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Abstract. Fractional calculus, which involves derivatives and integrals of non-integer 

order, is widely used in modeling real-world problems in science and engineering. This study 

focuses on solving fractional integro-differential equations using Picard’s three-step iteration 

algorithm. We apply Picard’s three-step iteration algorithm to approximate solutions and 

show that it converges strongly. The method is shown to be not only efficient in approximating 

solutions but also robust with respect to perturbations in the initial data and operators, 

demonstrating its data dependence. A numerical example is provided to illustrate the 

theoretical results and to confirm the applicability and reliability of the proposed approach. 
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1. INTRODUCTION  

 

 

Fractional calculus is a mathematical field concerned with derivatives and integrals of 

arbitrary real or complex order. The increasing complexity of real-world models in science 

and engineering has led to a growing interest in fractional differential equations due to their 

ability to describe memory and hereditary properties. Differential equations involving non-

integer derivatives have proven to be essential tools for accurately modeling a broad range of 

physical and engineering processes. Beyond its theoretical significance, fractional calculus 

has found practical applications across various disciplines, including physics, biology, 

engineering, and finance [1-11]. 

One of the most intriguing aspects of fractional calculus lies in its flexibility through 

different fractional operators. This flexibility enables the selection of operators that best 

capture the dynamics of specific real-world phenomena. The ongoing need to enhance model 

precision has led to the development of new types of fractional operators, thereby 

significantly improving the modeling capabilities of fractional differential equations [12-15]. 

Parallel to the growing importance of fractional calculus and related types of 

equations, studies involving various fractional operators and solution techniques are steadily 

increasing in the scientific literature. In particular, the analytical and numerical investigation 

of time-fractional equations such as Fornberg-Whitham, Newell-Whitehead-Segel, Cahn-

Hilliard, and Jaulent-Miodek using methods like conformable derivatives, Caputo-Fabrizio 
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fractional derivatives, and natural transform decomposition demonstrates the dynamism of the 

field. These studies emphasize the modeling capability of fractional equations and the 

effectiveness of new solution algorithms developed for these equations [16-20]. 

Simultaneously, fixed point theory has emerged as an indispensable framework in 

nonlinear analysis, particularly for establishing the existence and uniqueness of solutions to 

differential, integral, and partial differential equations. Fixed point methods are especially 

valuable when dealing with fractional differential equations in initial and boundary value 

problems, where finding exact analytical solutions is often challenging. Consequently, there 

has been a surge in research efforts toward developing numerical and approximation methods 

for solving such equations [21-27]. 

Alongside the advancement of fixed point theory, a diverse range of contraction-type 

mappings has been introduced, including Lipschitzian mappings, classical contraction 

mappings, nonexpansive mappings, pseudo-contractions, semi-contractions, and weak 

contractions [28-32]. Numerous iteration methods have also been formulated to approximate 

fixed points, such as Mann iteration [33], Krasnosel’skii iteration [34], Kirk iteration [35], 

Ishikawa iteration [36], Noor iteration [37], S-iteration [38], three-step iteration [39], and the 

more recent Picard’s three-step iteration [40]. Moreover, hybrid iteration methods that blend 

features of multiple classical methods have shown significant efficiency improvements. 

Examples include the Kirk-Noor, Kirk-Ishikawa, Kirk-Mann, Picard-Mann, Mann-Picard, and 

Kirk-MP iteration methods [41-44]. 

An additional aspect closely related to iterative processes is the concept of 

approximation operators. When iterative sequences are constructed using approximation 

operators instead of the original mappings, discrepancies between their fixed points may 

occur. The study of data dependence specifically addresses the nature and quantification of 

such discrepancies, ensuring that approximate solutions remain robust under small 

perturbations [45-54]. 

Fractional differential equations have become increasingly important in modeling 

systems, particularly in physics, biology, and engineering. Despite their broad applicability, 

solving such equations—especially in integro-differential form—poses significant challenges, 

as classical analytical and numerical techniques often fail to ensure stability or convergence. 

In response to these difficulties, iterative methods based on fixed point theory provide a 

flexible and effective framework. Among these, Picard’s three-step iteration has shown 

improved convergence behavior and computational efficiency. Moreover, analyzing data 

dependence is crucial for assessing the robustness of solutions against small perturbations in 

the initial data or operators.  

