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Abstract. In this work, the time-fractional Burgers’ equation is solved numerically
using a Galerkin finite element method with cubic B-splines as trial and test functions. The
Burgers’ equation serves as a model for various practical phenomena, such as traffic flow,
shock wave formation in fluid dynamics, heat conduction in solids, nonlinear acoustics,
boundary layer behavior, and specific aspects of plasma physics. The time-fractional
derivative is expressed through the Caputo formula, which is capable of handling both
singular and non-singular kernels. Cubic B-splines are used as weighting functions to derive
the weak formulation of the governing equation. A transformation process links the global
and local coordinate systems. The time-fractional derivative is discretized with the standard
finite difference formula, while the Crank-Nicolson scheme is applied to discretize the
unknown functions. A stability analysis is performed to evaluate the robustness of the scheme
and ensure that errors do not amplify over time. The effectiveness of the proposed
methodology is evaluated by solving a range of relevant problems, with results presented both
graphically and in tabular form.

Keywords: Fractional burgers’ equation; Cubic B-spline basis function; Galerkin
method; Finite element method; Caputo derivatives.

1. INTRODUCTION

The concept of fractional calculus dates back three centuries. While it boasts a rich
history, the practical applications of fractional calculus have recently garnered significant
attention. Nonlinear fractional differential equations have become a focal point of numerous
studies, given their frequent occurrence in diverse scientific and engineering domains. These
equations are prevalent in fields such as plasma physics, electrical networks, control theory of
dynamical systems, probability, statistics, acoustics, material science, optical fibers, biology,
solid-state physics, chemical kinetics, chemical physics, fluid mechanics, geochemistry,
among others. The concepts of dispersion, dissipation, diffusion, reaction, and convection are
intricately linked to the phenomena mentioned above, and they can be effectively studied
using nonlinear fractional differential equations. Consequently, exploring exact traveling
wave solutions for nonlinear fractional differential equations (NLFDESs) holds significant
importance in understanding nonlinear tangible events.
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The subject of the nonlinear Burgers’ equation has been extensively studied in many
different natural science fields [1-3]. The study of nonlinear Burgers’ equation, which arises
in the setting of wave evolution, including fluid turbulence, shock wave propagation, gas
dynamics in granular media, and elastic wave propagation, has received a lot of attention. The
Hopf-Cole transformation, which is used analytically to solve the nonlinear Burgers’
equation, has helped to shed light on the physical properties of these waves. In the absence of
the pressure factor, the model equation has also been referred to as a Navier-Stokes equation
version [4].

The physical processes of weakly nonlinear acoustic waves propagating unidirectional
in a gas-filled pipe are described by the fractional Burgers’ equation [4]. The combined
impact of wall friction across the boundary layer results in the fractional derivative. Other
models, including shallow-water waves and waves in bubbly liquids, also exhibit the same
structure [6]. This paper focuses on analyzing the time-fractional Burgers’ equation:

D¢ u(z,t) +uu, — Buy, = f(z,1), (2, t)ell, 1)

where Q = (z,t)[a<x <b,0<t<T,£>0,0< a<1,f(zt)isagiven function, the
boundary conditions are

u(a,t) = P1(2),ub,t) = P,(2),t [0, T], )
the initial condition is
u(z,0) = go,z€(a,b) 3)
The definition of the Caputo fractional derivative is given below:

1 tou(z,s) ds 4)
ra- a)fo ds (t—s)* ,@e(0. 1),

cpa —
ODt_

in which T" (.) denotes the gamma function.

In the existing literature, numerous numerical and semi-analytical methods have been
developed to solve the nonlinear time-fractional Burgers’ equation. These include the
Adomian decomposition method (ADM) [7], variational iteration method (VIM) [8], cubic
parametric spline (CPS) method [9], quadratic B-spline Galerkin method (QBSGM) [10],
cubic trigonometric B-splines method (CTBSM) [11], Legendre Galerkin spectral method
(LGSM) [12], Crank Nicolson approach (CNA) [13], finite difference method (FDM) [14],
Chebyshev collocation method (CCM) [15], spectral collocation method (SCM) [14], among
others. For further insights, Momani [7] explored a non-perturbative analytical solution of the
Time Fractional Burgers Equation (TFBE) using the Adomian Decomposition Method
(ADM), while Inc [8] solved it using VIM. El-Danaf and Hadhoud [9] obtained the numerical
solution of Eq. (1) using the cubic parametric spline approach. Additionally, Esen and
Tasbozan [10] employed the quadratic B-spline Galerkin approach, while Yokus and Kaya
[17] applied the expansion method based on the Cole-Hopf transformation to derive solutions
for the equation. Likewise, Hassani and Naraghirad [18] and Yaseen and Abbas [11] provided
the solution using an optimization technique based on CTBSM [11] and generalized
polynomials [18]. Alsaedi et al. [19] derived a smooth solution for the time fractional
Burgers’ equation (TFBE), whereas Li et al. [19] investigated its solution utilizing the
Legendre Galerkin spectral method (LGSM) [12] and the Local Discontinuous Galerkin
Method (LDGM) [20]. Akram et al. [21] and Majeed et al. [22] solved TFBE numerically
using an extended cubic B-spline function. Additionally, Onal and Esen [13], Chen et al. [23],

