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Abstract. This research investigates the fractional order combined Korteweg-de Vries 

and modified Korteweg-de Vries equation by applying the Exp-function method. This method, 

with the help of travelling wave transformation, provides a systematic approach for deriving 

analytical solutions to nonlinear fractional partial differential equations. We derive a series 

of actual solutions, presenting the efficacy and simplicity of the exponential function method 

in handling the complexity of combined equations. The obtained solutions are analyzed and 

illustrated through various scenarios, demonstrating the potential of these solutions in 

understanding physical phenomena described by these equations. Our findings contribute to 

the broader understanding of nonlinear wave equations and offer a robust analytical tool for 

future studies in this domain.  

Keywords: Fractional order combined KDV-mKDV equation; fractional travelling 

wave transform; Exp-function method; travelling wave solution. 
 

 

1. INTRODUCTION 
 

 

Fractional partial differential equations (PDEs) extend the scope of classical 

differential equations by introducing fractional calculus into the modelling framework. Unlike 

traditional equations that use integer-order derivatives, fractional PDEs incorporate 

derivatives of arbitrary, non-integer orders, which allows them to capture more intricate 

dynamics of processes with memory and spatial heterogeneity. This fractional approach is 

particularly effective for representing systems with anomalous diffusion or complex boundary 

conditions, where traditional models might be inadequate. By employing fractional 

derivatives, fractional PDEs offer a way to describe phenomena where the influence of past 

states is distributed across time or space in a non-local manner, reflecting a broader range of 

behaviors such as slow relaxation or heterogeneous material properties. This capability makes 

fractional PDEs a powerful tool in diverse applications, from materials science to finance, 

where understanding and predicting irregular or multi-scale processes are crucial [1-5]. 

The Exp-function method is a direct technique used to solve complex equations by 

simplifying them into more manageable forms. It works by proposing that the solution to 

nonlinear fractional PDEs can be expressed as an Exp-function, which is a mathematical 

expression involving the powers of a constant base. By inserting this proposed solution into 
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the original equation, researchers can transform it into an algebraic equation, which is often 

easier to solve [6-10]. Recently, various innovative methods have been introduced for tackling 

nonlinear wave equations, such as the tanh-function method, the F-expansion method, the 

Jacobian elliptic function method, and the variational iteration method. Nevertheless, these 

approaches have some constraints in their usage. In different papers this method has been 

utilized to investigate solitary, compact-like, and periodic solutions for different types of 

nonlinear wave equations [11-23]. In physical terms, this method is like finding a special kind 

of pattern or wave that fits perfectly within the system described by the equation. While this 

method is powerful for certain classes of nonlinear PDEs, other methods like the sine-cosine 

or tanh method might be more appropriate for specific equations, particularly where periodic 

or hyperbolic function solutions are more natural. For example, it can be used to model 

phenomena like waves in fluids or materials, where exact solutions can reveal important 

characteristics such as wave speed or shape. This method is valuable because it allows 

scientists and engineers to find precise solutions that describe how physical systems behave 

under various conditions, making it easier to understand and predict complex phenomena 

have been extensively studied for their ability to describe solitary wave propagation. 

However, certain complex wave phenomena necessitate a unified approach that incorporates 

the nonlinear characteristics of both equations [24-32].  

The combined fractional Korteweg-de Vries and modified Korteweg-de Vries (KDV-

mKDV) equation serves as a crucial framework for investigating water waves, allowing 

scientists to analyze and forecast various wave behaviors such as solitary waves, wave 

breaking, and turbulence, interactions between waves and structures, and tsunamis. Increasing 

attention has been drawn to this equation and its extensions, as demonstrated by a multitude 

of research efforts. In the section titled Rational Solutions with Free Multi-Parameters for the 