Although several iterative approaches have been proposed for solving fractional 

integro-differential equations, the convergence behavior and stability with respect to data 

perturbations have not been sufficiently clarified for multi-step Picard-type schemes. 

Addressing this gap is essential, since real-world models (particularly those involving 

memory-dependent processes) require numerical methods that are both fast-converging and 

robust. Motivated by these considerations, this study focuses on establishing strong 

convergence and data dependence results for the Picard’s three-step iteration algorithm and 

demonstrating its practical reliability through a numerical example. 

The general structure of the study is as follows: In Section 2, the basic concepts that 

are important for our analysis are presented. In Section 3, the following initial value problem 

for the integro-differential equation, where   is a constant and   ( [   ]     ), will be 

considered. 
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First, we approach the solution of initial value problem (1) using Picard’s three-step 

algorithm introduced by Ali et al. [40]. We will also obtain the data dependence of the 

equations considered. A numerical example is provided to illustrate the obtained findings. 

Finally, our study concludes with a discussion of our findings and potential future research 

directions. 

 

 

2. MATERIALS AND METHODS 

 

 

In this section, we introduce essential definitions and preliminary results that form the 

foundation of our study. 

 

Definition 2.1. ([1]) Let  ( )   ([   ])    (    )  and   be an integrable function on  

[   ]. The Riemann–Liouville fractional integral of order   is defined as 

 

   
  ( )  

 

 ( )
∫  

 

 
 ( )

(   )   
    

 

Similarly, for   (   ) the Riemann-Liouville fractional derivative of order   can be 

expressed as 

 

   
  ( )  

 

 (   )

 

  
∫  
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(   ) 
     

 

where  

 

 ( )  ∫  

 

 

                (   )  

 

Definition 2.2. ([55]) Denote by ( [   ]  ) the Banach space of all continuous real-valued 

functions on [   ] equipped with the supremum norm 

 
‖ ‖     

  [   ]
| ( )|   

  

Definition 2.3. ([56]) Let (   ) be a metric space and       be a mapping.   is called a 

Lipschitzian mapping, if there is a     real number such that  (     )    (   ) for all 

     . If in the definition, the constant   satisfies   (   ), then   is called a contraction 

mapping and   is referred to as the contraction ratio.  
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Theorem (Banach fixed point theorem) 2.1. ([28]) Let (   ) be a complete metric space 

and       be a contraction mapping. Then,   has a unique fixed point     . 

Furthermore, for any initial point     , the iterative sequence defined by      
                     converges to   . 
 

The reason we used Picard's three-step iteration algorithm in our study is that this 

algorithm has been proven to be faster than many iteration algorithms such as Picard, Mann, 

Ishikawa, Noor, Picard-S, SP, S, CR, M*. Now let's express the definition of this algorithm 

[40]. 

 

Definition 2.5. Let   be a metric space or Banach space,       be a mapping. Starting 

from an initial guess      and for      the Picard’s three-step iteration algorithm is 

defined by 

 

 {

        
      
      

 (2) 

                                                                                          

Theorem 2.2. ([23]) Let   be continuous function which is on the rectangle   
{(   )    [   ]}      and   | (   )|     for all (   )     Also suppose that   satisfies 

a Lipschitz condition on   with respect to its second argument, i.e, there is a constant   such 

that for   arbitrary (   ) (   )     

 

| (   )   (   )|   |   | (3) 

 

is valid. Moreover, let  

 

 (     )  
    

 (   )
     

  

and suppose that 

 

 (     )    (4) 

 

Then, the associated fractional integro-differential equation in (1) has a unique 

solution.  

 

Definition 2.6. ([57]) An operator  ̃     is called an approximation operator of       

if there exists a constant     such that 

 

‖ ( )   ̃( )‖             

   

Lemma 2.1. ([57]) Let {  }   
  be a non-negative real sequence. Assume that there exists an 

integer      such that for all     , the following inequality holds: 

 

     (    )         
 

where    (   ) satisfies ∑   
        and       Then, the sequence satisfies 
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3. RESULTS AND DISCUSSION 

 

 

3.1. RESULTS 

 

 

In this section, we present new findings regarding the existence, uniqueness, and data 

dependence of solutions for a class of fractional integro-differential equation (1) using the 

Picard’s three-step iterative algorithm. 