WWW.josa.ro Mathematics Section



B-Spline-Based Galerkin Finite Element Approach... Ammara Yasin et al. 793

Yadav and Pandey [14], and Wang [24] approximated the solution using the (CNA) [13],
Fourier spectral method [23], Finite Difference Method (FDM) [14], and the separation of
variables method [24], respectively. A spectral shifted Legendre collocation approach was
proposed by Bhrawy et al. [25] for the space-time fractional Burgers’ equation in both
temporal and spatial discretization. Safari and Chen [26] employed FDM and the backward
substitution method (BSM) to get the time fractional coupled Burgers’ equations (TFCBE)
solutions. Doha et al. [27] and Albuohimad and Adibi [15] used the Jacobi Gauss Lobatto
collocation method (JGLCM) [27] and CCM [15] to build their solutions. Ahmed et al. [15]
employed the Laplace-Adomian Decomposition Method (LADM) [28], the Laplace
Variational Iteration Method (LVIM) [15], and the Semi-Analytical Computation Method
(SCM) [16] to solve TFCBEs. Additionally, Liu and Hou [15] utilized the Generalized
Differential Transform Method, while Hussain et al. [29] applied the Meshfree Spectral
Method to solve TFCBEs. Zayernouri and Karniadakis introduced fractional spectral and
discontinuous spectral element methods for solving fractional partial differential equations
(PDEs), particularly the space-fractional Burgers’ equation, as discussed in [30].

2. DESCRIPTION OF THE NUMERICAL SCHEME

Let N and M be two positive integers. Define the time step as At = % and the space

stepas h = b_Ta. The time points are t™ = nt for 0 < n < N and the spatial points are

Zm = mh for 0 < m < M. Let uy, represent the approximate solution at the point (z,,, t").
The domain a < z < b is uniformly divided into M subintervals [z,,, z,,+1] €ach of length h,
wherem = 0,1,2,..,.M —landa=2,<2z; <-+,< Zy,_1 < zym = b . The scheme we use
to solve Eqg. (1) involves approximating the solution U(z, t) to the exact solution u(z, t) in the
form given below:
M+1
UnG 0 = ) (B, 5)

m=-1

where the cubic spline basis functions B,,(z) are provided by

(Z - Zm—2)3 ’ ZE[Zm—Z' Zm—l]'
1 h® +3h%(z — zpm_1) + 3h(z — 2p_1)? — 3(2 — Zm-1), 2€[Zm_1, Zm),
Bm(z) = PEl h3 + 3h2(ze1 — 2) + 3h(Zge1 — 2)2 — 3(Zme1 — 2)3, 2€[2m, Zmial,

(Zm+2 - 2)3 rZG[Zm+1' Zm+2]'
0, otherwise.

and c,,, (t) are unknown functions that need to be found.

Each cubic B-spline function spans four elements, effectively covering the interval
[Zm, Zm+1] With four such functions. Here, the element knots z,, and z,,,,, along with the
interval [z,,, z,,+1], are utilized to define the finite elements. The determination of the
parameter c,, (t) involves utilizing the nodal values Uy (z,,), U'm(Zm), U m(Z)-

UM = U(Zm) = Cmél + 4 Cm + Cm+1,
U’M = U,(Zm) = E(Cm+1 = Cm-1) (6)

6
U'v =U"(z) = ﬁ(cm—l — 2 + Cmy1)-
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Within the standard element [z,,, z,,+1], the change of Uy (z, t) is given by

m+2

U= Y GO B @) ™

j=m-1

The temporal Caputo derivative can be approximated using the L1 formula.

__ n-1 8)
*u  (Ar)™@ (
e — [‘(2 — a) Z((k + 1)1—a _ kl—a )(un—k+1 _ un—k)'
k=0
Using (8) along with the & — weighted method, Eg. (1) can be rewritten as:
(Ar)_a nzl((k + 1)1—a _ kl—a )(un—k+1 _ un—k) + Q(un+1un+1 _ ﬁun+1
r2-a) & z # 9)
+ (1 -0 ™up — puj,) = f(z, t™H).
By [26], linearize the non-linear term as
(uuy)™t = w1y + ututt — ulum
Discretizing (9) for 6 = % we achieve
1
E (u3+1un + u;’LuTl+1) _lzi(u;lz-kl
ﬁ n—1 (10)
— E (ugz) -1 Z pk(un—k+1 _ un—k) + fn+1’
k=0

@)=, _ 1-a _ 1,1-a
F(Z—CZ) yp - ((k + 1) k )'

By applying the Galerkin method to Eq. (10) with weight functions W, we obtain the
following integral equation

where, n =

1 b
Ef W™ + utu™ — pultl) Wdz
a
g (b L1
= EJ ul, Wdz — nJ Z pF U — kY Wdz (11)
a @ k=0
b
+ j i wdz.
a

Since the integrand includes first and second derivatives, it is necessary to choose trial
functions that are at least cubic polynomials. By employing cubic B-splines as trial functions
in the Galerkin finite element method, we can achieve smooth solutions of first and second
order respectively. The interval [z,,, z,4+1], IS transformed into [0, k] via local coordinates,
wherer =z —2z,, 0 <r < hand0 <t < h. The cubic B-spline shape functions, in terms of
r over [0, k], can be written as
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r
%m_1=(1_ﬁ),
T T\?2 T3
B,=4—-3-+3(1-=) =3(1—-=) ,0<t<h
h ( rh) r(z h)r3 (12)
%m+1:1+3ﬁ+3(ﬁ) —3(E),
53
SBm+2=(ﬁ)

As a finite element [z,,,, z,,+1], IS Spanned by four consecutive cubic B-splines, the
local approximation over the element is given by:

Ul\e/[ = 23m—1(r)cm—1(t) + SBm(r)cm(t) + SBm+1(r)cm+1(t) + SBm+2 (r)cm+2(t) (13)

