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Abstract. In this current paper, we are introducing a new multivariate k-generalized 

Mittag-Leffler function (Mk GMLf) 
( ),( )

( , ,..., ).1 2,( ),
j j

E x x xsk l mj

 

 
The paper is organized into five 

sections containing some properties of the above-mentioned function, like recurrence 

relations, derivative properties, and integral transforms. A relation of this Mk GMLf with 

MGMLf has also been derived. We also derive k-fractional integration and k-fractional 

differentiation of the Mk GMLf. Numerous former results studied by many researchers can 

also be derived as special cases of our results. 

Keywords: k-Beta function; k-Gamma function; k-Fractional derivative; k-Fractional 

integral;k-Pochhammer symbol;k-generalized Mittag-Leffler function. 

 

 

1. INTRODUCTION  

 

 

Nowadays, the Mittag-Leffler function has become a more interesting area of research 

due to its wide area of applications in solving fractional differential and integral equations, 

fractional boundary layer equations, telegraph equations, etc. [1-4]. At first, in 1903, the 

following series representation of the Mittag-Leffler function was discussed by Gosta [5]: 
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where , 0.x l   

Generalization of the above MLf was described by Wiman [6], in 1905 as follows: 
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where , , ; ( ) 0, ( ) 0.x l m l m      

In 1971, Prabhakar [7], generalized the MLf defined in (2) in the following manner: 
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where , , , ; ( ) 0, ( ) 0, ( ) 0.x l m l m         

In 2011, R. K. Saxena et al. [8], investigated the generalization of MLf for several 

variables as follows: 
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 (4) 

 

where , , ; ( ) 0; 1,2,..., .j j jm l l j s      

Further, the generalization of the multivariate MLf defined in (4) was also given in the 

same paper of R. K. Saxena et al. [8], as follows: 
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where 0, , , ; ( ) 0, ( ) 0 : ; 1,2,..., .j j j j jl m l m Z j s           

In 2012, the concept of k -MLf was developed by G.A. Dorrego et al. [9]. They 

extended definition of MLf as follows: 
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where ,( ) ; ( )n k k x  represent the k-Pochhammer symbol and the k-Gamma function 

respectively [10], defined and represented as follows: 
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and 0; , , , ; ( ) 0, ( ) 0, ( ) 0.k x l m l m          

Here, in this paper, we consider the following multivariate generalization of k -MLf, 

defined and represented as follows: 
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(9) 

where 00; , , , ; ( ) 0, ( );j j j j jk l m l m Z         and 1,2,...,j s . 
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1.1. SPECIAL CASES 

 

  

(i) Considering k = 1 in eq. (9), we have the multivariate MLf, defined in (5). 

(ii) Taking k = 1, σj = 1 for j = 1,2,…,s
 
in eq. (9), we get another multivariate MLf, defined in 

(4). 

(iii) Assuming s = 1, x1 = x, ρ1 = ρ, l1 = l, and σ1 = 1
 
in eq. (9), we have k-MLf as defined in 

(6). 

Now, to obtain the main results, we require some earlier established relations as 

follows [10, 11]: 
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We now establish certain relations, derivatives, integral transforms, fractional order 

differentiation, and integration formulas for multivariable k-GMLf as our main results. 

 

 

2. RELATION WITH MULTIVARIABLE GMLF 

 

 

Theorem 2.1. The multivariable k-GMLf defined in (9) satisfies the following relation 
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where 00; , , , ; ( ) 0, ( ) 0;j j j j jk l m l m Z          and 1,2,..., .j s  

 

Proof: Applying the equations (14) and (8) to the R.H.S. of equation (9), we at once arrive at 

our required result (15). 
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3. RECURRENCE RELATIONS 
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where 00; , , , ; ( ) 0, ( ) 0;j j j j jk l m l m Z          and 1,2,..., .j s  

 

Proof: R. H. S. of Eq. (16) can be written in the following form using (9) and differentiating 

w. r. t. ix 's: 
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(17) 

 

Now, on using the eq. (10), and interpreting with the help of (9), we get the required 

result (16). 
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where 00; , , , ; ( ) 0, ( ) 0;j j j j jk l m l m Z          and 1,2,..., .j s  

 

Proof: L. H. S. of eq. (18) can be written in the following manner using (9), 
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Now, using eqs. (13) and (7) for k = 1, we get the required result (18). 
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where 00; , , , ; ( ) 0, ( ) 0;j j j j jk l m l m Z          and 1,2,...  , ; .j s s   

 

Proof: L. H. S. of qu. (22) can be written using (9) as follows, 
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Using eq. (7), we have 
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Now, using the eqs. (13) and (14), and in view of (9), we obtain the required result in 

eq. (22). 