 

Theorem 3.1.1. Let   ( [   ] ‖ ‖ )  ( [   ] ‖ ‖ )  be a mapping. Then, the integro-

differential equation defined in (1) admits a unique solution     [   ], and the sequence 
{  }   

  generated by the iterative algorithm described in (2) converges strongly to this 

unique solution. 

  

Proof: By integrating both sides of the integro-differential equation (1), we obtain the 

following corresponding integral equation 

 

 ( )   
 

 ( )
∫  

 

 

∫  

 

 

(   )    ( )     ∫  

 

 

 (   ( ))      (5) 

 

It can be rewritten in the equivalent integral form given in (5), which is in the form 

      where    [   ]   [   ]  is an operator defined by 

 

  ( )   
 

 ( )
∫  

 

 

∫  

 

 

(   )    ( )     ∫  

 

 

 (   ( ))      (6) 

 

where   is a continuous function on the rectangle    Consider the sequence {  }   
  

generated by the iteration algorithm defined in (2) and constructed using the mapping 

  ( [   ] ‖ ‖ )  ( [   ] ‖ ‖ ). It will be shown that for     is     
 . Using 

equation (5) and the conditions of Theorem 2.2, we obtain the following inequality. 
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     we have 
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After performing the necessary calculations, the following inequalities are obtained. 
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is obtained. By substituting inequalities (9) and (8) into inequality (7), the following result is 

obtained. 
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 ‖   
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 ‖  
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‖    
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Applying induction to the last inequality, we obtain the following result. 

 

‖      
 ‖   

 (   )‖    
 ‖   (10) 

 

Since     if the limit is taken as      in the inequality (10), we obtain 

 

   
   
‖    

 ‖     

 

Hence, this contraction-type argument ensures that the iterative sequence generated by 

Picard’s three-step method remains bounded and progressively closer to the fixed point. 

Next, we investigate the data dependence of the solution to the integro-differential 

equation presented in initial value problem (1) by applying the iteration algorithm described 
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in (2). Accordingly, we consider the following initial value problem associated with a second 

integro-differential equation 

{

  ( )

  
    
  ( )   (   ( )) 

                 
 ( )    

 (11) 

                    

By integrating both sides of integro-differential equation (11), we obtain integral 

equation 
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The equivalent integral form (12) can be expressed as       where 
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where   is continuous function on the rectangle    
If the iteration algorithm given in (2) is reformulated using the mapping  (6) and 

 (13), respectively, the following iteration algorithms can be obtained. 
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Theorem 3.1.2. Consider the sequence {  }   
  obtained from (  ) and the sequence 

{  }   
  obtained from (  ) for each    . Let the solutions of the integral equations ( ) 

and (  ) be    and   , respectively, with the conditions of Theorem 3.1.1. 
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Proof: Under the hypotheses of Theorem 3.1.2, the following inequalities, namely (16), (17), 

and (18), are obtained. 

 

‖         ‖  ‖       ‖  

 

‖

‖
 
 

 ( )
∫  

 

 

∫  

 

 

(   )     ( )     ∫  

 

 

 (    ( ))    

 
 

 ( )
∫  

 

 

∫  

 

 

(   )     ( )     ∫  

 

 

 (    ( ))    
‖

‖

 

 

 
 

 ( )
∫  

 

 

∫  

 

 

(   )   ‖     ‖      

 ∫  

 

 

‖ (    ( ))   (    ( ))‖    
‖   ‖  

 
 

 ( )
‖     ‖ ∫  

 

 

∫  

 

 

(   )               

 (
    

 (   )
) ‖     ‖         

 

 

‖         ‖  𝐾‖     ‖         (16) 

 

Similarly, inequalities (17) and (18) are obtained. 
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Thus, if the inequality (18) is written in inequality (17) and 𝐾    is used, the 

following inequality is found. 
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If inequality (19) is substituted into inequality (16), inequality (20) is found. 
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From the last inequality, we get for each    . 
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Thus, the inequality stated in (20) fulfills the requirements of Lemma 2.1. Hence, 
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Example 3.1.1. First, let us consider the following initial value problems 
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Iteration Steps and Existence of Solutions: To illustrate how the Picard three-step iteration 

algorithm is applied, consider the initial value problem (21). We denote the initial guess as 

  ( )      for all  [   ] . The operator   for this problem is defined as: 
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Thus, from Theorem 2.2, the solution to the initial value problem (21) exists and is 

unique. Similarly, the initial value problem (22) can be expressed with the operator as 

follows: 
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In this case,   
 

 
   

 

 
      and  (     )   . Therefore, from Theorem 2.2, 

the initial value problem (22) has a solution and is unique. 