Combined Fractional KdV-mKdV Equation using this approach, we offer a thorough 

discussion of the insights obtained through the application of the Exp-function method, 

leading to the derivation of exact solutions. Expanding the use of this method allows us to 

discover multiple types of solutions [33-39]. To demonstrate its versatility, we provide 

examples featuring both rational and soliton solutions, employing polynomial and Exp-

function, respectively. In particular, for the rational solutions to the combined fractional KdV-

mKdV equation, free multi-parameters are incorporated. In physical terms, dispersion refers 

to the phenomenon where different wave frequencies travel at different speeds, leading to the 

spreading out of wave packets over time. This effect is captured by the KdV component of the 

equation, which is known for describing shallow water waves, such as tidal waves and 

solitons. Solitons are stable, solitary wave solutions that maintain their shape while traveling 

over long distances without dissipating. Moreover, we explicitly illustrate that the N-soliton 

solution can be represented as an Nth-order determinant. The result and discussion section 

further explores the dynamic characteristics of the exact solutions derived from the combined 

KdV-mKdV equation. In plasma physics, it helps model the movement of ion-acoustic waves 

in a plasma, where both wave steepening and dispersive effects are present. The equation is 

also used in optical fiber studies, where it models the propagation of intense light pulses, 

helping design systems that manage signal distortion [40-45]. 

This research aims to explore the combined fractional KDV-mKDV equation, which 

integrates these nonlinearities, providing a comprehensive model for analyzing intricate wave 

dynamics. We explore its derivation, mathematical properties, analytical solutions, and 

numerical methods for solving the equation. We also discuss various applications in physical 

contexts such as fluid dynamics, plasma physics, and optical fibers, highlighting the 

advantages of using the combined equation over the individual KDV-mKDV equations. The 

combined fractional KDV-mKDV equation is two of the most studied equations in this field, 

each describing different types of nonlinear wave behavior. The KDV equation, first 
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presented by Diederik Korteweg and Gustav de Vries in 1895, describes the propagation of 

shallow water waves with long wavelengths and small amplitudes [46-50]. The mKDV 

equation, developed later, accounts for waves with a different type of nonlinearity. Many 

physical systems exhibit behaviors that cannot be fully captured by the fractional KDV-

mKDV equation alone. This necessitated the development of the combined fractional KDV-

mKDV equation, which integrates the nonlinearities from both equations to provide a more 

comprehensive model. This paper explores the formulation, solutions, and applications of the 

combined fractional KDV-mKDV equation. The combined KDV-mKDV equation is a 

nonlinear partial differential equation incorporating terms from the fractional (KDV) and 

mKDV equations to describe complex wave phenomena [51-54]. The modified Riemann-

Liouville derivative of order α is used in this research which is defined as [55]: 
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2. MATERIALS AND METHODS 
 

 

2.1. METHOD DESCRIPTION 
 

 

We will examine general nonlinear partial differential equations. 
 

,0,...),,( 


ty DDW  10   (2) 

 

where w  represents a differential operator that involves nonlinear terms of , its partial 

derivatives, and possibly higher-order terms. The goal is to find exact solutions for which 

could be in the form of traveling waves, solitary waves, or other specific structures.  

The first step involves applying an appropriate transformation to simplify the PDE. 

Commonly, this consists of converting the PDE into an ordinary differential equation (ODE) 

by assuming a specific type of solution. For instance, in the case of a traveling wave solution, 

we use the transformation [56-57]: 
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   (3) 

 

where   is a parameter that typically represents the order of the fractional derivative, and is a 

constant. This transformation is designed to convert the original conformable fractional 

differential equation into a more manageable form, often an ordinary differential equation 

(ODE) or another simplified structure. Equation (1) rewrite again. 
 

,0),,,( '''''' X  (4) 

 

where the primes represent the ordinary derivative concerning η. 

We assume that the solution can be expressed in terms of exponential functions. 

Specifically, the solution is proposed in the form 
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where pdc ,,  and q  are positive integers, na and mb  are coefficients that to be dermined.  

This corresponding construction shows a momentous and essential measure for 

determining the exact solution. 
 

 

2.2. IMPLEMENTATION OF THE METHOD 
 

 

The fractional KDV-mKDV equation is expressed as:  
 

2 3 0, 0 1.t y y yD P D Q D RD                (6) 

 

Here, ),( tx represents the wave amplitude, t  is time, and y  is the spatial coordinate. 

Each term in the equation has a specific physical interpretation, which is crucial for 

understanding the dynamics of the system it describes
. 

tD  this term represents the time 

derivative of the wave amplitude  . It describes the temporal evolution of the wave. 

