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Abstract. In this paper, we introduce the notion of (k,m)-type slant helices in

Hyperbolic 3-space. Using their Frenet-type formulas, we provide theories for hyperbolic
framed curves. Also, we express the relationship between the (k, m)-type hyperbolic framed

slant helices and their properties using the hyperbolic curvature.
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1. INTRODUCTION

Differential geometry, kinematics, computer science, and similar fields have greatly
benefited from the theory of curves, which has been further enhanced by constructing Frenet
vectors. Numerous theories and proofs in differential geometry have been established as a
result of Frenet vectors. In particular, a curve has many characterizations depending on its
curvature and torsion. Among these characterizations, one of the most notable is [1], which
states that if the tangent vector of a curve makes a constant angle with a fixed direction, the
curve is called a general helix. Another well-known theory in [2] states that in a general helix,
the ratio of curvatures remains constant along the curve. The topic of helices, expressed in this
way, has led to the establishment of significant theories in various of spaces, including both
Euclidean [3] and Lorentzian [4] geometries. Furthermore, these concepts have also been
studied and proved in various spaces [5]. Later, these were defined as k-type slant helices in
Euclidean space [6] and studied in Lorentz space [7], hyperbolic space [8]. Additionally,
Yildirim and Bektas [9] defined (k, m)-type slant helices, leading to the expression and proof
of various theories. The structures of this study in different spaces [10-12] can also be
examined.

In this study, (k,m)-type slant helices in three-dimensional hyperbolic space are

examined, and new theories are expressed and proven.

2. PRELIMINARIES

Let R* be the 4-dimensional real vector space. For any vectors X =(Xy, X, X,,Xs),
Y=Yy, Y0, ¥, ¥s) in R*, the pseudo-scalar product of x and y is defined by
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X YD) =—XYo + XY, + XY, + %Y.

We say that x and y is pseudo-orthogonal if (x,y) =0, then the space R; is called
the Minkowski 4-space. A non-zero vector xe R;is spacelike, lightlike, or timelike if
X, x)>0, (x,xy=0, or (x,x)<0, respectively. The norm of a vector x is given by
I xllzm. For any vectors x,, X,, X, € R}, we define the vector x, A X, A X, by

€ € € &

1 1o Ul

X X X X

AKX A=, 2 2 2
X X XX

3 30,3 U3

X XX X

where e,, €, &,, €, are the canonical basis of R}, X, = (Xg, X, X}, X}).-
<Xa X1 N XZ N X3> = dEt(Xl X1! X2’ X3)a

so that X, A X, A X, is pseudo-orthogonal to any X (i =1,2,3) . We now define hyperbolic 3-
space by

H®={xe Rl <x,x>=-1},
and de Sitter 3-space by [1,7]

S} ={xe R;| <x,x>=1}.

Definition 2.1. [8] Define u(t) =y(t) AV,(t) AV,(t), where A denotes the exterior (wedge)
product. Let A, be the 5-dimensional real vector space consisting of such wedge products,
that is, A :=span{y(®) AV,() AV,())Itel}cA*(R®). Then, the ordered 4-tuple
(y(t),vl(t),vz(t), ,u(t)) forms a moving frame along the curve . The curve
(r.vi.v,): 1 > H®xA, is called a hyperbolic framed curve if it satisfies the condition
<y(t),v(t)>=<y'(t),v;(t)>=0 for all tel,i=12. Acurve y:1 >H® is called a
hyperbolic framed base curve if there exists a pair (v,v,):1 >A, such that
(7,v,,v,): 1 > H®xA, forms a hyperbolic framed curve. In this case, the 4-tuple

(@), V,(t),V, (t), u(t)) constitutes a moving frame along y. The Frenet-type differential
formulas are given

y©) (0 0 0 mb)) s
w@® | | 0 0 n@ a® || w
v | 0 -n@) 0 b@) || v

u(t) m(t) -a(t) -bt) 0 ) u()
where

m(t) = (7'(1), u()), n(t) = (vi(0),v, (1)), a(t) = (vi(t), (), b(t) = (v, (), w(t)).

