy sequences in C(i), then, given any
£ =g, + 556, > 0withg; > 0 and g, > 0, there exists a N € N such that

|z1(r) — z1(s)| < €1 and |z2(r) — z2(5)| < &2
for all r,s = N. Thus, we have
12(r) — z()|x = |(z1(1)eq + z2(r)e2) — (z1(s)es + z2(s)e2) |
= |z1(r) — z1(s)|e1 + |z2(r) — z2(s)|ex < € = €1e1 + €26,

for all r,s > N and this shows that z = (z(r)) is a D-Cauchy sequence in wgc.

BC

Theorem 2.2. The space €,

quasinorm [|. [|fre-

1<p<o,1<q< oo is complete with respect to the D-
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Proof: Let 1 < q < o and (z(r)) = (z,) be an arbitrary D-Cauchy sequence in €}, with
Z, = Zy €1 + Z,e; for all r € N. Then, given any € > 0, there is at least one N € N such that
|z, — zs|(pqy < € Whenever r,s > N. Thus, we have

o q_, 1/q
oy = zelESy = (D) w0 G = 2" (0)19)
.

= <Z:=1 n%_1 [((Zr,1e1 + Zr,2€2) - (25,161 + ZS,ZeZ))* (n)]q>1/q
co . 1/
- (Zn 1n5_1 [((Zr,l - Z5,1)€1 + (Zr,zel - Zg,z)ez) (n)]q> !
- (zoo_ n%_l {[(Zr,l - Zs,l)*(n)]qel + [(Zr’zel — ZS'Z)*(n)]qez})l/q

- (zw n%_l [(Z'r,l - Zs,l)*(n)]q)l/q e;

+ (Z __1 [(ZrZ Zs,z)*(n)]q)l/q e,

< &= 861 + gez
and thus

(Zil n%_l [(Zr'l B Zs'l)*(n)]q)l/q <é&and (Zw n%_l [(Zr,Z - Zs,z)*(n)]q>1/q <e&.

n=1

Therefore, (zm) and (Zr,z) are Cauchy sequences according to the pre-norm defined
in the well-known classic Lorentz sequence space £, q). On the other hand, since the space
£ 1S complete according to this pre-norm |||l the sequences (z.;) and (z,)
converge to two elements with zi and zz, respectively, in €, q). Then, obviously (z,) =
Zy1€1 + Zp o€, CONVErges to z = z;e, + zze; in {’(p D All that remains is to show z € {’(p D"
Indeed, since

1212, = (3w o) =(3 w7 e + e

< (Zm - [Z;(n)]qﬁ el + (Em S [Z;(n)]qf .,
and also el n=1
Zm ) a Yz; ()] < o and Z p- Zz(n)]q < o,

we have ||zl|¢),) < o and thus z € £, proving that the space £fi,) is complete for
1<q<oo.

Now let us examine the case q = oo. Let (z(r)) = (z,) be an arbitrary D-Cauchy
sequence in t’(p o) With z, = 7., €1 + 7, 5e, forall r € N. Then

1
|z, — ZS”[(Bp((,:oo) =D — sups»1tP (2, — 25)* (1)

WWW.josa.ro Mathematics Section



Exploring Pre-Lorentz Bicomplex Sequence... Gokhan Isik and Cenap Duyar 865

=D — sup;s,t*/? [(Zr,l - Zs,}k)el + (Zr,z - Zs,z)ezl*(t)
=D - Suptzltl/p [(Zr,l - Zs,l) (t)el + (Zr,z - Zs,z) (t)ez]

= {SuPtzltl/p(Zr,1 - Zs,1)*(t)}e1 + {suptzltl/p(zr'z - Zs,z)*(t)}ez
<g= &eq + ey,

and s0 supe tV/P(z.; —251) (t) < € and supgt/P(z., —z5,) (t) < & This means that
(zr,) and (z,,) are Cauchy sequences in the classic Lorentz sequence £, ). Nevertheless,
since the space (o) is complete, the sequences (z,) and (z,,) converge to two elements
of this space with z; and z,, respectively. Then, obviously (z,) = (zme1 + Zr,ZeZ) converges
t0 z = z,€4 + Z,€5 IN f?p(c_oo).

Consequently, any Cauchy sequence is convergent with respect to the ID-quasinorm in
the space {’(p ) for both cases 1 < q < o and q = co. This shows that {’(p o With 1<p<
0,1 < q < oo is complete with respect to the D -quasinorm.

Definition 2.4. A measure space (G, G, p) is called o-finite, if there is a sequence {I.};2, in G
such that G € G with G =U2; I. and p(I.) < oo forall r € N.