 

 

4. DERIVATIVE PROPERTIES 
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where 00; , , , ; ( ) 0, ( ) 0;j j j j jk l m l m Z          and 1,2,...  , ; .j s r    

 

Proof: With the help of eq. (9), we have 
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Similarly, on differentiating the above eq. (27) upto‘r’ times w. r. t. ‘u’ and using eq. 

(10), we get our required eq. (25). 
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

 
(30) 

 

Applying i in n r  and using eq. (13), eq. (9), we get the required result in eq. (28). 
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5. INTEGRAL TRANSFORMS 

 

 

5.1. k-BETA TRANSFORM 

 

 

i.  

11 ( ),( ) ( ),( )1 11
(1 ) ( ,..., ) ( ,..., ),1 1,( ), ,( ),( )

0

llm s
j j j j

u u E u x u x du kE x xk k k k s sk l m k l mj jk


   



 
  

 (31) 

 

ii.  

1( ),( )1 11
( ) ( ) ( ) ,...,( ) )1,( )(

(
,)

llm sz
j j

z r r t E r t x r t x drk k k k sk l mjk t


 



 
   


 

11 ( ),( )
( ) (( ) , ..., ( ) ),1,( ),

llm s
j jk k kk z t E z t x z t xsk l mj


 






   


 

(32) 

 

where 0; , , , ; ( ) 0, ( ) 0; {0, 1, 2,...}0k l m l mj j j j j  


           and 1,2,..., .j s  

  

Proof of (31): L. H. S. of equ. (31) can be written using (9) in the following manner 

 

11 ( ),( )1 11
(1 ) ( ,..., )1,( ),( )

0

llm s
j j

u u E u x u x duk k k k sk l mjk


 



 



 

1( )1 ,1 11 1 1
(1 )

( ) !,..., 00 1 ( ) 1
1

s n lj j

n kjs sm jx uj n k jj j j j
u u duk k

s sk nn n js m n l jk j j
j

  




    

  
    



 

(33) 

 

On interchanging order of integration and summation, we have 

 

11 ( ),( )1 11
(1 ) ( ,..., )1,( ),( )

0

llm s
j j

u u E u x u x duk k k k sk l mjk


 



 



 

1 1( ) 1, 11 11
(1 ) .

( ) !,..., 0 01 1( )

1

s
m n lj jn jss jxj n k jjj j j ku u duk

ssk nn n js jm n lk j j
j


 



 
  

 
    



 

(34) 

 

Now, using eqs. (11) and (9), we get our desired result in eq. (31). 

 

Proof of (32): Taking , ( )
r t

u dr z t du
z t


  


in L.H.S.of equ. (32), and in view of (9), we obtain  
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1( ),( )1 11
( ) ( ) (( ) ,...,( ) )1,( ),( )

llm sz
j j

z r r t E r t x r t x drk k k k sk l mjk t


 



 
   


 

( )1 ,1 1 11 1
( ) (1 )

( ) ,..., 00 1 ( )

1

sm m
j n kj j j

z t u uk k k k
sk n ns m n lk j j

j

   



    
   
    


 

1{ ( )}
1

!
1

s n lj j

n kjs jx u z tjj
du

s n jj


 







 

(35) 

On interchanging order of summation and integration, we obtain 

 

1( ),( )1 11
( ) ( ) (( ) ,...,( ) )1,( ),( )

llm sz
j j

z r r t E r t x r t x drk k k k sk l mjk t


 



 
   



1 ( ) {( ) },( ) 1 1

( ) !,..., 01 ( ) 1
1

l jm s s n jz t xkj n k jz t j j j jk k

s sk nn n js m n l jk j j
j


 



      
 

    


 

11 1 1
(1 )

0

s
m n lj j

j

u u duk k


 


 

  . 

(36) 

 

Now, on using eqs. (11) and (9), we arrive at our desired result in eq. (32). 

 

 

5.2. LAPLACE TRANSFORM 

 

 

 

1
( ),( )1 1( ,...  , );

)
1,( ),

(

m

k kj j su E u x u x psk l m mj p
k

    




 





  

 
1( : ,..., ) : , ..., , ;1 1

1
1

1 :1,...,1 1 ,..., ,
.

