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Abstract. This research investigates the fractional order combined Korteweg-de Vries
and modified Korteweg-de Vries equation by applying the Exp-function method. This method,
with the help of travelling wave transformation, provides a systematic approach for deriving
analytical solutions to nonlinear fractional partial differential equations. We derive a series
of actual solutions, presenting the efficacy and simplicity of the exponential function method
in handling the complexity of combined equations. The obtained solutions are analyzed and
illustrated through various scenarios, demonstrating the potential of these solutions in
understanding physical phenomena described by these equations. Our findings contribute to
the broader understanding of nonlinear wave equations and offer a robust analytical tool for
future studies in this domain.

Keywords: Fractional order combined KDV-mKDV equation; fractional travelling
wave transform; Exp-function method; travelling wave solution.

1. INTRODUCTION

Fractional partial differential equations (PDEs) extend the scope of classical
differential equations by introducing fractional calculus into the modelling framework. Unlike
traditional equations that use integer-order derivatives, fractional PDEs incorporate
derivatives of arbitrary, non-integer orders, which allows them to capture more intricate
dynamics of processes with memory and spatial heterogeneity. This fractional approach is
particularly effective for representing systems with anomalous diffusion or complex boundary
conditions, where traditional models might be inadequate. By employing fractional
derivatives, fractional PDEs offer a way to describe phenomena where the influence of past
states is distributed across time or space in a non-local manner, reflecting a broader range of
behaviors such as slow relaxation or heterogeneous material properties. This capability makes
fractional PDEs a powerful tool in diverse applications, from materials science to finance,
where understanding and predicting irregular or multi-scale processes are crucial [1-5].

The Exp-function method is a direct technique used to solve complex equations by
simplifying them into more manageable forms. It works by proposing that the solution to
nonlinear fractional PDEs can be expressed as an Exp-function, which is a mathematical
expression involving the powers of a constant base. By inserting this proposed solution into
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the original equation, researchers can transform it into an algebraic equation, which is often
easier to solve [6-10]. Recently, various innovative methods have been introduced for tackling
nonlinear wave equations, such as the tanh-function method, the F-expansion method, the
Jacobian elliptic function method, and the variational iteration method. Nevertheless, these
approaches have some constraints in their usage. In different papers this method has been
utilized to investigate solitary, compact-like, and periodic solutions for different types of
nonlinear wave equations [11-23]. In physical terms, this method is like finding a special kind
of pattern or wave that fits perfectly within the system described by the equation. While this
method is powerful for certain classes of nonlinear PDEs, other methods like the sine-cosine
or tanh method might be more appropriate for specific equations, particularly where periodic
or hyperbolic function solutions are more natural. For example, it can be used to model
phenomena like waves in fluids or materials, where exact solutions can reveal important
characteristics such as wave speed or shape. This method is valuable because it allows
scientists and engineers to find precise solutions that describe how physical systems behave
under various conditions, making it easier to understand and predict complex phenomena
have been extensively studied for their ability to describe solitary wave propagation.
However, certain complex wave phenomena necessitate a unified approach that incorporates
the nonlinear characteristics of both equations [24-32].

The combined fractional Korteweg-de Vries and modified Korteweg-de Vries (KDV-
mKDV) equation serves as a crucial framework for investigating water waves, allowing
scientists to analyze and forecast various wave behaviors such as solitary waves, wave
breaking, and turbulence, interactions between waves and structures, and tsunamis. Increasing
attention has been drawn to this equation and its extensions, as demonstrated by a multitude
of research efforts. In the section titled Rational Solutions with Free Multi-Parameters for the
Combined Fractional KdV-mKdV Equation using this approach, we offer a thorough
discussion of the insights obtained through the application of the Exp-function method,
leading to the derivation of exact solutions. Expanding the use of this method allows us to
discover multiple types of solutions [33-39]. To demonstrate its versatility, we provide
examples featuring both rational and soliton solutions, employing polynomial and Exp-
function, respectively. In particular, for the rational solutions to the combined fractional KdV-
mKdV equation, free multi-parameters are incorporated. In physical terms, dispersion refers
to the phenomenon where different wave frequencies travel at different speeds, leading to the
spreading out of wave packets over time. This effect is captured by the KdV component of the
equation, which is known for describing shallow water waves, such as tidal waves and
solitons. Solitons are stable, solitary wave solutions that maintain their shape while traveling
over long distances without dissipating. Moreover, we explicitly illustrate that the N-soliton
solution can be represented as an Nth-order determinant. The result and discussion section
further explores the dynamic characteristics of the exact solutions derived from the combined
KdV-mKdV equation. In plasma physics, it helps model the movement of ion-acoustic waves
in a plasma, where both wave steepening and dispersive effects are present. The equation is
also used in optical fiber studies, where it models the propagation of intense light pulses,
helping design systems that manage signal distortion [40-45].