Here, c® = (¢;p—1, Cm» Cm+1, Cm+2) Tepresent the element parameters, and B¢ =
(Bm-1,Bm Bm+1, Bm+2) denote the element cubic B-spline shape functions. By substituting
W and U with the weight functions 8B and the trail solution (13), respectively, into Eq. (11),
we obtain the following matrix system of first-order ordinary differential equations.

m+2

h
z Knj fsgﬂsjdw"zj BB dr +”22] %f%dwﬁf BB dr)( eyt
0

j=m-1
m+2

h
~ 5 Y, @I -5 [ s @) "

j=m-1
m+2

-7 z (J B,B; dr)Zpk(c" L ")+f B,f,(x, t)dr

j=m-1

where [=m—-1mm+1m+2and m=0,1,...M—1.n, =U" and n, =U} are
assumed constant within the element to simplify the calculation of the integral. If we define
the element matrices by:

h h h
Ag] = f SB{;%jdr, B{J] = j %}EB]'dr, Lg] = f %{)S’B]’-dr, C{)] = %gEB]’I g, Eg
0 0 0

h (15)
= j B, f1(x, t)dr
0
The aggregation of elemental contributions yields the following matrix equation:
M2 M B
((n 2)A+ > L+2B>
B n-—1 (16)
=BCc" — 2 Bc™ — nAZ pr(cf Tt =)+ E
k=1

where ¢ = (c™, cll, ...y, ciiy)T contain all the element parameters. The assembled
matrices A, B, C and L are septadiagonal. Applying boundary conditions (2) eliminates c*;
and cg;,, from system (16), resulting in a (M + 1) x (M + 1) system solvable by a
modified Thomas algorithm. The time evolution of nodal values c"™*'is obtained iteratively
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after determining the initial vector ¢®. We use the following approximation for this initial

condition.
M+1

Un(z0) = ) ch(®) B ().

m=-—1
The following relationships must hold at the points z,, to ensure U,, is satisfied:
Uum(z, 0) = u(z,,,0), form=0,1,..M

The initial vector c%can be computed using the initial and boundary conditions
through the following matrix equations.

— h —_
¢ 1 9o (xo) + = go(xo)
4 1 00 09 O 3
1 4 10 Ct o (x1)
0 1 41 C 9o(x2)
1 4 1 C]?/[_z 9o (xm—2)
0 0(1) Y| I
) ) CO h I
- M [90Gem) +§g0(xM)_

3. STABILITY ANALYSIS

The notion of stability is intrinsically linked to the control of computational errors
[22]. In this section, the stability of the proposed method is analyzed using the Fourier
approach, as outlined in [8]. For every Fourier mode, an amplification factor is derived, which
describes how the amplitude of a specific mode changes from one time step to the next in the
numerical solution. This factor evaluates the extent to which errors at a specific wavenumber
propagate across successive iterations. The numerical scheme is deemed stable if the
magnitude of the amplification factor does not exceed 1 for all wavenumbers. To verify the
stability of the proposed numerical scheme (16), it is sufficient to analyze the homogeneous
case, f(z,t), of Eq. (1). The process begins by introducing a recurrence relationship that ties
the unknown element parameters across consecutive time levels, as outlined below

(5 (r+2) -5 = H)aaes o (22(r 4 2) -2 )

140 2 40 20h 140 2 40 20h
(1191h ( + n_z) 245 45[3) nel (2416h( + 77_2) + 2406) ntl
120 U1 T3 40 BZOh 120 U1 T3 10h 28
( 140 (77 + 2) + 40 10h) Cmi1 + Ta0 + 2 + 40 10h Cmyz T 17)
M _ i) n+l _ B( 3 —
(140 (7) + ) + 20 10n) “m+3 = 3 \Ion Cm-3 + o 10h Cm—2 +1on Ton ¢
240 72 3 k+1 _ k
Toh Cm + 1oh Cmt1 T Ton € Cm2 Ton € 77}1+3) N0 [Z =1DP (Cn —3) +
120(cft bt — 7k ) + 1191 (b5 — b7k ) + 2416(cF+t — -k) +

1191(Crrrlz+kl+1 - Cm+1) + 120(C1¢1+I§+1 - Cm+2) + (ngléﬂ - Cm+3)]

Let V and V represent the growth factor and its approximation, respectively, for a
Fourier mode. By defining Y2 = V — V and substituting it into Eq. (17), we obtain:
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(L (n + 7]_2) M _ i) Y‘n+1 + (120h (T] + 77_2) _56m _ E) Yn+1 +
140 2 40 20h ; 140 hz 40 zi%}é
1191h M2\ _ 245m1  45B) yn+1 (2416 ( 77_2) ) n+1l
( 140 (77 + 2) 40 zoh) Ym=1 + 120 \ + 2 + 10h Ym'™ +
1191h 2 2457, 45[3) n+1 (120h( n_2> 561, 72(3) 1
( 140 ( T 2)+ 40 10h Vi1 + 120 \1 T 2 t 40 10h Ymiz +
3 (18)

R N2\ y M1 3B\yn+1 _ B n
(140 (77 + 2) 40 10h) Y3 = (10hYm 3t 10hYm 2 +on 10h m-1
ﬂ n n n n n—-k+1 __
10hYm 10hY w1t 10hY w2t 10hYm+3) Uy [Z =1P (Ym_3
YZE) + 120(Yp 5 = YR oK) + 1191 (YTt — YTk + 2416 (Yt —
Vi) + 1191 (Y5 — Yagh) + 120(Yasst — Yik) + (k™ — Yazh)]

