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Abstract. Fractional calculus, which involves derivatives and integrals of non-integer
order, is widely used in modeling real-world problems in science and engineering. This study
focuses on solving fractional integro-differential equations using Picard’s three-Step iteration
algorithm. We apply Picard’s three-step iteration algorithm to approximate solutions and
show that it converges strongly. The method is shown to be not only efficient in approximating
solutions but also robust with respect to perturbations in the initial data and operators,
demonstrating its data dependence. A numerical example is provided to illustrate the
theoretical results and to confirm the applicability and reliability of the proposed approach.
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1. INTRODUCTION

Fractional calculus is a mathematical field concerned with derivatives and integrals of
arbitrary real or complex order. The increasing complexity of real-world models in science
and engineering has led to a growing interest in fractional differential equations due to their
ability to describe memory and hereditary properties. Differential equations involving non-
integer derivatives have proven to be essential tools for accurately modeling a broad range of
physical and engineering processes. Beyond its theoretical significance, fractional calculus
has found practical applications across various disciplines, including physics, biology,
engineering, and finance [1-11].

One of the most intriguing aspects of fractional calculus lies in its flexibility through
different fractional operators. This flexibility enables the selection of operators that best
capture the dynamics of specific real-world phenomena. The ongoing need to enhance model
precision has led to the development of new types of fractional operators, thereby
significantly improving the modeling capabilities of fractional differential equations [12-15].

Parallel to the growing importance of fractional calculus and related types of
equations, studies involving various fractional operators and solution techniques are steadily
increasing in the scientific literature. In particular, the analytical and numerical investigation
of time-fractional equations such as Fornberg-Whitham, Newell-Whitehead-Segel, Cahn-
Hilliard, and Jaulent-Miodek using methods like conformable derivatives, Caputo-Fabrizio
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fractional derivatives, and natural transform decomposition demonstrates the dynamism of the
field. These studies emphasize the modeling capability of fractional equations and the
effectiveness of new solution algorithms developed for these equations [16-20].

Simultaneously, fixed point theory has emerged as an indispensable framework in
nonlinear analysis, particularly for establishing the existence and uniqueness of solutions to
differential, integral, and partial differential equations. Fixed point methods are especially
valuable when dealing with fractional differential equations in initial and boundary value
problems, where finding exact analytical solutions is often challenging. Consequently, there
has been a surge in research efforts toward developing numerical and approximation methods
for solving such equations [21-27].

Alongside the advancement of fixed point theory, a diverse range of contraction-type
mappings has been introduced, including Lipschitzian mappings, classical contraction
mappings, nonexpansive mappings, pseudo-contractions, semi-contractions, and weak
contractions [28-32]. Numerous iteration methods have also been formulated to approximate
fixed points, such as Mann iteration [33], Krasnosel’skii iteration [34], Kirk iteration [35],
Ishikawa iteration [36], Noor iteration [37], S-iteration [38], three-step iteration [39], and the
more recent Picard’s three-step iteration [40]. Moreover, hybrid iteration methods that blend
features of multiple classical methods have shown significant efficiency improvements.
Examples include the Kirk-Noor, Kirk-Ishikawa, Kirk-Mann, Picard-Mann, Mann-Picard, and
Kirk-MP iteration methods [41-44].

An additional aspect closely related to iterative processes is the concept of
approximation operators. When iterative sequences are constructed using approximation
operators instead of the original mappings, discrepancies between their fixed points may
occur. The study of data dependence specifically addresses the nature and quantification of
such discrepancies, ensuring that approximate solutions remain robust under small
perturbations [45-54].

Fractional differential equations have become increasingly important in modeling
systems, particularly in physics, biology, and engineering. Despite their broad applicability,
solving such equations—especially in integro-differential form—poses significant challenges,
as classical analytical and numerical techniques often fail to ensure stability or convergence.
In response to these difficulties, iterative methods based on fixed point theory provide a
flexible and effective framework. Among these, Picard’s three-step iteration has shown
improved convergence behavior and computational efficiency. Moreover, analyzing data
dependence is crucial for assessing the robustness of solutions against small perturbations in
the initial data or operators.