 

Data Dependency: 
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Thus, we obtain  
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To better demonstrate the practical performance of the Picard’s three-step iteration 

method and to visualize the theoretical findings obtained above, we now present the 

numerical behavior of the iterative sequence generated for problems (21) and (22). In 

particular, the convergence pattern of the approximations and the decay of the iterative error 

are illustrated through graphical representations. These plots provide further insight into the 

efficiency, stability, and rapid convergence rate of the proposed algorithm. 

The convergence pattern obtained from the iterative scheme is illustrated in Figure 1. 

Furthermore, the decay of the iterative error in logarithmic scale is presented in Figure 2, 

demonstrating the rapid convergence behavior of the method. 

 

  
Figure 1. Convergence behavior of the iterative 

sequence {  }. 
Figure 2. Error decay per iteration in logarithmic 

scale. 
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3.2. DISCUSSION 

 

 

The theoretical analysis and numerical results presented in this study affirm the 

effectiveness of the Picard’s three-step iteration method in solving fractional integro-

differential equations. The main findings reveal that the method guarantees strong 

convergence to the unique solution under appropriate contractive conditions. Compared to 

classical iterative schemes, the three-step Picard method demonstrates superior convergence 

rates, aligning with previous results in the literature while offering an advantage in 

computational efficiency. 

One of the central contributions of this study is the in-depth exploration of data 

dependence. The results confirm that the iterative approximations are not only stable but also 

robust against perturbations in the operator and initial conditions. This robustness is 

particularly important in real-world applications, where exact data may be unavailable or 

subject to measurement errors. The theoretical data dependence results (supported by rigorous 

inequalities) demonstrate that small deviations in input data result in proportionally small 

changes in the output, thereby ensuring the reliability of the method. 

The numerical example provided illustrates how the theoretical framework applies in 

practice. Both the existence and uniqueness of solutions were verified via operator bounds 

and Lipschitz-type conditions. Furthermore, the estimation of the error bounds between two 

iterative sequences under data perturbation reinforces the practical relevance of the data 

dependence theory. The bounding inequalities and their eventual vanishing as the iteration 

count increases offer a quantitative measure of stability. 

These results extend the applicability of fixed point methods (especially Picard-type 

schemes) to more general classes of fractional differential problems, particularly those 

involving integral components. The flexibility of the approach also suggests potential for 

adaptation to broader settings, such as equations with nonlinear kernels, memory-dependent 

operators, or multi-term fractional derivatives. 

In summary, the discussion highlights the methodological strengths of the Picard’s 

three-step iteration, especially its convergence behavior and its resilience to data changes. 

These features position it as a powerful and practical tool in the numerical analysis of 

fractional systems, with promising applications in physics, engineering, and biology where 

such equations frequently arise. 

 

 

4. CONCLUSIONS 

 

 

In this study, we have examined the approximate solutions of fractional integro-

differential equations using Picard’s three-step iteration algorithm, which is known for its 

faster convergence and strong stability compared to traditional iterative methods. The 

proposed approach proves to be both theoretically rigorous and computationally efficient. 

Furthermore, the study thoroughly investigates the concept of data dependence, which plays a 

critical role in ensuring the stability of the solution when subjected to perturbations in the 

operator or initial data. The derived results demonstrate that the Picard’s three-step method 

yields robust approximations under small data changes, validating its reliability for practical 

applications. A numerical example is also provided to support the theoretical findings.  

This work not only contributes to the existing literature by enhancing the applicability 

of the Picard’s three-step method to fractional problems but also opens up new avenues for 

future research. Future research may focus on extending this approach to variable-order 
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fractional models, systems involving delays, or partial differential equations with nonlocal 

boundary conditions, potentially enhancing its applicability to real-world engineering, 

physical, and biological problems.  

Beyond the theoretical implications, the results of this study can be applied to several 

practical fields. In particular, fractional integro-differential equations commonly arise in 

control systems with memory, viscoelasticity, population dynamics, epidemiological models 

with hereditary effects, and signal processing. The strong convergence and data dependence 

properties established here suggest that the Picard’s three-step method can be reliably utilized 

as a numerical tool in these applied settings. 
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