,

1

1:0,. .,0 1

: ,..., : ; ...; ;

s
s

k k

ll s
s

k xk x kk sF
sp

k

s

s

p

llm

k k


    



 

  
  
  

 
 

 



 
 
 







 
 


  

 
 

 

(37) 

where 0; , , , ; ( ) 0, ( ) 0; {0, 1, 2,...}0k l m l mj j j j j  


          ; [ ,..., ]1x xsF represents 

Lauricella function [13, p.37, eqs.(21)-(23)] and 1,2,...,j s . 
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Proof: Using the definition of Laplace Transform [12], and in view of (9), the L. H. S. of (37) 

takes the following form  

( ),( ) ( ),( )1 11 1( ,..., ); ( ,..., )1 1,( ), ,( ),
0

j j j jpus su E u x u x p e u E u x u x dus sk l m k l mj j

        
     

 
 

( ) ( ),1 11 .
!,..., 00 1 ( ) 1

1

s s nj ju xj n k jj j j jpue u du
s s nn n js m n l jk j j

j

 
      

   


 
(38) 

 

Now, on interchanging the order of summation and integration, we obtain  

 

( ),( )1 1( ,..., );1,( ),
j j su E u x u x psk l mj

    
 
 

1( ) ,1 1 1

!,..., 0 01 ( ) 1
1

sn js s nx j jj n k jj j j j pu je u du
s s nn n js m n l jk j j

j

            
   



( )
( ) ,1 1 1

.
!,..., 01 ( ) ( )1

1 1

s
n njs s j jxj n k jj j j j j

s s snn n js m n l njk j j j j
j jp

 
 

 

  
    

 
    

 

 

(39) 

 

Now using the eqs. (12), (8), and in view of the definition of generalized Lauricella 

series [13, p.37, eqs. (21)-(23)], we at once arrive at the desired result in eq. (37). 

 

5.3. HANKEL TRANSFORM 

 

( ),( )1 1( ) ( ,..., )1,( ),
0

j j l lsu J au E bu x bu x dusk l mj

 





  

11 ( )2 2

( ) (1 )
2

m

k k

ma
k

 


  

 


  

 

1: ,..., : , ..., , ;1
2 2 2

1 12 21 :1,...,1 1
,..., ,12:0,...,0

: ,..., , 1 : ,..., : ; ...; ;
2 2 2

1 ,

1 1

ll s
s

k k

ll sl lss
F k b x k

k

s

b xk k s
a a

l lm s sl l

k k

  
 

 

 

    
    
    

 
     

     
    

    
        

    






 
 
 

 

(1) 

 

where 00; , , , ; ( ) 0, ( ) 0; {0, 1, 2,...}j j j j jk l m l m             and 

1,2,..., , 0, ( ) 0, ( ) 0.j s a x       

 

Proof: L. H. S. of eq. (40) can be written in the following manner using (9), 
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( ),( )1 1( ) ( ,..., )1,( ),
0

j j l lsu J au E bu x bu x dusk l mj

 





  

( ) ( ),1 11 ( ) .
!,..., 00 1 ( ) 1

1

s s l nj jbu xj n k jj j j j
u J au du

s s nn n js m n l jk j j
j

 


     
   



 
(41) 

 
Now, on interchanging the order of summation and integration, and using the 

following identity [14] therein, 

 

1 ( )21 2( ) ,

(1 )0
2

u J au du
a

 



   


 

 


 

 (42) 

we have 

( ),( )1 1( ) ( ,..., )1,( ),
0

j j l lsu J au E bu x bu x dusk l mj

 







1

2 2
1( ) 1, 21

.
!,..., 01 ( ) 1

1 1
1

2

s
n lj j

j
n jl js b x js j aj n kj j j

s ssa nn n js m n l jn lk j j j j
j j

 

 


 

 
  

 
   

                 
        
  

  
 
 
 

 

(43) 

 

Again using the eqs. (12), (8), and interpreting in view of definition of generalized 

Lauricella series, we at once obtain our required relation (40). 

 

 

6. FRACTIONAL CALCULUS 

 

 

6.1. FRACTIONAL INTEGRATION 

 

 

1 1( ),( ) ( ),( )1 1
( ,..., ) ( ,..., ),1 1,( ), ,( ),

l ll lm ms s
j j j j

I u E u x u x u E u x u xk k k k k ks sk k l m k l mj j


   



 
  

  
 
 

 (44) 

 

where kI is the k -R-L fractional integral, defined by S. Mubeen et al. [15] as: 
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11
( ) ( ) ( ) ,

( )
0

z
I f z z t f t dtk
k k k







 


 (45) 

and  0; , , , ; ( ) 0, ( ) 0; {0, 1, 2,...}; 1, 2,..., ,0k l m l m j sj j j j j  


           and .  

 

Proof: On using the above definition (45), we get the L. H. S. of (44) 

 

1( ),( )1
( ,..., )1,( ),

llm s
j j

I u E u x u xk k k sk k l mj

 
 

 
 
 
 

1( ),( )1 11
( ) ( ,..., )1,( ),( )

0

llm su
j j

u t t E t x t x dtk k k k sk l mk jk


 



 
 



( ) ( ),1 11 1 1
( ) .