WWW.josa.ro Mathematics Section



New type Hyperbolic Framed Slant Helices. .. Fatma Bulut and Mehmet Bektag 711

Let y:1 —TH° <R} be a regular curve, and let v,(t) and v,(t) be smooth vector

fields along »(t) such that the set {y(t),v,(t),v,(t)} is linearly independent for all tel.
Define the vector
H(®) = 7 (O) AV, () AV, (D),

where A denotes the exterior (wedge) product in R}. Then x(t) is orthogonal to y(t), v,(t),
and v, (t) with respect to the Lorentzian inner product, and the set

MOV, 0.V, (0).V, (O} ={r ), v, (1), v, (1), (0}

forms a \textbf{Frenet-type frame} along .
The associated curvature map

(M (t), N(t), A(t), B(t)) : | - R*,

is called the curvature of the framed curve (y,v,,v,). This curvature governs the dynamics of

the frame via the Frenet-type system of differential equations.
A point t, el is called a singular point of y if and only if M(t,) =0, that is, the

projection of the velocity vector y'(t,) onto w(t,) vanishes:

M (t) = (7'(1), (1)).
Let the hyperbolic framed curve be represented by the moving frame:
Vi) =7(), Vo(O)=m (1), Vi@ =n(1), V,([0)=u),

where y(t) is the position vector of the curve in hyperbolic 3-space H® c R}, 7,(t) and
n,(t) are mutually orthogonal unit vector fields along the curve y, forming a moving
orthonormal frame together with y(t), 7,(t) is the first normal vector to y(t), capturing the
primary bending behavior of the curve, 7,(t) is the secondary normal (binormal-type) vector
describing  twisting or  rotation of the frame along the  curve,
ut) =y A (t) A, (t) e A°(R]) is the 3-form (or volume element) generated by the
frame, representing the orientation and volume spanned by y(t), 7, (t),7,(t).

Then, the Frenet-type derivative formulas of the frame are given by:

V()Y ( 0 0 0 M(®))(V,(®)
V,®)| | 0 0 N() A®)|V.(0) .
V,&)| | 0 -N@®) 0 0 [|V,@) | @)

v,0) MO -An 0o 0 V0

M (t) = (y'(t), u(t)) measures how the velocity vector aligns with the oriented volume
spanned by the frame vectors indicating the degree to which the curve follows the full frame.
N(t) =(n, (t),n,(t)) quantifies the rate of angular change between the normal vectors

essentially capturing the torsion or twisting behavior. A(t) = (7, (t), «(t)) describes how the
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primary normal vector 7,(t) shifts in the direction of the volume form x(t) linking linear and
rotational frame movement. These functions M (t), N(t), and A(t) together encode the
geometric dynamics of how the curve evolves within hyperbolic 3-space.

2.1. (k,m)-TYPE HYPERBOLIC FRAMED SLANT HELICES

In this section, we define (k,m)-type hyperbolic framed slant helices in H* are
defined as follows such as [9]. Let us set that V, =V, (t), V, =V, (t), V, =V,(t), V, =V, (1).

Definition 2.1.1. [9] A smooth curve »:1 —H® < R} is said to be a hyperbolic Frenet-type
framed base curve if it admits a moving orthonormal frame {V,(t),V,(t),V,(t),V,(t)} along
7(t) satisfying the Frenet (k,m)-type differential equations in hyperbolic 3-space H®. Here,
V,(t) = y(t) represents the position vector, V,(t) and V,(t) are intermediate frame vectors
encoding direction and torsional behavior, and V,(t) is a final normal vector completing the
orthonormal system with respect to the Lorentzian inner product in R7.

Then, y is called a(k, m)-type hyperbolic framed slant helix if there exists a non-zero
constant vector U € R} such that

MV (), U)y=c and (V,(t),U)=d,

where c,d e R are constants and 1<k,m<4. The vector U is called the axis of the (k,m)-

type slant helix.
Geometrically, the existence of such constant inner products indicates that the frame
vectors V, (t) and V,_ (t) sweep constant angles with the axis vector U. This condition

generalizes the classical notion of a slant helix to the hyperbolic setting, capturing how the
frame rotates in a geometrically constrained way along » under the influence of the curvature

functions M (t), N(t), A(t).