The aforementioned error equation adheres to the given initial and boundary

conditions
Y. = go(zy), m =0,12,..,M, (19)
Yo = 1 (t"), Yy = 1 (t™). (20)
Define the grid function
h h
Y,r,‘l,zm——<z<zm+§,m= 1:1:M -1,
n —
Y" = h B (21)
0a<z<a+—-orb—=<z<bh.
2 2
The Fourier expansion of Y™ (z) is defined as
- 2lZG
Y2(z) = Z A"(g)expb-a ,n=1,2,...N, (22)
g=—
where
1 b 2mizg (23)
Ag) =— f u"(z)expb-a dz.
b—a ),
Let
=[Yr Y.L Yo,
and consider the norm defined by
1
M-1 2 b %
el = (Z hmw) - U mmzczz] .
m=1 a
Using Parseval’s equality, we obtain
f e = S W
g=—
which implies that
= (24)
g = ) IAn@I,

g=-o
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Suppose the solutions to Egs. (18 — 20), takes the form Y™ = ¢"expY™® with
= v/—1 and ye|—m, |. Substituting this into Eq. (18) and dividing by expY™® yields

¢"M[(K, — K,)cos30Y + (120K, — 24%,)(cos20Y) +
(1191%K, — 15%,)(cosOY) + (2416, + 80K,) + (K 3sin30Y + 56sin20Y +
245sin0Y)] = ¢"[K,c0s30Y + 24K ,c0s20Y + 15K,cos0Y — 80K, |

B (25)
nm[z 1 PR (¢FH — ¢"K)((2c0s30Y) + 120(2c0s20Y) + 1191(2c0s0Y) +
2416)],

where ¥; = %(77 + %),7(2 130Bh ¥, = "1 . Without any loss of generality, let Y = 0. This
reduces the last expression to

g.n+1 Vi g.n _ &2 p (¢ k+1 _ ¢ k)

(26)
where V = 3728%, + 30%,, V; = —30%,, V, = 37?;"“.
Now we have to show that
lc™ < |¢°,n=1,2,..,N. (27)
We will prove this result using mathematical induction. For the case n = 0, Eq. (26()
yields
1 0 0 . vl
st = 37167 < I¢°] since - < 1. (28)
Suppose that |¢™| < |¢°| forn = 0,1,2,..N — 1. We have to prove itforn = j + 1.
Now consider

| n+1| —

V1 n_VVZ k (-n—k+1 _ .n—k
S Yik=1P" (¢ 9 )|

V1 n VVZ

<

— V +| lp (gn_k+1_cn_k)|a
V. VV _
< 56" 3 Zhaa PE T = ¢,

V VV - -
L R i e R
V 4%
1| O|+ 2 7]3:1 |§0|+|§'0|,
= o] 4 2% o

1
i+,

2 l¢°1.
Hence

V2 + 2nV?V.
N+l < 0] if % 2 1. 29
< IoeLif = (29)
From Eq. (24) and (29), it follows that

”Ynllz ”YOHZI = I1I2I "-rN-

It follows that the numerical scheme exhibits conditional stability
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4. NUMERICAL EXAMPLE AND RESULTS

In this section, three numerical examples are examined to evaluate the effectiveness
and precision of the proposed method. The results are compared with both existing methods
from the literature and exact solutions. These comparisons are made across various nodal
points z,, at specific time levelst™, using a defined mesh size h and time step Ar. The
numerical simulations were carried out in Mathematica 12. To assess the precision of the
proposed method, the maximum and Euclidean error norms were calculated using the
formulas below

Lo = maxlSmSM+1|u(Zi t) - U(Z, t)l ’
M+1

8, =h z u(zt) — Uz b2
m=1

Example 1. We consider the one-dimensional time-fractional burger equation with a € (0, 1].
[19].

cDFu(z, t) +uu, — Bu,, = f(z,t),0<z<1,t=0,

where,
2—-a,z
f(z,t) = TG0 + t*e?? — t2e?.
With the following conditions
u(z,0) =0,

u(0,t) = t?,u(l,t) = et?.
The exact solution of the problem is given as follows
u(z, t) = t%e?.

Table 1 presents numerical solutions for « = 0.5,M =40,T = 0.05, considering
various At values. As evident from Table 1, both £, and £, error norms decrease as Ar
diminishes, aligning with expectations. Table 1 also presents a comparison of results obtained
using the method developed in this paper with those reported in [19]. The results indicate that
the proposed method outperforms the method presented in [19]. Table 2 displays numerical
solutions for different a values under the conditions Ax = 0.00025,M = 40,T = 0.05. The
results demonstrate a negative correlation between a and both £, and £, error norms. Table
3 presents £, and £, error norms calculated at different spatial nodes for h = Ar and a
constant fractional order @« = 0.50. Error norms for various time intervals are tabulated in
Table 4. The performance of the current scheme is showcased through 3D visualizations of
both computational and analytical results, depicted in Figs. 1 and 2. Fig. 3 reveals a close
alignment between the numerical results obtained using the proposed scheme and the exact
outcomes across various time levels. The piece-wise defined spline solution for Example (1)
is presented when T = 0.05,~ = 0.01, and Ar = 0.01.
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U(z,0.05)
( 416.66(—4(0.01 — z)3 + (0.02 — z)3) + 412.503(0.01 — z)3

1+425.098(0. + 7)° + 420.858(—4(0. +2)° + (0.01 + 2)*),ifze [oflo]
420.858(—4(0.02 — 2)® + (0.03 — 2)?) + 416.66(0.02 — z)*
+42938(=0.01 + 2)° + 425.098(—4(=0.01 + 2)* + (0.+12)%),if ze ﬁ%
425.098(—4(0.03 — 7)° + (0.04 —2)%) + 429.38(—4(—0.02 + 7)?