Although several iterative approaches have been proposed for solving fractional
integro-differential equations, the convergence behavior and stability with respect to data
perturbations have not been sufficiently clarified for multi-step Picard-type schemes.
Addressing this gap is essential, since real-world models (particularly those involving
memory-dependent processes) require numerical methods that are both fast-converging and
robust. Motivated by these considerations, this study focuses on establishing strong
convergence and data dependence results for the Picard’s three-step iteration algorithm and
demonstrating its practical reliability through a numerical example.

The general structure of the study is as follows: In Section 2, the basic concepts that
are important for our analysis are presented. In Section 3, the following initial value problem
for the integro-differential equation, where A is a constant and f € (C[0, A] X R, R), will be
considered.
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dq;zit) +150(s) = f(5,0(5)),

0<s<A4, 0<ax<l,
p0)=p

1)

First, we approach the solution of initial value problem (1) using Picard’s three-step
algorithm introduced by Ali et al. [40]. We will also obtain the data dependence of the
equations considered. A numerical example is provided to illustrate the obtained findings.
Finally, our study concludes with a discussion of our findings and potential future research
directions.

2. MATERIALS AND METHODS

In this section, we introduce essential definitions and preliminary results that form the
foundation of our study.

Definition 2.1. ([1]) Let ¢(s) € C([a, b]), a € (—, ) and f be an integrable function on
[0, T]. The Riemann-Liouville fractional integral of order « is defined as

N 1 o(r)
1&,.0(s): = F(a)j G- dr.

Similarly, for a € (0,1) the Riemann-Liouville fractional derivative of order a can be
expressed as

« _ @(r)
Da+§0(5). a) dtf ( r,

s—r)“

where

o

I'(a) = f s le=5ds , (a > 0).

0

Definition 2.2. ([55]) Denote by (C[a, b], R) the Banach space of all continuous real-valued
functions on [a, b] equipped with the supremum norm

Iflleo = sup If(S)I

sEa

Definition 2.3. ([56]) Let (X, d) be a metric space and T: X — X be a mapping. T is called a
Lipschitzian mapping, if there is a L > 0 real number such that d(Tx, Ty) < Ld(x,y) for all
x,y € X. If in the definition, the constant L satisfies L € (0,1), then T is called a contraction
mapping and L is referred to as the contraction ratio.
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Theorem (Banach fixed point theorem) 2.1. ([28]) Let (X,d) be a complete metric space
and T:X — X be a contraction mapping. Then, T has a unique fixed point x* € X.
Furthermore, for any initial point x, € X, the iterative sequence defined by x, =
Tx,-1 ; n=0,12,.. converges to x".

The reason we used Picard's three-step iteration algorithm in our study is that this
algorithm has been proven to be faster than many iteration algorithms such as Picard, Mann,
Ishikawa, Noor, Picard-S, SP, S, CR, M*. Now let's express the definition of this algorithm
[40].

Definition 2.5. Let X be a metric space or Banach space, T: X — X be a mapping. Starting
from an initial guess x, € X and for n € Z* the Picard’s three-step iteration algorithm is
defined by

Ons1 =Ty
Yo =Toy 2
bn =Toy

Theorem 2.2. ([23]) Let f be continuous function which is on the rectangle B =
{(s,x):s € [0,A]} € R? and |f(s,x)| <M forall (s,x) € B. Also suppose that f satisfies
a Lipschitz condition on B with respect to its second argument, i.e, there is a constant L such
that for arbitrary (s,x),(s,y) € B

If(s,%) = f(s, M < Llx =yl ®)
is valid. Moreover, let
a+1
h(a, A L) = CTP) + LA
and suppose that
h(e, A L) < 1 (4)

Then, the associated fractional integro-differential equation in (1) has a unique
solution.

Definition 2.6. ([57]) An operator T: X — X is called an approximation operator of T: X — X
if there exists a constant € > 0 such that

TG —T)| <& vxeX.