Theorem 2.1.2. Let y:1 —>H® be a regular hyperbolic curve with a Frenet-type frame
VL (1).V, (1), V,(t),V,(t)} . Then y isa (1, 2)-type hyperbolic framed slant helix if and only if

N({)=0 and '\2—(:) o constant,

® o
where the Frenet-type curvatures satisfy M (t) #0, A(t) =0 forall tel.

Proof: Assume that » is a (1,2)-type hyperbolic framed slant helix. Then there exists a non-
zero fixed vector U e R} such that

<V1(t):u> =G, <V2(t)1U> =G,

for some constants c,,c, eR andall tel.

WWW.josa.ro Mathematics Section
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Taking derivatives with respect to t and applying the Frenet-type frame equation (1),
we compute:

S0.0) = MOV, 0.0) =0,
SALO.U) = NOVO.U) +ADV,0.U) =0.
From the first equation, since M (t) =0 by assumption, it follows that
V,(1),U)=0. )
Substituting (2) into the second equation yields:
N )V, (£),U) =O. 3)

To satisfy (3), either N(t)=0 or (V,(t),U)=0. However, if both (V,,U)=c, and
(V,,U)=c, are linearly independent and constant, then to maintain consistency with the
moving frame structure, we must have N(t)=0.

Now differentiate (2) again using the Frenet equations:

V;(1),U) = M)V, (1), U) — A(tXV, (1), U) =0, (4)
which yields the proportionality condition:
M(t) _c,
AN o (%)

If ¢, =0, then this expression becomes undefined. In that case, (V,(t),U) =0 forall t,
implying U is orthogonal to V, entirely. But this contradicts the assumption that y is of
(1,2) -type, so we must assume ¢, #0.

Therefore, we conclude:

N(t) =0, M® _L constant,
At) c
. . M(@) c, .
as desired. Conversely, if N(t)=0 and ch_ with M (t), A(t) = 0, then we can reverse
1

the argument to construct a fixed vector U satisfying:
M()U)y=c, M().U)=c,

so y isa (1,2) -type hyperbolic framed slant helix.

Example 2.1.2 Consider the curve y : 1 — H* < R} defined by

ISSN: 1844 — 9581 Mathematics Section
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t? 2t
t)=| —+t+1,——,0, — |,
y(t) [6 5 2]

where t e R. One can verify that this curve lies on the hyperbolic space H® — R}, then it
satisfies the hyperboloid condition

(), 7)) =-1

under the Lorentzian inner product in R.
We compute the derivatives of y(t):

t2 2

7'(t) = (EH’ —%, 0, t], y't)=(t,-t,0,1), »®(t)=(1-10,0).

Let the Frenet-type moving frame be {V,,V,,V,,V,} defined by:

y'(®)

Vi) =7(0), Vo () =m(t) = 018

V(1) =7, (1), V,(t) = w(t) = y(1) Ay (8) A7, (D).

From direct computation of the Frenet-type derivatives, we find the curvature
functions to be:
M(t)=1 A(t)=1 N(t)=0.
Hence,
M (t)

=1=constant, N(t) =0.
A(t)

According to Theorem 2.1.2, a curve is a (1,2) -type hyperbolic framed slant helix if

either N(t) =0 and (V,(t),U)=const, or hﬁT(tt))zconst for M(t) =0, A(t)=0. Since our

curve satisfies:
M(t)
M (t)=0, A(t)=0, m:constant, N(t)=0,

it follows directly from the theorem that:

3 3 2
y(t) = (% +t+1, - % 0, %] is a (1,2)-type hyperbolic framed slant helix.

This example verifies another curve satisfying the conditions of Theorem 2.1.2 and
illustrates that constant curvature ratios and vanishing torsion lead to framed slant helices in
hyperbolic geometry.

Theorem 2.1.3. Let y:1 —H?® be a hyperbolic Frenet type framed base curve with Frenet
type curvature {Vl,Vz,Vg,V4}. Under the above notion, y is a (1,3)-type hyperbolic framed
slant helix and M (t) = N(t) =0, then

WWW.josa.ro Mathematics Section
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A(t) = 0.