o 3
+(—0.01 + z)3) + 420.858(0.03 — z)3 + 433.706(—0.02 + z)3,if ze 100’ 100
429.38(—4(0.04 — z)3 + (0.05— z)3) + 433.706(—4(-0.03 + z)3

3 4
_ 3 _ 3 _ 3 -
+(—0.02 + z)?) + 425.098(0.04 — z)° + 438.074(—0.03 + z)°,if ze 700" 1001

433.706(—4(0.05 — z)3 + (0.06 — z)3) + 438.074(—4(—0.04 + z)3
4 5
_ 3 _ )3 _ 3 .
+(—0.03 + z)?) + 429.38(0.05 — z)® + 442.486(—0.04 + z)3,ifze [100,100]

660.344(—4(0.47 — z)3 + (048 — 2)3) + 666.981(—4(—-0.46 + z)3

+(—=0.45 + z)3) + 653.774(0.47 — z)® + 673.684(—0.46 + z)3,if ze _%,%_

666.981(~4(0.48 — 7)° + (049 — 2)%) + 673.684(—4(=0.47 + 7)} _

T ) +(=0.46 + 2)%) + 660.344(0.48 — 7)® + 680.454(—0.47 + 7)3,if ze :%,%:
673.684(~4(049 — 2)* + (0.5~ 2)*) + 680.454(—4(-0.48 + 2)°

+(=0.47 + 2)3) + 666.981(0.49 — z)} + 687.292(—0.48 + z)3,if ze :%’%:

1077.46(—4(0.96 — )3 + (0.97 — z)3) + 1088.27(—4(—0.95 + z)3

95 961
+(=094 + 2)*) + 1066.76(0.96 — 2)° + 1099.19(~0.95 + 2)°,if ze |5, 75
1088.27(—4(0.97 — )3 + (0.98 — 2)3) + 1099.19(—4(—0.96 + z)3

196 971
+(=0.95 + 2)°) + 1077.46(0.97 = 2)* + 1110.22(-0.96 + 2)°,if ze | =, ==

1099.19(—4(0.98 — )3 + (0.99 — 2)3) + 1110.22(—4(—0.97 + z)3
197 981
+(=096 + 2)°) + 108827(0.98 — 2)° + 1121.35(~0.97 + 2)°,if z¢ |5, 705

1110.22(—=4(0.99 — 2)3 + (1.—2)3) + 1121.35(—4(—0.98 + z)3

98 99

+(=0.97 + 2)3) + 1099.19(0.99 — z)3 + 1132.6(—0.98 + z)3,ifze ﬁ’ﬁ]
1121.35(—4(1.— 2)3 + (1.01 — 2)3) + 1132.6(—4(—0.99 + z)3
99 100
100° 100

L +(—0.98 + z)3) + 1110.22(1.—z)3 + 1143.96(—0.99 + 2)3,ifze[

WWW.josa.ro Mathematics Section



B-Spline-Based Galerkin Finite Element Approach...

Ammara Yasin et al.

801

Table 1. Error norms and numerical solutions of Example 1when T = 0.05,M = 40 and a = 0.50.

z Ar = 0.005 Ar = 0.001 Ar = 0.0005 Ar = 0.00025 Exact Solution
0.0 0.0025 0.0025 0.0025 0.0025 0.0025
0.1 0.00277109 0.002764024 0.00276355 0.00276338 0.00276293
0.2 0.00306831 0.00305549 0.00305464 0.00305434 0.00305351
0.3 0.0033946 0.00337735 0.00337621 0.0033758 0.00337465
0.4 0.00375315 0.00373281 0.00373145 0.00373097 0.00372956
0.5 0.0041474 0.00412538 0.00412392 0.0041234 0.0041218
0.6 0.00458105 0.00455897 0.00455751 0.00455699 0.0045553
0.7 0.00505815 0.00503786 0.00503651 0.00503603 0.00503438
0.8 0.00558306 0.00556674 0.00556566 0.00556527 0.00556385
0.9 0.00616053 0.0061508 0.00615015 0.00614992 0.00614901
1.0 0.0067957 0.0067957 0.0067957 0.0067957 0.0067957
L, 1.90426 x 1075 2.70129 x 10~° 1.6182 x 107° 1.23211 x 10~

£,[19] 6.59999 x 10~* 3.74901 x 10~* 2.32591 x 10~* 9.2489 x 1075
Lo 2.5921 x 1073 3.67827 x 107° 2.21184 x 10°° 1.69297 x 10~

8,[19] | 9.36512 x 10~* 5.29997 x 10~* 3.26112 x 10~* 1.32945 x 10™*

Table 2. Approximate, exact solutions and error norms obtained for different fractional order of Example
latT = 0.05M = 40,Ar = 0.00025.

z a=0.10 a =0.25 a =0.75 a =0.90 Exact Solution
0.0 0.0025 0.0025 0.0025 0.0025 0.0025
0.1 0.00276246 0.00276185 0.00275918 0.00276018 0.00276293
0.2 0.00305268 0.00305157 0.00304686 0.00304872 0.00305351
0.3 0.00337357 0.00337208 0.0033658 0.00336835 0.00337465
0.4 0.00372835 0.00372658 0.00371917 0.00372218 0.00372956
0.5 0.00412056 0.00411865 0.00411051 0.00411371 0.00412181
0.6 0.00455413 0.00455222 0.00454384 0.00454694 0.0045553
0.7 0.00503339 0.00503164 0.00502366 0.00502638 0.00503438
0.8 0.00556313 0.00556173 0.00555504 0.00555709 0.00556385
0.9 0.00614862 0.00614779 0.00614362 0.00614476 0.00614901
1.0 0.0067957 0.0067957 0.0067957 0.0067957 0.0067957
L, 8.97773 x 1077 2.30759 X 107® | 8.51671 X 107°® | 6.22665 X 10~°
S 1.24242 x 107 3.1555 x 107 1.14973 x 1075 | 8.3527 x 10~