Lemma 2.1. ([57]) Let {a,}m=, be a non-negative real sequence. Assume that there exists an
integer n, € N such that for all n > n,, the following inequality holds:

Apy1 < (1 - .un)an + UnYns

where u,, € (0,1) satisfies )5, 4, = o0 and y;,, = 0. Then, the sequence satisfies
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0 < limsup a, < limsupy, .

n—-oo n—-oo

3. RESULTS AND DISCUSSION

3.1. RESULTS

In this section, we present new findings regarding the existence, uniqueness, and data
dependence of solutions for a class of fractional integro-differential equation (1) using the
Picard’s three-step iterative algorithm.

Theorem 3.1.1. Let T: (C[0,A], ||'ll) = (C[0,A],|lI'll) be a mapping. Then, the integro-
differential equation defined in (1) admits a unique solution x* € C[0, A], and the sequence
{o. )=y generated by the iterative algorithm described in (2) converges strongly to this
unique solution.

Proof: By integrating both sides of the integro-differential equation (1), we obtain the
following corresponding integral equation

s q s
1
00 =5 ) f (q = ) p(r)drdq + j £(q.x(@)dq + p. )

It can be rewritten in the equivalent integral form given in (5), which is in the form
¢ = T, where T: C[0,A] — C][0, A] is an operator defined by

S

To(®) = o3 j j (@ =1p()drda + [ fa.0@)da+p, (6)

where f is a continuous function on the rectangle B. Consider the sequence {@,}n=o
generated by the iteration algorithm defined in (2) and constructed using the mapping
T:(C[0,A] |I'llo) = (C[0,A], [I'llo). 1t will be shown that for n - o is ¢, - x*. Using
equation (5) and the conditions of Theorem 2.2, we obtain the following inequality.

18pa(©) =% O] = 174, = Tx" 0
j (q — 1) (r)drdq + j (@ ¥n(@)dg + p

0
N

r(a)f f @ =t )drda ~ | fla.x@)dq

0

F(a)
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B

(q = 1)* (o) — x*(r))drdq

o~ =

|

+ | (flavn@) - f(a.x°(@)) dg

—

(@)

\

< lg — 71" (r) — x*(1)|drdq

(a)

v

= o
O\h
o\m

j (0,9 (@) — £ (02" @)|dq
0

< g -2l j j lq - rl*tdrdq + L j n(@) — 2 @)ldg

“I'(a)
Aa+1
Since h(a, A, L) = F( o + LA, we have
lont1 — x"lle < RllYn — %7 || co- (7)

After performing the necessary calculations, the following inequalities are obtained.
|¢n(s) —x7 ()| = [Tpn(s) — Tx"(s)|

N
j — 1) pn(r)drdq + f f(a ¢n(@))dq +p

J0 0 0

q S

f — )% 1x*(r)drdq — f f(q,x*(q))dq —p
0

0

(a)
@] ¢
0

r(a)f f (@ =) () — x*(r))drdq

0 0
N

+ ff(q, ¢n (@) — f(a,x"(@)) dq
0

s q
1
Smfo fo 1q = 71% pn(r) — x* () |drdg

+f|f(q, ¢u(@)) — f(a,x*(@)| dq

_ ja-1
<o )||¢n ||oof0j0|q rle1drdg
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+f||f(q, on(@) = f(ax* @)l da

0 A(X+1
< - _ *
< (F(H S +LA) 16 — x* 1o

ln —x" Nl < hllpn — xlco (8)

Similarly,
Iqbn(s) —x*($)| = T, (s) — Tx*(s)l
1
= —F—fo f (g —1)* o, (r)drdgq +f f(q,0.(@)dq +p

0
s

s q
1
r_j j q —1)* 'x*(r)drdq — j f(a,x*(g))dq - p
1
*T@

S

j”f(q o (@) — fa.x*(@)||_dq

0 Aa+1
<+ LA g — %"l
_<F(a+2)+ )ngon y

l$n — x"llo < hlln — x"lc 9)

s q
f f (@ = P g — x*ldrdg
0

is obtained. By substituting inequalities (9) and (8) into inequality (7), the following result is
obtained.

l@n+1 = x Mo < P2 llon — %[l
lon = x*lloe < PP llgop—1 — x*|le

o1 — x*lleo < Rl — x"[lco
Applying induction to the last inequality, we obtain the following result.
l@n+1 — %Ml < P2 D0y — x|l (10)

Since h < 1 if the limit is taken as n — oo in the inequality (10), we obtain

lim ||, — x*|| = 0.

n—->0oo
Hence, this contraction-type argument ensures that the iterative sequence generated by

Picard’s three-step method remains bounded and progressively closer to the fixed point.