Proof: Assume that 7 is a (1,3)-type hyperbolic framed slant helix in H* parametrized by t
with Frenet type curvature (M (t), N(t), A(t),0). Then there exists a non-zero fixed vector

U e R; such that
<V,U >=c,

(6)

<V,,U >=c,

are constants. If t are regular points of y, taking derivative of the equation (6) and using the
Equation (1), we get

<V, ,U>=0, so M(t)<V,,U>=0,

, (7)
<V;,U>=0, so —N(t)<V,,U>=0

which implies that the following two situations:
Case 1: Assume that M (t)=0,N(t) =0 in (7), then we have
<V,,U>=0and<V,,U >=0, (8)
and differentiating (8) with respect to t, we have
<V, ,U>=0and <V, ,U >=0. 9)
Using (1) and (6), we find the following equations:

M (t) <V, U >—-A(t)<V,,U>=0, so M(t)=0,
N (t)<V;,U >+A(t)<V,,U>=0, so N(t)=0

and these are a contradiction. Then M (t) and N (t) must be zero.
Case 2: Assume that M (t)=0,N(t)=0 and

<V,,U >=¢,, (10)
<V,,U>=c,

in (7), then we have differentiating (10) with respect to t, we get

<V, ,U>=0,

, (11)
<V, ,U>=0.

Using (1) and (10), we find the following equations:

ISSN: 1844 — 9581 Mathematics Section
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~A(t)<V,,U >=0,
A(t)<V,,U >=0
are obtained A(t)=0.

Corollary 2.1.4. Let y is a (1,3)-type hyperbolic framed slant helix in H®. If
M (t)=0,N(t)=0 and <V,,U >, <V,,U > are constants, in that case, A(t) is zero.

Theorem 2.1.5. Let y:1 —H?® be a hyperbolic Frenet type framed base curve with Frenet
frame {V,,V,,V;,V,}. 7 isa (1,4) -type hyperbolic framed slant helix if and only if

or

A
A(t)=0,N(t)=£0 = ﬂ = constant.

N(t)

Proof: Assume that y is a (1,4)-type hyperbolic framed slant helix in H* parametrized by t
with Frenet frame {V,,V,,V,,V,}. Then, there exists a non-zero fixed vector U € R; such that

<V,U >=c, 12)
<V,,U>=c,

are constants.

<V,,U>=0, so M(t)<V,,U>=0,c,#0, so M(t)=0, 13
1
<V, ,U>=0, so M(t)<V,U>-A(t)<V,,U >=0.

Then <V,,U >= M'A\((tt))cl is obtained from equation (13). Similar to the proof of the

above Theorem 2.1.3., it can be done using the equations (1) and (12).

Theorem 2.1.6. Let y:1 —H® be a hyperbolic Frenet type framed base curve with Frenet
frame {V,,V,.,V,,V,}. Under the assumption that A(t)=0 and M(t)=0 for all tel, the
curve y isa (2,3) -type hyperbolic framed slant helix if and only if

(V,(t),U) =c, =constant, and Nl(t),U>=%cz,

for some fixed vector U € R} and constant c,.

Proof: Assume that ¥ is a (2,3) -type hyperbolic framed slant helix in H?*, with a Frenet-type
frame {V,,V,,V,,V,}. Then there exists a non-zero fixed vector U €[] such that

WWW.josa.ro Mathematics Section



New type Hyperbolic Framed Slant Helices. .. Fatma Bulut and Mehmet Bektag 717

<V,,U >=c,,

<V,,U >=c, (14)

for some constants c,,c,,c, and all te | . Differentiating each expression with respect to t
and using the Frenet-type system (1), we obtain:

L 0.U) =<V, U >= NOM,0.U)+ ADV,0.0) =0,

%(Vg(t),w =<V, ,U >=—N(t)(V,(t),U) =0.

Substituting the constants:
N(t)c, + A(t)c, =0, —N(t)c, =0.