Table 3. The error norms for & = 0.50,T = 0.05 of Example 1.

z N=M=50 N=M=100 N=M=200 N = M =400 Exact Solution
0.0 0.0025 0.0025 0.0025 0.0025 0.0025
0.1 0.00275226 0.00275764 0.0027604 0.00276181 0.00276293
0.2 0.00303428 0.00304399 0.00304897 0.00305151 0.00305351
0.3 0.00334885 0.00336189 0.00336858 0.00337198 0.00337465
0.4 0.00369918 0.00371456 0.00372245 0.00372646 0.00372956
0.5 0.00408895 0.00410561 0.00411415 0.00411851 0.00412181
0.6 0.00452231 0.00453907 0.00454767 0.00455205 0.0045553
0.7 0.00500399 0.00501948 0.00502742 0.00503147 0.00503438
0.8 0.00553931 0.00555186 0.00555829 0.00556157 0.00556385
0.9 0.0061343 0.00614185 0.00614572 0.00614769 0.00614901
1.0 0.0067957 0.0067957 0.0067957 0.0067957 0.0067957
2, 2.44609 X 1075 1.20401 x 1075 | 5.66903 x 107° | 2.42550 x 10~°
jU 3.32402 X 1075 1.63665 x 1075 | 7.71156 x 107° | 3.30869 x 10~°

Table 4. Error norms for various t values with M = 40 of Example 1 ata = 0.50.
t Lo 2,
0.01 2.24453 x 1077 1.66843 x 1077
0.03 1.38917 x 10~ 1.0244 x 10~°
0.05 2.42438 X 10~° 1.77327 x 107
0.07 1.57981 x 10~° 1.04456 x 10~
0.09 5.62131 x 10~° 3.74189 x 10~°
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Figure 1. The three-dimensional view of the exact Figure 2. The three-dimensional view of the
solutions for Example 1 is presented, with numerical solutions for Example 1 is presented,
M =100,Ar = 0.01,and a = 0.50. when M = 100,Ar = 0.01,and a = 0.5.

u(z,t)

25

20

0.2 0.4v 0.6 08 1.0
Figure 3. The figure illustrates the numerical and exact solutions for, M = 100 ,Ar = 0.01,and ¢ = 0.5
across different time stages.

Example 2. We consider the one-dimensional time-fractional burger equation with a € (0, 1]
[19]
¢DEu(z,t) +uu, — Bu,, =f(z,t),0<z<1,t=>0,

where

2—a i
fz,t) = Ztr(;—l_ngm) + 2nt*sin(2nz)cos(2nz) — 4n?t?sin(2nz).
With the following conditions
u(z,0) =0,
u(0,t) = 0,u(1,t) = 0.

The exact solution of the problem is given as follows
u(z, t) = t%sin(2nz).

Table (5) demonstrates that the £, and £,error norms decrease as the time step Ar is
reduced, under the conditions N = 80,T = 0.05,and = 0.50. For different values of the
fractional order «, Table (6) presents both exact and computational results, using the
parameters M = 120,a = 0.5,and Ar = 0.00255, evaluated at specific spatial points. The
robustness of the scheme is demonstrated through 3D plots of computational and analytical
results, as displayed in Figure (4). The numerical results obtained using the proposed method
exhibit a high degree of agreement with the exact results at various time levels, as shown in
Figure (5). The piece-wise defined spline solution for Example (2) is presented when T =
1,h = 0.01,and Ar = 0.01.
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U(z, 1)
1
( 6.17388 x 1071% + z(6.71752 + (—0.000121617 — 46.96562)z), if ze [O'W]
1
—2.52737 x 1077 + z(6.71759 + (—0.00770373 — 46.7128z)z), 1fze[ ]
100°100
—4. x 1076 . —0. — 46. if z€ | —, —
441628 x 107° + z(6.71822 + (—0.0389303 — 46.19247)z),if ze [100,100]
3
—0.0000252054 + z(6.7203 + (—0.108227 — 45.42247)z),if ze [100 100]
. 5
—0.0000903782 + z(6.72518 + (—0.230426 — 44.4041z)z),if ze ﬁ'ﬁ]
1.26835 + z(19.685 + z(—50.3053 + 33.0893z)), if A
. z( 19. Z . . z)),if ze 100’100
) 49
=4 —1.28298 + z(19.7764 + z(—50.4958 + 33.22162z)),if ze 100’100
1.29198 + z(19.8315 + ( 50.6083 + 33.2981z)),if [49 >0
y/ y/ z)),if ze 100’100
37.3791 + z(—123.675 + (129.329 — 43.03332)z), if % 96
v/ z)z),1t ze 100’100
38.2753 + z(—126.475 + (132.246 — 44.04612)z),if %6 97
. v/ . . . z)z),1t ze 100’100
97 98
38.9743 + z(—128.637 + (134.475 — 44.8122)z),if ze |— 100’100
39.4615 + 130.129 + (135.997 — 45.3297 if 8 99
. z( . (135. . z)z),if ze 100’ 100
et 5o " 99 100
\ 39.7055 + z(—130.868 + (136.743 — 45.5811z)z), if ze 100’100