Essentially, it captures how the wave profile changes over time and 
yP D  this is the 

nonlinear advection term similar to that in the fractional KDV equation. It represents the 

interaction between the wave amplitude and its gradient, leading to changes in wave shape 

and speed. The constant P  determines the strength of this nonlinearity. The term  yDQ 2  

becomes significant for larger wave amplitudes, describing stronger nonlinear interactions 

that can lead to more complex wave behaviors. The term 3
yRD  spreads the wave energy over 

time and space, counter acting the nonlinear terms. This balance between nonlinearity and 

dispersion is essential for the formation and stability of solitons. The combined fractional 

KDV-mKDV equations can be analyzed and solved using the Exp-function method. 
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By utilizing the proposed method on Eq. (5) and applying the fractional wave 

transformation as outlined in Eq. (2), we substitute Eq. (2) into Eq. (5). Upon performing 

integration, the following result is obtained.  

We get 1 qpdc with the help of homogeneous balance principal and then Eq. 

(4) reduce to  
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Substituting Eq. (7) into Eq. (6) and setting the coefficients to zero, we obtain a 

system of equations. These equations are then solved using software to produce the desired 

results.  
 



Stability Analysis and Wave Pattern Formation… Jamshad Ahmad at el.                                                                    

ISSN: 1844 – 9581 Mathematics Section 

753 

,0)2(3 1
2

11
2

13
2

16  rbbPaQaaE

,0))((2))2((2)2((3 2
0

2
111

2
00

2
1005  rRkababrRkbPaaQaPbE  

2 2 2 2 2

4 1 1 1 1 1 1 1 0 0 0

2 2 2 2

1 1 0 1 0 0 0 1

3((2 2 8 ( )) (2 2
4

8 ( ) 2 ( )) ( 2 ( 2 )) 0,
2

r
E Qa Pa b b Rk a Pa b Qa Pa b

r
b Rk b b Rk r a a Pa b Rk r b

 

,0))2)
3

(12
3

2
())

3

2
(3(2

)))
3

2
(3(2)42(((3

2

011

2

00

2

0
0110

2

0

10

2

011003









rbbb
r

RkbPa
Qa

aabb
r

RkPa

ab
r

RkPabaQaPbE

 

,0)))2(2()
4

(8(

))(2)
2

(8222(

1

2

00011

2

1

22

01

2

1000
2

112









brRkbPaaab
r

Rk

arRkbb
r

RkbbPaQabPaE

,0))(2)2((2)2((3 2
0

2
111

2
00

2
1001   rRkababrRkbPaaQaPbE

.0)2
3

2
(3 1

2
11

2
110   rbbPaQaaE  

(9) 

 

Case 1: 
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where 
11 , aa
and 0b  are free parameters. 
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Figure 1. Plots (a) to (c) include 3D representation of  ty,1  for the values 100,100  ty . [(d), 

(e), and (f)] will ,30,30  ty provide a visual comparison using contour plots. (g) presents the 

comparison as a 2D plot. 
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where 010 ,, baa and 1b  are free parameters. 
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Figure 2. Plots (a) to (c) include 3D representation of  ty,2  for the values 100,100  ty . [(d), 

(e), and (f)] with ,30,30  ty  provide a visual comparison using contour plots. (g) Presents the 

comparison as a 2D plot. 
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where 11, aa and 1b  are free parameters. 
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Figure 3. Plots (a) to (c) include 3D representation of  ty,3  for the values 100,100  ty . [(d), 

(e), and (f)] will ,30,30  ty  provide a visual comparison using contour plots. (g) presents the 

comparison as a 2D plot. 
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where 11, aa and 1b  are free parameters. 
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Figure 4. Plots (a) to (c) include 3D representation of  ty,4  for the values 100,100  ty . [(d), 

(e), and (f)] will ,30,30  ty  provide a visual comparison using contour plots. (g) presents the 

comparison as a 2D plot. 
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where 11, aa and 1b  are free parameters. 

 

  .

expexp

expexp

,

1

1

10

1

11

101

5





















































rktKy
b

a

barktKy

a

ba

rktKy
aa

rktKy
a

ty  (19) 

 



Stability Analysis and Wave Pattern Formation… Jamshad Ahmad at el.                                                                    

ISSN: 1844 – 9581 Mathematics Section 

759 

  

  

  

 
Figure 5. Plots (a) to (c) include 3D representation of  ty,5 , for the values 100,100  ty . 