From the second equation, we deduce that

N()=0 (since c, =0 for non-triviality.)
Then from the first equation:

A(t)c, =0.
Since A(t) =0 by assumption, we obtain
c, =(V,(t),U)=0.
Differentiating (V,(t),U) =0 with respect to t yields:
<V, U >=0=M (t)V,(t),U)— A{t)V,(t),U) =0. (15)

Solving for (V,(t),U) gives:

_ A _ A
<V1(t)1U> - M (t) <V2(t)!U> - M (t) C2'

This completes the proof.

Theorem 2.1.7. Let y:1 —H® be a hyperbolic Frenet-type framed base curve with Frenet
frame {V,,V,,V,,V,}. Under the assumptions that A(t), N(t), M (t) are smooth functions, the
curve y isa (2,4)-type hyperbolic framed slant helix if and only if

(ﬂ] c,—N(t)c,=0, and (&j c,—M(t)c, =0.
N (t) M (t)

ISSN: 1844 — 9581 Mathematics Section
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Proof: Assume that y is a (2,4) -type hyperbolic framed slant helix in H* parametrized by t,
with Frenet-type frame {V,,V,,V,,V,}. Then there exists a non-zero fixed vector U €[]} such

<V,,U >=g,,

<V,,U>=¢c, (16)

where c,,c, € R are constants. Differentiating both expressions with respect to t, and using

the Frenet-type system (1), we get:

V5 (1),U) = N(EXV5(0),U) + AV, (1), U) = N([0)V,(1),U) + Alt)c,,
Vi (0),U) = MOV (0),U) - Alt)V,(1),U) = M)V, (1), U) — A)c,.

Now, solve for (V,(t),U) and (V,(t),U):

_ A .

M, (t),U) = NO B C,, (assuming N(t) = 0),
A .

M, (),U) = M B C,, (assuming M (t) = 0).

Now differentiate these expressions with respect to t:

1. For (V,(t),U):

aw)’“*( N(t)c“J (ijc“'

But from the Frenet-type equation,

<V3’(t)’U> =-N (t)<V2 (t),U)=-N (t)CZ'

(N(t)j c, =—N(t)c,, so (N(t)j c,—N(t)c, =0.

So we get:

2. For (V,(t),U):

d (AW ) _[A®)
awl(t)’l-”_(l\/l(t) Czj _[M(t)j C,,

But from Frenet system:

V0,U) =MV, (0).U) = M (b)c,

OB )
(M—(t)J c,—M(t)c, =0.

Thus,

Hence, both conditions are satisfied, and the proof is complete.
Example 2.1.7. Let us consider the curve
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are.

sinht
0

t)= , tek
r(®) 0 €
cosht
This curve lies on the hyperbolic space H® — Rf, because
(r(t), 7)), =—(cosht)? + (sinht)* = 1.

Let us define the Frenet-type moving frame associated with y as:

cosht 0
0 1 .
Vi) =y@1), V,({)=y'(t)= 0 I V,(t) = 0 (constant unit vector),
sinht 0

V, (t) = defined by Gram-Schmidt process to complete the orthonormal frame.
We define the curvature functions as constant:
At)=1 N(@)=1 M(t)=1.
From Theorem 2.1.7, the conditions for a (2,4)-type hyperbolic framed slant helix
(%j c, —N(t)c, =0, (%J c,—M(t)c, =0.
Substituting A(t) = N(t) = M (t) =1, we compute:
c,=0 and c,=0.

Thus, the fixed vector U e R} satisfies

<V2(t),U>=O, <V4(t)’U>:0|

then, U is orthogonal to both V,(t) and V,(t) , which satisfies the requirements for y(t) to be
a (2,4) -type hyperbolic framed slant helix.

Theorem 2.1.8. Let y: 1 — H?® be a hyperbolic Frenet-type framed base curve with Frenet
frame V,(t),V, (t),V,(t),V,(t) . Suppose that

VaU) =c3, Va()U)=c4

ISSN: 1844 — 9581 Mathematics Section
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are constants for a non-zero fixed vector U e R} , then y is a (3,4)-type hyperbolic framed
slant helix. Then the function M (t) satisfies:

(i) IFN(t) =0 and (V,(t),U) =0 , then M (t) =0,

(if) If N(t)=0 and (V,(t),U)=0 , then M(t) =0,

(iii) If N(t) = 0 and (V,(t),U) =0 , then M(t) =0.