Theorem 2.3. Let z = (z(n)) and w = (w(n)) be two sequences in wgc, and also w €
{’(p q), 1<p<o1<q<oo, If |z(D)|g < |w()|x for all reN, then z€ f(p o and

”Z”(p Q> ”W”(p,q)

Proof: Let |z(r)|x < |[w(r)|k for all r € N. Then, we can write z*(r) < w*(r) forall r e N
[6]. Firstly, let 1 <q < oo. Since (Ase; + Aze2)P = AVes +ADe, for all p e R with A =
Ae1 + Aze, € BC, we have

© 1/q © 1/q
12185y = (D, r@maiizep) = (Y r@ng e + 2 @eal)
r=1 r=1

= (Zilr(q/p)—l[Zik(r)]q)l/q e; + (Zilr(q/p)ﬂ[zs (r)]q>1/q e,

< (Z;ﬂq/w—l[w;(r)]q)l/q et (Y v e,

r=1

= (Zw_lr(q/p)—l[wf(r)el + w;(r)ez]q>1/q _ (Zilr(q“’)‘l[w*(r)]q)l/q

= Ilwll?p(fq) < e + e, = 0.
Secondly, let @ = c. Then we have

12110y = D = SUPpay /P2 (1) = D — suppay /P27 (r)ey + z3(1)e;]
= {]D) - suprzlrl/pzf(r)}el + {]D - 5uPrz1T1/pZ§(7”)}ez
<AD — sup,»1r/Pwi()}e; + {D — SuPrzﬂ'l/pW; (M}e,
1

=D — supy»1 7P [wi(r)e; + wi(r)e] =D — Supr>1rpw (1) = 1wl G0)-

Lemma 2.3.
@If1<p; <p;<oand1<q<oothenfp, o S 4p,0q)-
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(b) Ifl1< p <o and 1 < q1 < Q2 < o0, then ‘g(p,ql) - f(p'qz) [14]

Theorem 2.4.
@Ifl<p;<py<mandl1<q< oo, then{’(p QS f(pzq)
(b)Ifl<p<wandl1<q;<q; <o, thenf(pq)gt’(pqz)

Proof: Note that these properties are known to be true for classical pre-Lorentz spaces ¢, q)-
Forany z = (z(n)) = (z,(n)e; + z,(n)e,) € £(5), if q < oo, then we have

0 1/q © 1/q
2By = (> nemtz@i) = (Y @ me + zmel)
n=1 n=1

- 1/q
— (Z n(q/p)—l[(zi*(n))qe1 + (zg(n))q€2]>

n=1

- (Z;[n(q/m—l(zi‘(n))qel + n(q/p)‘l(zi(”))qez]>1/q

((ijln(q/p)—l[Zf(n)]q> e; + (Z;"(q/p)‘l[z;(n)]q> ez>1/q

= (Ziln(q/p)—l[Zik(n)]q>1/q e; + (Z:;ln(q/p)—l[Z;(n)]q)l/q e,

= ||21||(p,q)€1+||zz||(p,q)ez-

Hence, we can clearly write z = (z(n)) € {’(p o ifand only ifz; = (z,(n)) €

Lo and z; = (z,(n)) € £, From Lemma 2.3, it can be seen immediately the inclusion
(@) and (b).

Example 2.1. Calculate the D-quasinorm of the ID-characteristic function 2. Solution:

Let q < oo. If the equation (xB) (t) = X[1, uan) (t1)e1 + X[1, ) (t2)e; is used [2],
we have

1 1
[e%) q E [e%) a E
181l = (Z AN ) (Z w0 (G (ney + ne2)1q>
n=1 n=1
= Z np [X[l,u(H)) (n)e; + X[1, u()) (n)ez]
n=1

1 1

- (2 wr? [X[Lu(H))(”)]q>q et (Z ! [X[l.u(H))(n)]q>q €2

(Y (22

Again, if ¢ = oo, then we have

1

ey = (S )"

Q|-
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(p,»)

1
Bl =D~ sup (npug)*(n)>

1 1
=D —sup (nEX[l,pL(H)) (n)) e; + (nEX[l,M(H))(n)> €

n=1

1 1
= su:T.L) (np)([llu(m)(/n)> e; + su]i) (np)([l'#(m)(n)> e,
nz nz
1 1 1
= u(H)re; + u(H)re, = u(H)r.

As a result, the D-quasi-norm of the D-characteristic function of the set H can be

written as

”X]D)”IB(C B (Z,ﬁ(:?n(q/m—l)l/q,1 <p<owandl<qg<o
Hllpg) — :

1
u(H)P,1 <p <o Aq = oo.

3. CONCLUSION

In this study, the foundations of pre-Lorentz sequence spaces with bicomplex terms

were laid. Thus, the authors paved the way for the study of Lorentz sequence spaces
containing bicomplex terms and continue their work in this direction. For example, the
product operators between these spaces will be the subject of their next studies.
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