Next, we investigate the data dependence of the solution to the integro-differential
equation presented in initial value problem (1) by applying the iteration algorithm described
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in (2). Accordingly, we consider the following initial value problem associated with a second
integro-differential equation
du(s)
IS +1%u(s) = g(s,u(s)),
0<s<A, 0<a<l,
u(0) = 1.

(11)

By integrating both sides of integro-differential equation (11), we obtain integral
equation

s 4 s
1
u(t) = —mj j (g —r)* tu(r)drdq +] g(q,u(q))dq + 1. (12)

The equivalent integral form (12) can be expressed as u = Su, where
5:(C[0,A], |Ill) = (€C[0,A], |I|lco) is @ mapping defined by

s
1

s g
Su(s) = —m.lo- jo- (g —r)* tu(r)drdq +.£ g(q,u(q))dq +1, (13)

where g is continuous function on the rectangle B.
If the iteration algorithm given in (2) is reformulated using the mapping T(6) and
S(13), respectively, the following iteration algorithms can be obtained.

( s q S
1
onis®) =~ | | @=r M pu@rdrda + [ £a.vn@)da+p
s q S
1
1¥n(s) = — == (g —7)*t¢,(r)drdq + | f(q,¢n(q))dq +p (14)
@) ] J
s q S
1
tn(s) = o | [ @=1gu@drda + [ Fa.0n@)da +5
\ 0 0 0
( 1 s q N
uns®) = ~17 | [ @=n"n@drdg + [ g(q.m(@)dg+ o
0 0 0
s q s
1
(n(s) = —=—— (g —1)* 'w,(Mdrdg + | g(q,wa(q))dq +7 (15)
@ | |
s q S
1
wy(s) = —— (g —)*  u,(Mdrdg + | g(q,u.(q))dq + 7
9= 1) | |

Theorem 3.1.2. Consider the sequence {¢,}n=, Obtained from (14) and the sequence
{u, };r=o obtained from (15) for each n € N. Let the solutions of the integral equations (5)
and (12) be x* and u*, respectively, with the conditions of Theorem 3.1.1.
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i) Let the constants & and &, exist such that ||f(q,<p(q)) - g(q,u(q))”oo < & for each
(s,r) €0, A] and lp — 7lle < &
i) Let K = <1

F( +2)

If ¢, = x™ and u,, = u* as n = oo, then the inequality

3(g,A+ &)
< —-— =7
e —uwill = ———

is valid.

Proof: Under the hypotheses of Theorem 3.1.2, the following inequalities, namely (16), (17),
and (18), are obtained.

q”(pn+1 u‘n+1”oo - ”Tl/)n Svn”OO
1
@jo jo( q—r)* 11pn(r)drdq+fo fa, ¥a(@))dq + p
= s q S
1
+m-fo‘ f ( —r)a 1 n(T)dT‘dq fg(q:vn(Q))dq_T

0 00

q
f — )y — vylldrdg
0

._J =}
‘H
o T v

+f If (@ ¥n(@) = g(q, va(@)|| ,dq + llp — Tl
s q

— a—-1
F( )”1/)1’1 vn”oof f (q T) d'r'dq + 551 + 82

Aa+1
< (m) I, — vplleo + Agq + &

”(pn+1 - un+1||oo < K”lpn - Un”oo + Agl + & (16)

Similarly, inequalities (17) and (18) are obtained.
”lljn - 17n”oo = ”T(pn - SWn”oo
S