( ) !,..., 00 1 ( ) 1
1

l j
s s nm jt xku j n k jj j j j

u t t dtk k
s sk k nn n js m n l jk j j

j

  



    
  

    


 

(46) 

 

On interchanging order of summation and integration, and taking , ,t uz dt udz  we 

get 

11 ( ) ,( ),( )1 1
( ,..., )1,( ), ( ) ,..., 01 ( )

1

m sllm s j n ku j j jkj j
I u E u x u xk k k sk k l m skj k n ns m n lk j j

j


  




    

  
      



11 1 11
(1 ) .

! 0

(

1

)

s
m n lj j

s j
j

z z

j

l j
n

k
dzk

j

ju x
k

s n

j


 
  

 




 

(47) 

 

Now using eqs. (11) and (9), we obtain our desired result (44). 

 

 

6.2. FRACTIONAL DERIVATIVE 

 

 
1

21 1( ),( ) ( ),( )1
( ,..., ) ( ,..., ),1 1,( ), ,( ),1

m
l ll lm s s

u kj j j j
D u E u x u x E u x u xk k k k ks sk k l m k l m kkj j


   



 
 

 
    

 
 

 (48) 

 

where k
D


is the k -R-L Fractional derivative, introduced by L. G. Romero et al. [16] as: 

 

1
111

( ) ( ) ( ) ( ) ,
(1 )

0

zd d
D f z I f t dt z t f t dtk

k kdz k dzk


 



 
 

   
   

 

 (49) 
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and 0; , , , ; ( ) 0, ( ) 0; {0, 1, 2,...}0k l m l mj j j j j  


          and 1,2,...,j s and .   

 

Proof: On using the above definition (49) in L. H. S. of (48), we have 

 

1( ),( )1
( ,..., )1,( ),

llm s
j j

D u E u x u xk k k sk k l mj

 
 

 
 
 
 

 

1 1( ),( )1 11
( ) ( ,..., )1,( ),(1 )

0

llm sud j j
u t t E t x t x dtk k k k sk l mk du jk


 



 
  

  
   

 

 

1 ( ) ( ),1 11 1 1
( ) .

(1 ) !,..., 00 1 ( ) 1
1

l j
s s nm jt xku j n k jd j j j j

u t t dtk k
s sk duk nn n js m n l jk j j

j

  



 
      

   
       

 

 

(50) 

 
On interchanging the order of summation and integration, and taking , ,t uz dt udz  we 

get 

1( ),( )1 1
( ,..., )1,( ), (1 )

llm s
j j

D u E u x u xk k k sk k l m kj k

 



 
 

 
  

 

1 ( ) ( ),1 1 1

!,..., 01 ( ) 1
1 .

111 1 1
(1 )

0

l j
s s nm ju xkj n k jj j j j

u k
s s nn n js m n l jk j j

d j
du

s
m n lj j

j

z z dzk k

  



 
      

 
   

    
 
  
 

  
 

  

 

(51) 

 

Using definition of the k -beta function (11), we get 

 

1( ),( )1
( ,..., )1,( ),

llm s
j j

D u E u x u xk k k sk k l mj

 
 

 
 
 
 

1 ( ) ( ),1 1 1

!,..., 01 ( 1 ) 1
1

l j
s s nm ju xkj n k jd j j j j

u k
s sdu nn n js m n l jk j j

j

  



 
      

  
     

 
 

. 

(52) 

 

After differentiation and using equation (10), and interpreting in view of (9), we obtain 

the desired eq. (48). 
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7. CONCLUSIONS  
  

 

In this paper, a simple approach is used to establish the main results for multivariable 

MLf considered here. By considering appropriate values of parameters, several former 

established results can be derived from our results, a few are as follows: 

i. Considering s = 1, ρ1 = γ, σ1 = q, l1 = α, m = β, x1 = z in equations (15), (16), and (22), we 

get the earlier established result of K. S. Gehlot [17], respectively, which is turned at σ1 = 1
 

into the results of G. A. Dorrego et al. [9], respectively. 

ii. Assuming s = 1, ρ1 = γ, σ1 = q, l1 = α, m = β, x1 = z, r = j in eq. (28), we obtain the known 

result of K. S. Gehlot [17, p. 2217, eq. (17)] which is turned at σ1 = 1 into the results of G. A. 

Dorrego et al. [9, p.710, eq. (II.15)]. 

iii. Taking s = 1, ρ1 = γ, σ1 = q, l1 = α, m = β, x1 = z, u = μ, μ = δ in equation (31), the eq. (31) 

reduced to the earlier result given in [9]. 

Similarly, for appropriate values of parameters, we can obtain some earlier established 

results of [1,18-20]. 
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