Table 5. Error norms and numerical solutions of Example 2when T = 0.05,M = 80 and a = 0.50.

z Ar = 0.005 Ar = 0.001 Ar = 0.0005 Ar = 0.00025 Exact Solution
0.0 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 0.00145473 0.00146637 0.00146794 0.00146875 0.00276293
0.2 0.00235369 0.00237253 0.00237507 0.00237637 0.00305351
0.3 0.00235355 0.00237239 0.00237493 0.00237624 0.00337465
0.4 0.00145451 0.00146615 0.00146772 0.00146853 0.00372956
0.5 —0.0000000 —0.0000000 —0.0000000 —0.0000000 0.00412182
0.6 —0.00145451 —0.00146615 —0.00146772 —0.00146853 0.00455531
0.7 —0.00235355 —0.00237239 —0.00237493 —0.00237624 0.00503438
0.8 —0.00235369 —0.00237253 —0.00237507 —0.00237637 0.00556385
0.9 —0.00145473 —0.00146637 —0.00146794 —0.00146875 0.00614901
1.0 —0.0000000 —0.0000000 —0.0000000 —0.0000000 —0.0000000
L, 1.78593 x 107> 3.85331x 107 1.96262 x 107° | 9.96297 x 10~°

£2,[19] 1.24034 x 1074 5.4081 x 10~° 1.4255 x 107° 1.960 x 107>
Lo 2.52566 x 107° 5.44968 x 107° 2.78289 x 107° | 1.42307 x 10°°
£2,[19] 1.75611 x 10™* 7.7465 x 1075 2.8523 x 1075 4,168 x 1075

ISSN: 1844 — 9581

Mathematics Section




804

B-Spline-Based Galerkin Finite Element Approach...

Ammara Yasin et al.

Table 6. Approximate, exact solutions and error norms obtained for different fractional order of Example

2atT = 0.05M = 120,Ar = 0.00025.

z a = 0.25 a=05 a=0.75 Exact Solution
0.0 0.01 0.01 0.01 0.01

0.1 0.00146918 0.00146875 0.00146818 0.00951057
0.2 0.00237706 0.00237637 0.00237546 0.00809017
0.3 0.00237692 0.00237624 0.00237534 0.00587785
0.4 0.00146894 0.00146853 0.00146798 0.00309017
0.5 0.0000000 0.0000000 0.0000000 0.0000000
0.6 —0.00146894 —0.00146853 —0.00146798 —0.00309017
0.7 —0.00237692 —0.00237624 —0.00237534 —0.00587785
0.8 —0.00237706 —0.00237637 —0.00237546 —0.00809017
0.9 —0.00146918 —0.00146875 —0.00146818 —0.00951057
1.0 0.0000000 0.0000000 0.0000000 0.0000000
L, 4.9335 x 1077 9.96373 x 1077 1.66734 x 107

L 7.25022 x 1077 1.42318 x 10 2.36464 x 107°

Figure 4. A 3D graphical representation of the exact and approximate solutions for Example 2.

u(z,t)

Figure 5. A graph comparing numerical and exact results for M = 100,Ar = 0.01 and a« = 0.5 at
various time levels for Example 2.

Example 3. We consider the one-dimensional time-fractional burger equation with a €
0,1])
EDFu(z,t) +uu, —Puy, =f(2,1),0<z<1,t=0,
where,
2t%~%cos(nz)

f@8=—55"4

With the following conditions

— nt*sin(nz)cos(nz) + pfr?t?cos(nz).

u(z,0) =0,
u(0,t) = t%,u(1,t) = —t>.

The exact solution of the problem is given as follows
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u(z, t) = t?cos(mz).

Table (7) presents the error norms and corresponding numerical results for various a
values. Table (8) shows the error norms for « = 0.9 at different time stages, and Table (9)
presents the error norms in the temporal direction. Figure (6) and Figure (7) demonstrate a
strong alignment between the 3D plots of computational and exact solutions for the
parameters T = 0.1,h = 0.0125,and Ar = 0.0005. Meanwhile, Figure (8) presents a
comparison of exact and approximate solutions under the same conditions T = 0.1,h =
0.0125, and Ax = 0.0005 at different time levels. This figure highlights notable variations
in the solution profiles as time progresses, illustrating a clear increasing trend between the
time levels and the solution behavior. The piece-wise defined spline solution for Example (3)
is presented when T = 0.1, h = 0.0125,and Ar = 0.0005.

U(z,0.1)
1
( 0.01 + z(—0.0000547955 + (—0.0492676 + 0.00113003z)z), if ze [0,%

1 2
0.01 + z(—0.0000538397 + (—0.0493441 + 0.00316909z2)z), if ze [%,%]

2 3
0.00999996 + z(—0.0000500723 + (—0.0494948 + 0.00517835z)z), if ze [%,%]
3 4
80'80

4 5
0.00999961 + z(—0.0000265995 + (—0.0500209 + 0.00918937z)z), if ze [%,%]

0.00999986 + z(—0.0000415739 + (—0.0497214 + 0.00719282)2),ifze[

' B 47 48
0.00964814 + z(0.00512975 + (—0.0734787 + 0.0492591%)z), if ze [%,%

= 4 0.009782 + z(0.00446043 + (—0.0723632 + 0.0486393z)z), if ze [z_ﬁ'g
0.00994155 + z(0.00367897 + (—0.0710874 + 0.047945z)z), if ze :—3,%
0.0308585 + z(—0.0725003 + (0.0224528 + 0.00918935z)z),if ze ;—g,g
0.0325703 + z(—0.0779059 + (0.0281429 + 0.00719282z)z), if ze g,%
0.0343665 + z(—0.0835046 + (0.0339598 + 0.00517833z)z), if ze %,g
0.0362288 + z(—0.0892346 + (0.0398367 + 0.00316911z)z), if ze %,%

\ 0.0381924 + z(—0.0952 + (0.0458776 + 0.00113001z)z), if ze %,%}

Table 7. Approximate, exact solutions and error norms obtained for different fractional order of Example
3atT = 0.1,M = 80,Ar = 0.0005.