[(d), (e), and (f)] will ,30,50  ty  provide a visual comparison using contour plots. (g) presents 

the comparison as a 2D plot. 
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where 010 ,, baa and 1b  are free parameters.  
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Figure 6. Plots (a) to (c) include 3D representation of  ty,6  for the values 100,100  ty . [(d), 

(e), and (f)] will ,30,30  ty  provide a visual comparison using contour plots. (g) presents the 

comparison as a 2D plot. 
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Case 7: 
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where 010 ,, baa and 1b  are free parameters. 

 

  .

expexp

exp

,

11

1

7










































rktKy
b

rktKy
b

rktKy
a

ty  (23) 

 

  

  

  



Stability Analysis and Wave Pattern Formation… Jamshad Ahmad at el.                                                                    

ISSN: 1844 – 9581 Mathematics Section 

763 

 
Figure 7. Plots (a) to (c) include 3D representation of  ty,7  for the values .100,100  ty  [(d), 

(e), and (f)] with ,30,30  ty  provide a visual comparison using contour plots. (g) presents the 

comparison as a 2D plot. 
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where 001 ,, baa and 1b  are free parameters.  
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Figure 8. Plots (a) to (c) include 3D representation of  ty,8  for the values .100,100  ty  [(d), 

(e), and (f)] will ,30,30  ty  provide a visual comparison using contour plots. (g) presents the 

comparison as a 2D plot. 

 

Case 9: 

  
2

1 1
1 1 0 12 2

1 1

6 6
, , , , , , 0, 0,

4

rb rb r
P Q R k k r r a a a a

a a k

 
 

 

         

 
1 1 0 1 1, 0, ,b b b b b     

(26) 

 

where 001 ,, baa and 1b  are free parameters. 
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Figure 9. Plots (a) to (c) include 3D representation of  ty,9  for the values .100,100  tx  [(d), 

(e), and (f)] with ,30,30  tx  provide a visual comparison using contour plots. (g) presents the 

comparison as a 2D plot. 
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Case 10: 
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where 001 ,, baa and 1b  are free parameters. 
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Figure 10. Plots (a) to (c) include 3D representation of  ty,10  for the values 100,100  tx . 

[(d), (e), and (f)] with ,30,30  ty  provide a visual comparison using contour plots. (g) presents 

the comparison as a 2D plot. 

 

 

3. RESULTS AND DISCUSSION 
 

 

The efficient Exp-function method is employed to derive soliton solutions for the 

nonlinear fractional KdV-mKdV equations. We evaluate our results against the solutions 

found in existing literature that have been derived using different methods. The primary focus 

of this research is to discover new and more general solutions to fractional order by exploring 

different parameter values. The literature review highlights the diversity of solutions achieved 

through a range of methods. This method is highly effective in handling the complexity of 

these equations and generating accurate solutions. The solutions derived using this method 

were systematically analyzed and compared with those previously reported in the literature. 

The successful application of the method to the combined KdV-mKdV equations underscores 

its potential as an effective method for addressing nonlinear fractional differential equations. 

The new and generalized solutions obtained in this study contribute to the existing body of 

knowledge and open new research avenues. Our findings demonstrate that the method can 

effectively handle the complexities inherent in nonlinear fractional systems, providing precise 

and comprehensive solutions. This makes it an invaluable method for researchers working in 

the area of nonlinear dynamics and mathematical physics. This study examined ten distinct 

cases with varying parameter values utilizing fractional derivatives. Our findings underscore 

the significant role of fractional derivatives in comprehending the form of the nonlinear 

evolution equation. These derivatives are essential for characterizing the system's dynamics 

and behavior. Compared to existing results in the literature, our findings are both novel and 

more general. In addition, we provide new insights into the behavior of the system under 

fractional-order conditions. 