This research aims to explore the combined fractional KDV-mKDV equation, which
integrates these nonlinearities, providing a comprehensive model for analyzing intricate wave
dynamics. We explore its derivation, mathematical properties, analytical solutions, and
numerical methods for solving the equation. We also discuss various applications in physical
contexts such as fluid dynamics, plasma physics, and optical fibers, highlighting the
advantages of using the combined equation over the individual KDV-mKDV equations. The
combined fractional KDV-mKDYV equation is two of the most studied equations in this field,
each describing different types of nonlinear wave behavior. The KDV equation, first
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presented by Diederik Korteweg and Gustav de Vries in 1895, describes the propagation of
shallow water waves with long wavelengths and small amplitudes [46-50]. The mKDV
equation, developed later, accounts for waves with a different type of nonlinearity. Many
physical systems exhibit behaviors that cannot be fully captured by the fractional KDV-
mKDV equation alone. This necessitated the development of the combined fractional KDV-
mKDV equation, which integrates the nonlinearities from both equations to provide a more
comprehensive model. This paper explores the formulation, solutions, and applications of the
combined fractional KDV-mKDV equation. The combined KDV-mKDV equation is a
nonlinear partial differential equation incorporating terms from the fractional (KDV) and
mKDV equations to describe complex wave phenomena [51-54]. The modified Riemann-
Liouville derivative of order a is used in this research which is defined as [55]:

1 dj _a
—|(t=&)"(f(£)-1(0))d&, 0<a<t,
D“f (t) =T (1-5) dt! (1)

(f”(t))(a_n), n<a<n+l n>1.

2. MATERIALS AND METHODS

2.1. METHOD DESCRIPTION

We will examine general nonlinear partial differential equations.

W(y,D,"v,D y,..)=0, 0<a<1 )

where w represents a differential operator that involves nonlinear terms of , its partial
derivatives, and possibly higher-order terms. The goal is to find exact solutions for which
could be in the form of traveling waves, solitary waves, or other specific structures.

The first step involves applying an appropriate transformation to simplify the PDE.
Commonly, this consists of converting the PDE into an ordinary differential equation (ODE)
by assuming a specific type of solution. For instance, in the case of a traveling wave solution,
we use the transformation [56-57]:

(24

V) =p). 1=k —g ), 3

where « is a parameter that typically represents the order of the fractional derivative, and is a
constant. This transformation is designed to convert the original conformable fractional
differential equation into a more manageable form, often an ordinary differential equation
(ODE) or another simplified structure. Equation (1) rewrite again.

X(w,v v,y )=0, (4)
where the primes represent the ordinary derivative concerning .

We assume that the solution can be expressed in terms of exponential functions.
Specifically, the solution is proposed in the form
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d
zan exp(nn)
n=—c

w(n)=-"5 , (5)
b exp(mn)

m=—p

where c,d, p and q are positive integers, @, and by, are coefficients that to be dermined.

This corresponding construction shows a momentous and essential measure for
determining the exact solution.