Proof: Assume that yis a ((3,4))-type hyperbolic framed slant helix. Then:

<V3 (t)1U > =GC3, <V4 (t)1U > =Cy (ConStants)'
Differentiating both identities and using the Frenet-type equations:

V(1) = —N(OV2(0, Vi () = MOV — AV, 0),
we get:
<V?:(t)’u> =-N (t)<v2(t)’u> =0,

VA(1).U) = M)V (0).U) — AXV(t).U) =0 18

From Equation (17), we obtain the essential condition:
N(t)- (Vo (t),U)=0.

This condition gives rise to two mutually exclusive scenarios: Either N(t) = 0, or
(V,(t),U)=0. These are structural conditions arising from the constant nature of

(V,(t),U)=0. Therefore, (V,(t),U)=0 is not assumed, but rather a necessary conclusion
when N(t) 0, to maintain the constancy of (V,(t),U)=0.

Case i: If N(t) =0 and (V,(t),U) =0.

From Equation (18):
M )V (1), U) = AE)V, (),U).

Differentiate both sides (since both inner products may be variable unless otherwise
known), and use the chain rule:

S 0.U) =M OVA0.0) =M Ocs
S R0.U) = NOV.U) + ADV0.U) = Ay
However, N(t) = 0, and we can assume A(t) #0, so if the only way Equation (18)

balances is if M(t) = 0 (as no non-zero constant can balance the changing right-hand side), we
conclude M(t) = 0.

Caseii: N(t) =0, (V,(t),U)=0

Then from Equation (17): (V;(t),U) =—N(t)-0=0, satisfied. From Equation (18):
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M £}V (8),U) = 0.
Assuming (V,(t),U) = 0, we conclude again: M(t) = 0.
Case iii: N(t) =0, (V,(t),U)=0
Equation (17) is automatically satisfied. Equation (18) becomes:

M (t)(Vy(t),U)=0=>M(t) =0 (if (V;,U)=0).

3. RESULTS AND DISCUSSION

In this study, we introduced the concept of (k,m)-type slant helices in hyperbolic 3-
space and investigated their fundamental properties. By employing the Frenet-type formulas
for hyperbolic framed curves, we derived a system of differential equations that characterizes
these helices.

Fundamental criteria for classical slant helices have been established by earlier
research on Euclidean framed helices. Our study, however, applies these conclusions to the
hyperbolic context and demonstrates that the nature of slant helices is strongly impacted by
hyperbolic curvature. Because of the characteristics of the hyperbolic metric, hyperbolic
framed slant helices are subject to extra geometric limitations in contrast to Euclidean framed
helices.

4. CONCLUSIONS

This paper, using the moving frame {V,,V,,V,,V,} and its associated Frenet-type
system of equations allowed us to express the curvature and torsion functions of the (k,m)-

type hyperbolic framed slant helices in terms of the hyperbolic frame vectors. We observed
that these helices are governed by specific curvature conditions, which depend on the
functions M (t),N(t), and A(t). The (k,m)-type hyperbolic framed slant helices satisfy a

well-structured system of differential equations, which dictates their geometric behavior.

The hyperbolic curvature function significantly influences the trajectory and shape of
these helices within hyperbolic 3-space.

The presence of the additional frame vectors V,,V,,V,, and V, provides a deeper

understanding of how these curves behave in a hyperbolic setting compared to classical
Euclidean helices. The results presented in this study provide a foundation for future research
on hyperbolic framed curves. Possible extensions include:

Investigating the role of (k,m)-type hyperbolic slant helices in theoretical physics,
particularly in the study of space-time models where hyperbolic geometry is relevant.
Exploring generalizations of these helices in higher-dimensional hyperbolic spaces.
Analyzing the stability properties of these helices in applied fields such as computer graphics
and mechanical structures.

Our findings contribute to the broader field of differential geometry by providing new
insights into the behavior of framed helices in hyperbolic space and opening avenues for
further theoretical and applied research.
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