(@ = 9u()drda + | £(a.$u(@)da+p

0
N

(q - T)a_lwn(r)drdq - f g(qlwn(q))dq -1

0 oo

1
I'(a)

+

1
I(a)

[
oY o ~—
oS~—— oo~/ o
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1 ( a—1
s@nm—wnnmjojo(q—r) drdg

+(1f (0. (@) — 9(a. Wn(Q))”mf dg +llp = 7lle

0
< Kllpp —wyllo + €14 + &,
lVne1 — Vsl S Kllpp — Wylleo + €14 + &, (17)

”d)n - Wn”oo = ”T(pn - Sun”oo

S

(g —1)* o, (r)drdq + f f(q,0.(@))dq +p

0
s

(q —m)* tu,(r)drdq — j 9(q, un(q))dq — 7

0 o0

S

+
'—J

(@)

oS~— oo~/ ao

gl
ol

< s 10 ~ talle j ] (q =) drdg

HIF (0 0a(@) = 9(g un(@)]. j dq +llp - tll.

0
< Kllon —unllo + €14 + &

[fn = Walloo < Kll@n = tnlleo + £14 + & (18)

Thus, if the inequality (18) is written in inequality (17) and K <1 is used, the
following inequality is found.

lVn = vnlles < ll@n — unlleo + 2614 + 26, (19)
If inequality (19) is substituted into inequality (16), inequality (20) is found.

l@ni1 — Unsillo < Klll@n — unlleo + 2614 + 26,] + Agy + &,
< Kllo, — upllo + K26/A + K2, + Ay + &,
S K”(pn - un”oo + 3£1A + 382

3614 + 3&,

% (20)

”(pn+1 - un+1”oo < [1 - (1 - K)]”(pn - un”oo + (1 - K)
From the last inequality, we get for eachn € N.

n = ”Q‘)n _un”oo:
n = (1_K) € (0,1),
3(g,A + &)
= > 0.
)/Tl 1_K —0

Thus, the inequality stated in (20) fulfills the requirements of Lemma 2.1. Hence,
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. . . 3(&14 + &3)
0 < limsup||@, — u, |l < limsupy,, = limsup —————
n—oo n—-oo n—-oo 1 - K

is obtained. Since ¢,, - x* and u,, » u*asn — oo, we found

3(g;A + &)

x*—u* <
e = wlleo < =5 —

Example 3.1.1. First, let us consider the following initial value problems

dZ —-2s 1
2 4 o) = L)
0<s< 1 (21)
®(0) = 0.
and

d? e S+2 1
0<s<1, (22)
@(0) =0.

Iteration Steps and Existence of Solutions: To illustrate how the Picard three-step iteration
algorithm is applied, consider the initial value problem (21). We denote the initial guess as
@o(s) = Oforall € [0,1]. The operator T for this problem is defined as:

T (€101, ) = €01 [,
—2s 1
To(s) = - j | @=-n=rowardg+ | (%gq)(t))dq

0 0

a+1
h(a,A,L) Fat2) A
1
12+t 11
= +=.=
r(%+2) 3 2
1 +1
5\ ' 6
Fl(z)
=139 620918<1

Thus, from Theorem 2.2, the solution to the initial value problem (21) exists and is
unique. Similarly, the initial value problem (22) can be expressed with the operator as
follows:
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$: (€011 1M1 = €01 1)
1 42 1
$0) = ~—5 | [ a-n<ro@ardg+ [ <65J+§¢(s)>dq

@4 o

In this case, L = g,a = % ,A=1 and h(a, A, L) < 1. Therefore, from Theorem 2.2,
the initial value problem (22) has a solution and is unique.

Data Dependency:

—-2S 1 -S 2 1
|f(s,0n(s)) — g(s, <pn(s))||OO = (% + §<p(t)) - (% + §(P(t)>

1 —-2s —-S
= gle —e S —s| £0246=¢

K =

Aa’+1

- (%Jr 2) ~ 1,329

lp—1lle =0<¢,.