2.2. IMPLEMENTATION OF THE METHOD

The fractional KDV-mKDV equation is expressed as:
Dfw + Py D;’l//+Q1//2D;‘l//+RDS“V/=O, O<a<l. (6)

Here, v (x,t) represents the wave amplitude, t is time, and Y is the spatial coordinate.
Each term in the equation has a specific physical interpretation, which is crucial for
understanding the dynamics of the system it describes' D* this term represents the time
derivative of the wave amplitude y . It describes the temporal evolution of the wave.
Essentially, it captures how the wave profile changes over time and Py Dy this is the

nonlinear advection term similar to that in the fractional KDV equation. It represents the
interaction between the wave amplitude and its gradient, leading to changes in wave shape

and speed. The constant P determines the strength of this nonlinearity. The term Q\VZD)‘}
becomes significant for larger wave amplitudes, describing stronger nonlinear interactions
that can lead to more complex wave behaviors. The term RD§°‘ spreads the wave energy over
time and space, counter acting the nonlinear terms. This balance between nonlinearity and

dispersion is essential for the formation and stability of solitons. The combined fractional
KDV-mKDV equations can be analyzed and solved using the Exp-function method.

Rksl//"-i-%le//a-l-%Pkl//Z—kl’l//=0. @)

By utilizing the proposed method on Eq. (5) and applying the fractional wave
transformation as outlined in Eq. (2), we substitute Eq. (2) into Eq. (5). Upon performing
integration, the following result is obtained.

We get ¢ =d = p=q =1with the help of homogeneous balance principal and then Eqg.
(4) reduce to
a, expl-77]+a, +a exply]
b_, exp[-7]+b, +by expln]

w(n)= (8)

Substituting Eq. (7) into Eq. (6) and setting the coefficients to zero, we obtain a
system of equations. These equations are then solved using software to produce the desired
results.
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Ee =32, (% Qa,” + Payb; — 2rb%) =0,
Es = 3((Pby +2Qay)a,” + 2(Pag — by (Rk? + 2r))bya; + 2by%ag (Rk2 - 1)) =0,

E, = 3((2Qa, + 2Pab, +8h*(Rk* - %))al +Pa’h, +(2Qa,’ +2Pa,b, -
8b, (RK® +%)bl +2b?(RK? —1))a, +a, (Pa, — 2b, (RK® +2r))b, =0,

E, = 3(((2Pb, + 4Qa,)a, + 2b, (Pa, + 3(Rk? —%)b0 )a

2 ©)
+2(Pa, +3(Rk? —%)bo)b_la1 " 610(2%ao + Pa,b, —12(Rk? +%)b1b_l —2rb,%)) =0,
E, = (2Pa,b_, +2Qa’ + 2Pa,b, —8b, (Rk? +%)b1 +2b,%(Rk? —r))a_,
+(8(Rk? - %)b_la1 +a,(Pa, —2b, (Rk? +2r)))b_, =0,
E, = 3((Pby + 2Qag)a_42 + 2(Pag — by (Rk2 + 2r)b_ja_; + 2b_,%a,(Rk? —r)) =0,
EO = 3a_1 (% Qa_12 + Pa_lb_l - 2rb2—1) = 0
Case 1:
r
P=0,Q=0,R=—,k=k,r=r,ay=a_4,a9 =0,8; = a4,
Q 2 1 1,89 1=8 (10)
b—l = O,bo :bo,bl = O,
where a_,,a,and by are free parameters.
Ky*  rkt* Ky* rkt”
a_ exp| — +—— |+a,exp -
a a a a (12)

l//l(y’t):
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Figure 1. Plots (a) to (c) include 3D representation of wl(y,t) for the values0 < y <10,0 <t <10. [(d),
(e), and () will0 <y <3,0 <t < 3, provide a visual comparison using contour plots. (g) presents the
comparison as a 2D plot.