By analyzing various parameter conditions, the presence of different types of 

solitary wave solutions is identified. These solutions are illustrated through 3D plots, contour 

plots, and 2D plots, as shown in Figs. 1-10 at 75.0,5.0  and: Fig. 1 demonstrates the 

solution of  ty,1 for 1 0 1 0

1 2 1 1
, , , , 0.75, 1.25

2 3 2 3
a a b b k r       ; Fig. 2 demonstrates 

the solution of  ty,2  at 1 0 1 0

2 1 1
1, , , , 1.75, 1.5

3 4 3
a a b b k r      ; Fig. 3 demonstrates 

the solution of  ty,3 for 1 1 1

1 1
1, , , 0.75, 1.25;

2 4
a a b k r      Fig. 4 demonstrates the 
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solution of  ty,4 for 1 0 0

1 2 1
, , , 0.75, 1.25

2 3 3
a a b k r      ; Fig. 5 demonstrates the 

solution of  ty,5 for 0 1 1 1

2 1 1
, 1, , , 1.75, 1.25

3 2 4
a a a b k r       ; Fig. 6 demonstrates 

the solution of  ty,6 for 1 0 0 1

2 1 1
1.5, , , , 0.75, 1.25

3 3 4
a a b b k r       ; Fig. 7 

demonstrates the solution of  ty,7 for 1 1 1

1 1
1.5, , , 1.75, 1.75

4 2
a b b k r        ; Fig. 8 

demonstrates the solution of  ty,8  for 1 0 0 1

1 2 1 1
, , , , 1.75, 1.75

2 3 3 4
a a b b k r         

Fig. 9 demonstrates the solution of  ty,9 for 1 1 1

1 1 1
, , , 0.75, 1.25

2 2 4
a b b k r       Fig. 

10 demonstrates the solution of  ty,10 for .25.1,75.0,
2

1
,

3

1
,

4

1
,

3

2
1010   rkbbba  

As a result, the fractional calculus model used in this study is very flexible and well-

suited for analyzing complex global systems. The solution of the model can be applied across 

various fields in science and engineering. The obtained solutions are more general, and 

innovative, and have not been previously detailed in the existing literature. The results further 

underscore the value and effectiveness of the methodologies applied. 
 

 

4. MODULATION INSTABILITY ANALYSIS 
 

 

To analyze the modulation instability (MI) of Eq. (5), we apply the standard linear 

stability analysis as outlined in references [58–60]. The perturbed solution for the KDV-

mKDVequation can be expressed as follows. 
 

),(),( 0 tyKkty    (30) 

 

Let 0k  be the constant-state solution of Eq. (29). By inserting Eq. (5) into Eq. (29), the 

equation is transformed into the following form. 
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Upon linearizing Eq. 30  , we obtain. 
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(32) 

 

)( 2),(
tyli

ety


   (33) 

 

Let 1l and 2l  be the normalized wave numbers, and let   represent the perturbation 

frequency. Substituting Eq. 32 into Eq. 31, we can obtain the following result. 
 

))(( 3
22

2
00 llQkPk   (34) 
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The sign of   suggests whether the solution will grow or diminish over a certain time 

interval. Whenever   is negative for particular values of 
2l , any combination of solutions 

will be vanish. Conversely, the superposition will appear large when   is positive for 

different values 
2l . The first scenario corresponds to a stable case, while the second represents 

an unstable one. If max  is exactly zero then system remains in a state of marginal stability 

[60-62]. 
 

 

5. CONCLUSIONS 
 

 

In the present article, the Exp- function method combined with a fractional traveling 

wave transformation has been successfully applied to derive exact solutions for the combined 

fractional KdV-mKdV equations. The transformation simplifies the analysis by reducing the 

number of independent variables, thus allowing us to focus on the dynamics of the traveling 

wave. The exact solutions obtained include a variety of wave structures, such as solitary wave 

solutions, kink wave solutions, and periodic wave solutions. These solutions reflect the 

complex interplay between nonlinear and dispersive effects in the fractional KdV-mKdV 

equations. Our solutions are more general and encompass a broader class of wave structures. 

The inclusion of fractional-order derivatives further enhances the model by capturing memory 

effects and nonlocal behaviors inherent in many physical systems. Furthermore, graphical 

representations of the solutions demonstrate how the fractional order of the derivative 

influences the shape and behavior of the waves, providing insights into the underlying 

physics. 
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