=0,752<1

Thus, we obtain

3(aA+e) _3.(0,246)

1K S1-o0752-277"

lx* —u*|le <

To better demonstrate the practical performance of the Picard’s three-step iteration
method and to visualize the theoretical findings obtained above, we now present the
numerical behavior of the iterative sequence generated for problems (21) and (22). In
particular, the convergence pattern of the approximations and the decay of the iterative error
are illustrated through graphical representations. These plots provide further insight into the
efficiency, stability, and rapid convergence rate of the proposed algorithm.

The convergence pattern obtained from the iterative scheme is illustrated in Figure 1.
Furthermore, the decay of the iterative error in logarithmic scale is presented in Figure 2,
demonstrating the rapid convergence behavior of the method.

10T —e x,

[Xn+1 = Xn]
0.9 - 1071 4
0.8
0.7 4 =
_ I
-
X 0.6 T 1072 4
X
0.5
0.4
0.3 4 1073 4
T T T T T T T T T T T T T T T T
25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 20.0

Iteration (n) Iteration (n)

Figure 1. Convergence behavior of the iterative
sequence {x,,}.
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Figure 2. Error decay per iteration in logarithmic
scale.
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3.2. DISCUSSION

The theoretical analysis and numerical results presented in this study affirm the
effectiveness of the Picard’s three-step iteration method in solving fractional integro-
differential equations. The main findings reveal that the method guarantees strong
convergence to the unique solution under appropriate contractive conditions. Compared to
classical iterative schemes, the three-step Picard method demonstrates superior convergence
rates, aligning with previous results in the literature while offering an advantage in
computational efficiency.

One of the central contributions of this study is the in-depth exploration of data
dependence. The results confirm that the iterative approximations are not only stable but also
robust against perturbations in the operator and initial conditions. This robustness is
particularly important in real-world applications, where exact data may be unavailable or
subject to measurement errors. The theoretical data dependence results (supported by rigorous
inequalities) demonstrate that small deviations in input data result in proportionally small
changes in the output, thereby ensuring the reliability of the method.

The numerical example provided illustrates how the theoretical framework applies in
practice. Both the existence and uniqueness of solutions were verified via operator bounds
and Lipschitz-type conditions. Furthermore, the estimation of the error bounds between two
iterative sequences under data perturbation reinforces the practical relevance of the data
dependence theory. The bounding inequalities and their eventual vanishing as the iteration
count increases offer a quantitative measure of stability.

These results extend the applicability of fixed point methods (especially Picard-type
schemes) to more general classes of fractional differential problems, particularly those
involving integral components. The flexibility of the approach also suggests potential for
adaptation to broader settings, such as equations with nonlinear kernels, memory-dependent
operators, or multi-term fractional derivatives.

In summary, the discussion highlights the methodological strengths of the Picard’s
three-step iteration, especially its convergence behavior and its resilience to data changes.
These features position it as a powerful and practical tool in the numerical analysis of
fractional systems, with promising applications in physics, engineering, and biology where
such equations frequently arise.

4. CONCLUSIONS

In this study, we have examined the approximate solutions of fractional integro-
differential equations using Picard’s three-step iteration algorithm, which is known for its
faster convergence and strong stability compared to traditional iterative methods. The
proposed approach proves to be both theoretically rigorous and computationally efficient.
Furthermore, the study thoroughly investigates the concept of data dependence, which plays a
critical role in ensuring the stability of the solution when subjected to perturbations in the
operator or initial data. The derived results demonstrate that the Picard’s three-step method
yields robust approximations under small data changes, validating its reliability for practical
applications. A numerical example is also provided to support the theoretical findings.

This work not only contributes to the existing literature by enhancing the applicability
of the Picard’s three-step method to fractional problems but also opens up new avenues for
future research. Future research may focus on extending this approach to variable-order
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fractional models, systems involving delays, or partial differential equations with nonlocal
boundary conditions, potentially enhancing its applicability to real-world engineering,
physical, and biological problems.

Beyond the theoretical implications, the results of this study can be applied to several
practical fields. In particular, fractional integro-differential equations commonly arise in
control systems with memory, viscoelasticity, population dynamics, epidemiological models
with hereditary effects, and signal processing. The strong convergence and data dependence
properties established here suggest that the Picard’s three-step method can be reliably utilized
as a numerical tool in these applied settings.
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