Case 2:
2 202 A2l2
P=0,Q=% RoZ ykrora, B0 "3D 5 g o _a,
k 4ab;
2b2_ 2b2 (12)
b—l :aOl—aZH'bo :bo’b1 :bl'
4ba
where ag,a1,bgand b, are free parameters.
2182 2102 a a a a
aZb; —a;bO exp{— Ky® |, rkt }+a0+a1exp{Ky _rkt }
4a b’ a a a a
w,(y.t)= (13)

212 212 a a a a’]’
by —a;lb0 exp—Ky +rkt +b, +b,exp Ky® rkt
4ba; a a a a
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Figure 2. Plots (a) to (c) include 3D representation of wz(y,t) for the values 0 < y <10,0 <t <10. [(d),
(e), and (f)l with0 < y < 3,0 <t < 3, provide a visual comparison using contour plots. (g) Presents the
comparison as a 2D plot.

Case 3:

2
P=0,Q=2 Ro-' k=kr

-r,a,=a,a=04a=a, (14)
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b, =32 b 0 =b,
W= b, =b,

where a_q,ajand b, are free parameters.

Ky® rkt Ky*  rkt®
B, eXp —— 4 A exp =

Ws(y’t):

a a a

} . (15)

(a) =05 () o=0.75

1 15 2 25 3
y
(©) o=1 @ o=05

1 13 2

25

w

S
(e) o=075
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Figure 3. Plots (a) to (c) include 3D representation of !//3(y,t) for the values 0 < y <10,0 <t <10. [(d),
(e),and ()l will0 < y < 3,0 <t <3, provide a visual comparison using contour plots. (g) presents the

comparison as a 2D plot.

Case 4:
3rb§ 2r
P=0Q=—", R=——2,k:k,r:r,a_1:a_1,ao =ag,a =0,
ao k
a_lbo
b_y = by =bg,by =0,
ap

where a_g,ajand by are free parameters.

Ky*  rkt”
a_, exp —7+7 +a,

4
- 1000+

=2000+

=30004

-4000+

(16)

(17)
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Figure 4. Plots (a) to (c) include 3D representation of 1//4(y,t) for the values 0 < y <10,0 <t <10. [(d),
(e), and (] will0 <y < 3,0 <t <3, provide a visual comparison using contour plots. (g) presents the
comparison as a 2D plot.

Case 5:
P=P, Q=—3bl(al:;2rb1), R=Rk=k,r=r,a;=ay,a,=aya =a,
&
(18)
aqhy aghy
b = 1 lb = i) = i)
a= b= b
where a_1,ajand b, are free parameters.
{ Ky“ rkt“} {Ky“ rkt“}
a_ exp| — + +a,+a, exp -
vi(y.t)= o Tt (19)
ab exp{_ YT }aobl +b1exp{ y _f}
a o a a a a
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Figure 5. Plots (a) to (c) include 3D representation of l//5(y,t), for the values 0 < y <10,0<t <10.

[(d), (), and ()] will 0 <y <5, 0 <t <3, provide a visual comparison using contour plots. (g) presents
the comparison as a 2D plot.

Case 6:

6r 6rb; r
p=?bl,Q=— a?l,R=F,k=k,r=r,a_l=0,ao=ao,31=31’ (20)
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blzao(aoblz_aibO) b =b0,b1=bl

. 1Mo ’

&

where ag,31,bpand b, are free parameters.

Ky*  rkt”
(04

o 9
a

We(y’t):

WWW.josa.ro

2 (2 - aibo)exp{_Ky“ﬂd“} by ih, exp{
a a a a

3000

2000

1000+

(21)
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Figure 6. Plots (a) to (c) include 3D representation of l//a(y,'[) for the values 0 < y <10,0 <t <10. [(d),

(e),and ()l will0 < y < 3,0 <t <3, provide a visual comparison using contour plots. (g) presents the
comparison as a 2D plot.
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Case 7:

2
P=6rb1’Q=_6rt;1 R= r

k=k,r=r,a_1 =08y =08 =a,

a a 4k 2 (22)
by =bj,bg=0,by =b,
where ag,31,bpand b, are free parameters.
2 exp{Ky _rkt }
a a
v, (y.t)= (23)

(24
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Figure 7. Plots (a) to (c) include 3D representation of l//7(y,t) for the values 0 < y <10,0 <t <10. [(d),
(e), and (f)l with0 < y < 3,0 <t < 3, provide a visual comparison using contour plots. (g) presents the

comparison as a 2D plot.