X a = 0.25 a=05 a=0.75 Exact Solution
0.0 0.01 0.01 0.01 0.01

0.1 0.00950695 0.00950607 0.00950527 0.00951057
0.2 0.00808467 0.00808351 0.00808252 0.00809017
0.3 0.00587256 0.00587156 0.00587074 0.00587785
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X a = 0.25 a=0.5 a=0.75 Exact Solution
0.4 0.00308696 0.0030864 0.00308595 0.00309017
0.5 0.0000000 0.0000000 0.0000000 0.0000000
0.6 —0.00308696 —0.0030864 —0.00308595 —0.00309017
0.7 —0.00587256 —0.00587156 —0.00587074 —0.00587785
0.8 —0.00808467 —0.00808351 —0.00808252 —0.00809017
0.9 —0.00950695 —0.00950607 —0.00950527 —0.00951057
1.0 —0.01 —0.01 —0.01 —0.01
L, 4.04125 x 107° 4.86964 x 107° 5.56789 x 107°
Lo 5.6717 x 107° 6.81543 x 107 7.77594 x 107°
Table 8. Error norms for @ = 0.9 of Example 3.
M = 210,Ar = 0.0025 M = 130,Ar = 0.004
i L, L L, Lo
0.2 47139 x 1073 6.61934 x 1075 5.48066 x 107> 7.68369 x 107>
0.4 6.12142 x 10~* 8.65047 x 10~* 6.21201 x 10~* 8.77466 x 10~*
0.6 3.20266 x 1073 452814 x 1073 3.21227 x 1073 4.54066 x 1073
0.8 1.03877 x 1072 1.46882 x 1072 1.03974 x 1072 1.4699 x 1072
1.0 2.58113 x 1072 3.64979 x 1072 2.58206 x 1072 3.65043 x 1072

Table 9. Error norms and numerical solutions of Example 3whenT = 0.05,M = 100 and a = 0.50.

z Ar = 0.0005 Ar = 0.00025 Ar = 0.000125 Ar = 0.000625 Exact Solution
0.0 0.0025 0.0025 0.0025 0.0025 0.0025

0.1 0.00237582 0.00237666 0.00237709 0.0023773 0.00237764
0.2 0.00202003 0.00202117 0.00202176 0.00202205 0.00202254
0.3 0.0014672 0.00146822 0.00146874 0.00146901 0.00146946
0.4 0.000771228 0.000771819 0.000772119 0.000772271 0.000772542
0.5 —0.0000000 —0.0000000 —0.0000000 —0.0000000 —0.0000000
0.6 —0.000771228 —0.000771819 —0.000772119 —0.000772271 —0.000772542
0.7 —0.0014672 —0.00146822 —0.00146874 —0.00146901 —0.00146946
0.8 —0.00202003 —0.00202117 —0.00202176 —0.00202205 —0.00202254
0.9 | —0.00237582 —0.00237666 —0.00237709 —0.0023773 —0.00237764
1.0 —0.0025 —0.0025 —0.0025 —0.0025 —0.0025
L, 1.81608 x 107 9.89414 x 1077 5.69318 x 1077 3.56913 x 1077

L, 2.53291 x 107 1.38005 x 10~° 7.94403 x 1077 498851 x 1077

Figure 6. A 3D graphical depiction of the exact
solutions for Example 3 is provided, using the
values M = 100,Ar = 0.01 and a = 0.50.

WWW.josa.ro

Figure 7. A 3D graphical depiction of the
computational solutions for Example 3 is provided,
using the values M = 100,Ar = 0.01 and a =
0.50.
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-0.5

-1.0

Figure 8. Numerical and exact results are plotted for M = 100, Ar = 0.01 and a = 0. 50, showcasing
their behavior at different time levels.

5. CONCLUSIONS

e A Galerkin finite element method has been developed to numerically solve the time-
fractional Burgers’ equation.

e Cubic B-splines have been utilized for both trial and weight functions in the Galerkin finite
element method, ensuring a flexible and accurate approximation of the solution.

e We accomplish the transition from the local to the global coordinate system by using a
local-to-global transformation.

e The Caputo fractional derivative has been adopted to represent the fractional derivative in
the governing equation. Discretization of this fractional term has been carried out using the L1
formula within the explicit finite difference method.

e The Crank-Nicolson method has been employed for the discretization of both the unknown
functions and their spatial derivatives.

o The stability of the scheme has been thoroughly analyzed from a theoretical standpoint. To
assess the efficiency and effectiveness of the proposed method, three numerical experiments
involving problems with known exact solutions have been conducted.

e A detailed comparison has been conducted, contrasting the numerical results of the present
study with those produced by the methodology presented in [19].

e The proposed scheme’s performance and computational efficiency are visually depicted
through graphical comparisons.

e The method’s effectiveness for this specific class of time-fractional PDEs, along with its
broader applicability to other time-fractional models, has been demonstrated by the findings.
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