Case 8:
2
5 __6r(asby —agho) Q:_6f(a—1b1—aobo) Re ' Kekrer
ag ag k?
a_qla_iby —apb
a_lza_l,aozao,a1:0,b_1:— 1( 1:12 0 0),b0:b0,b_|_:b]_,
0

where a_1,8p,bgand b, are free parameters.

Ky* rkt*
a_, exp —7+7 +a,

{—Ky+rkt}+bo+
a

(24
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Figure 8. Plots (a) to (c) include 3D representation of l/lg(y,t) for the values 0 < y <10,0 <t <10. [(d),

(e), and (NI will0 <y <3,0 <t <3, provide a visual comparison using contour plots. (g) presents the
comparison as a 2D plot.

Case 9:

2
,Q=_6r5)—1’ R= '
a'l

—,k=k,r=r,a,=a,,a,=0,a =0,
4K? 17808 =04 (26)

b—1 =b—l’b0 :0’b1 =b.l’

a,

where a_q,dap,bpand b, are free parameters.

{ Ky“ rkt“}
a,exp ———+
l/lg(y’t): Ky ® kt* d “ Ky * kt“ ' (27)
b, exp[_uf}blexp{y_r}
(24 (24 (24 (24
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Figure 9. Plots (a) to (c) include 3D representation of l//g(y,t) for the values0 < x <10,0 <t <10. [(d),

(), and (f)] with0 < x < 3,0 <t < 3, provide a visual comparison using contour plots. (g) presents the
comparison as a 2D plot.
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Case 10:

K2
Pz_%’Qz_sr(4b_1§)l bo)’Rsz’kzk’rzr’a_lzo,
ao a’q k (28)

ag =ap, =0,b_; =b_y,bg =bg,by =1y,

where a_q,dp,bpand by are free parameters.

Y10 (y’t) = - - - —.
b_1 EXp|:— KL + I’ktj| + b0 + bl exp|:Ky — rkt:| (29)
(94 (24

() «=075

=
—
(%)
s

=
—
ta
[

¥
® e=1
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Figure 10. Plots (a) to (c) include 3D representation of t//m(y,t) for the values 0 < x <10,0 <t <10.

[(d), (e), and (f)] with0 < y < 3,0 <t < 3, provide a visual comparison using contour plots. (g) presents
the comparison as a 2D plot.

3. RESULTS AND DISCUSSION

The efficient Exp-function method is employed to derive soliton solutions for the
nonlinear fractional KdV-mKdV equations. We evaluate our results against the solutions
found in existing literature that have been derived using different methods. The primary focus
of this research is to discover new and more general solutions to fractional order by exploring
different parameter values. The literature review highlights the diversity of solutions achieved
through a range of methods. This method is highly effective in handling the complexity of
these equations and generating accurate solutions. The solutions derived using this method
were systematically analyzed and compared with those previously reported in the literature.
The successful application of the method to the combined KdV-mKdV equations underscores
its potential as an effective method for addressing nonlinear fractional differential equations.
The new and generalized solutions obtained in this study contribute to the existing body of
knowledge and open new research avenues. Our findings demonstrate that the method can
effectively handle the complexities inherent in nonlinear fractional systems, providing precise
and comprehensive solutions. This makes it an invaluable method for researchers working in
the area of nonlinear dynamics and mathematical physics. This study examined ten distinct
cases with varying parameter values utilizing fractional derivatives. Our findings underscore
the significant role of fractional derivatives in comprehending the form of the nonlinear
evolution equation. These derivatives are essential for characterizing the system's dynamics
and behavior. Compared to existing results in the literature, our findings are both novel and
more general. In addition, we provide new insights into the behavior of the system under
fractional-order conditions.

By analyzing various parameter conditions, the presence of different types of
solitary wave solutions is identified. These solutions are illustrated through 3D plots, contour
plots, and 2D plots, as shown in Figs. 1-10 at a.=0.5, ao=0.75and: Fig. 1 demonstrates the

solution of w,(y,t)for a_, = %,ao = %,bl = %,bo = %,k =0.75,r =1.25; Fig. 2 demonstrates
the solution of l//z(y,'[) at a, =1,a, :g, by :%,k =1.75,r =1.5; Fig. 3 demonstrates

b =

the solution of y/3(y,t)for a=la, :%,b1 :%,k =0.75,r =1.25; Fig. 4 demonstrates the
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1 2 1

solution of w,(y,t) for a, = 1% = by =2 k=075r=125 Fig. 5 demonstrates the
solution of l//S(y,t)for 8, = —%,ai =la,= %,bl = l,k =1.75,r =1.25; Fig. 6 demonstrates
. 2 1 1 .
the solution of l//G(y,t) for a =154, =3 :§,bl :——,k:0.75,r:1.25 ; Fig. 7
demonstrates the solution of 1//7(y,t)for a =-150b = 411 =5 k 1.75,r=1.75 ; Fig. 8
demonstrates the solution of (//B(y,t) for a , = aO % = % Z,k:l.75,r:1.75
Fig. 9 demonstrates the solution of wg(y t)for a —% b, :% by :% k=0.75r=1.25 Fig.
10 demonstrates the solution of v/lo(y,t)for ag =§’b1 - _Z’bo :%,b_l :E’k —0.75,r =1.25.

As a result, the fractional calculus model used in this study is very flexible and well-
suited for analyzing complex global systems. The solution of the model can be applied across
various fields in science and engineering. The obtained solutions are more general, and
innovative, and have not been previously detailed in the existing literature. The results further
underscore the value and effectiveness of the methodologies applied.

4. MODULATION INSTABILITY ANALYSIS

To analyze the modulation instability (MI) of Eq. (5), we apply the standard linear
stability analysis as outlined in references [58-60]. The perturbed solution for the KDV-
mKDVequation can be expressed as follows.

w(y,t) =kg + oK(y,1) (30)

Let ko be the constant-state solution of Eq. (29). By inserting Eq. (5) into Eq. (29), the
equation is transformed into the following form.

DK + Pk§pDYK + Pp?KD K +QkgpDS K +2Qkgp*KDYK +Qp K “DYK

+RpD3K =0, (31)
Upon linearizing Eq. 30 p, we obtain.

DEQ + PkoD{K +QkgDYK + RDJ*K =0 (32)

w(y,t) = e (33)

Let I,and I, be the normalized wave numbers, and let o represent the perturbation
frequency. Substituting Eg. 32 into Eq. 31, we can obtain the following result.

Q = —((Pkg + Qk)l, +13) (34)
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The sign of Q suggests whether the solution will grow or diminish over a certain time
interval. Whenever € is negative for particular values of I,, any combination of solutions

will be vanish. Conversely, the superposition will appear large when Q is positive for
different values I, . The first scenario corresponds to a stable case, while the second represents

an unstable one. If Q,,, is exactly zero then system remains in a state of marginal stability
[60-62].

5. CONCLUSIONS

In the present article, the Exp- function method combined with a fractional traveling
wave transformation has been successfully applied to derive exact solutions for the combined
fractional KdV-mKdV equations. The transformation simplifies the analysis by reducing the
number of independent variables, thus allowing us to focus on the dynamics of the traveling
wave. The exact solutions obtained include a variety of wave structures, such as solitary wave
solutions, kink wave solutions, and periodic wave solutions. These solutions reflect the
complex interplay between nonlinear and dispersive effects in the fractional KdV-mKdV
equations. Our solutions are more general and encompass a broader class of wave structures.
The inclusion of fractional-order derivatives further enhances the model by capturing memory
effects and nonlocal behaviors inherent in many physical systems. Furthermore, graphical
representations of the solutions demonstrate how the fractional order of the derivative
influences the shape and behavior of the waves, providing insights into the underlying
physics.
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