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Abstract. In this manuscript, we present a new two-parametric generalization of 

Harvda-Charvat's measure of entropy    
 

(P) and its salient characteristics. We also obtain 

it’s most significant entropies that are widely known and have a sway in the literature of 

information and coding theory. Furthermore, we also present a new generalized mean code-

word length    
 

(P), and we additionally ascertain how    
 

(P) and   
 

(P) are interrelated in 

terms of the source coding theorem and also demonstrate it through the Shannon-Fano 

Coding Algorithm. Finally, we check it’s monotonicity through a dataset on precipitation. 

Keywords: Shannon’s entropy; Harvda-Charvat’s entropy; Average length; 

L’Hospital’s rule. 

 

 

1. INTRODUCTION 

 

 

Information Theory is a mathematical field founded by Claude E. Shannon [1] aimed 

at analyzing the mechanisms involved in the transmission, storage, and measurement of 

information. It establishes systematic techniques for assessing how effectively messages can 

be communicated from a source to a destination through a communication channel, while 

accounting for challenges such as noise, interference, and signal degradation. Consider a 

discrete random variable X = {             } with its respective probabilities P = 
{             }, then the concept of entropy is defined as: 

 

 ( )   ∑  

 

   

       (1) 

 

The unit of entropy is taken to the base of the logarithm D, if D = 2, then entropy 

measure is known as a bit; D = e, then entropy measure is known as Nat; and if D = 10, then 

entropy measure is known as Hartley. Numerous generalized measures of Shannon’s entropy 

under a discrete random variable have been presented in the literature of information theory. 

Harvda-Charvat [2] presented an idea of parametric entropy and defined the entropy of order 

β as: 

  

  ( ) = 
 

   
 [∑   

  
     ] , β > 0,      (2) 
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Apart from Harvda-Charvat [2], various other researchers, viz., Rényi [3], Campbell, L. L. 

[4], Sharma and Mittal [5], Hooda, D. S., Bhaker, U. S. [6], Bhat and Baig [7-12], etc., have 

also developed some generalized measures in the theory of information. 

 

 

2. A NEW TWO-PARAMETRIC GENERALIZATION OF HARVDA-CHARVAT'S 

MEASURE OF ENTROPY 

 

 

Let X = {             } with their respective probabilities P = {             } then 

we derived a new two-parametric generalization of Harvda-Charvat’s entropy   
 

(P) is given 

by 

 

  
 
( ) = 

 

   
 [∑   

 

  
     ] ,              (3) 

 

where α and β represent scaling factors that adjust how the entropy responds to different 

probability distributions. Let us now explicate α and β. From the application point  

 Harvda-Charvat’s entropy can be tuned to reduce the influence of rare or extreme events, 

unlike Shannon’s entropy, which is very sensitive to small probabilities. 

 Moreover, it is used to enhance signal extraction in a noisy environment by reducing the 

effect of random outliers. 

 

 

2.1. PARTICULAR CASES OF OUR PROPOSED GENERALIZED HARVDA-CHARVAT’S 

MEASURE OF ENTROPY 

 

 

a. When α = 1, equation (3) reduces to Harvda-Charvat’s [2] entropy of order β i.e., 

 

    
 
( ) =   (P) = 

 

   
[∑   

    
   ] 

 

b. When β = 1, equation (3) reduces to Harvda-Charvat’s [2] entropy of order 
 

 
 i.e.,  

 

  
   
( ) =   

 

(P) = 
 

  
 

 

[∑   
 

  
     ] 

 

c. When     , equation (3) reduces to Harvda-Charvat’s quadratic entropy, i.e. 

 

     ( ) =   ( ) =  ∑   
  

    

 

d. When   = 1 and β     then by applying L’Hospital’s rule, equation (3) reduces to the 

entropy given by Shannon [1], i.e., 

 

    
   

( ) = H(P) =  ∑         
 
    

 

e. When     and α     then applying L’Hospital’s rule, equation (3) reduces to the 

entropy given by Shannon [1], i.e., 
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( ) = H(P) =  ∑         

 
    

 

f. When β  , then by applying L’Hospital’s rule, equation (3) reduces to the entropy given 

by Shannon [1], i.e., 

 

    ( ) = H(P) =  ∑         
 
    

 

g. When β > 0, α > 0 and β    , and if all the events are equally likely, i.e., pi = 
 

 
    

           then we have 

 

  
 
(
 

 
)   H (

 

 
) =       , 

 

which is maximum entropy. 

 

2.2. PROPERTIES OF OUR PROPOSED GENERALIZED HARVDA-CHARVAT'S 

MEASURE OF ENTROPY 

 

Some significant features of our generalized entropy measure   
 
( ) have been 

scrutinized in this section: 

 

Property 1.   
 ( )      when  >0 and β>0. 

 

Proof: We have 

  
 ( )   

 

   
[∑   

 

  
     ] , α > 0, β > 0,    . 

 

Case  : For    . 

 

For    , we have 
 

 
  . Since 0                   and ∑     

 
   , which 

implies that 

 

  
 
     

 

After some mathematical operation, it follows that: 

 

[∑  
 
 

 

   

  ]    (4) 

 

We have    , which implies      . Also, for    , so we have 

 
 

   
   (5) 

 

On combining equations (4) and (5), we have for     

 

   
 ( )  

 

   
[∑   

 

    
   ]    (6) 
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Case   : When    . 

 

When    , we have 
 

 
  . Since,                     and ∑      

 
    

which implies that 

 

  
 
     

 

After some mathematical operation, it follows that: 

 

[∑  
 
 

 

   

  ]    (7) 

 

As we have    , which implies that        Also for      so we have 

 
 

   
   (8) 

 

On combining equation (7) and (8), we get 

 

  
 ( )  

 

   
[∑  

 
 

 

   

  ]    (9) 

 

From equations (6) and (9), we noticed that   
 
( ) is positive for the defined values of 

the parameters   and   i.e., 

 

  
 ( )  

 

   
[∑  

 
 

 

   

  ]    

 

For            . 

 

Property 2.   
 
( ) is a symmetric function on every   , i = 1, 2, 3,…, n 

 

Proof: This property is obviously true, i.e.,  

 

  
 (               )   (               ) 

 

Property 3. The maximum value of   
 
( ) is achieved when the choice of the occurrence of 

all the events is equal.  

 

Proof: We have 

  
 ( )  

 

   
[∑  

 
 

 

   

]              
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Assume the choice of the occurrence of all the events is equal, i.e.,    
 

 
    

         , then we have 

 

  
 ( )  

 

   
[∑(

 

 
)

 
 
  

 

   

]  

 

After some mathematical computations, it follows that 

 

  
 
(
 

 
)   (

 

 
)        

 

Which is the maximum entropy. 

 

Property 4. The additive property is satisfied by   
 
( ) in the following mathematical 

perspective: 

  

  
 (   )    

 ( )    
 
( ) 

where, 

 

(   )  {                                   } 
 

is the joint probability mass function of two independent discrete random variables. 

 

Proof: Suppose(   )  {                                   }, be the joint probability 

mass function of two independent discrete random variables, then 

 

We have 

 

  
 (   )  

 

   
[(∑∑(    )

 
 

 

   

 

   

  )] (10) 

 

We can rewrite (    )
 

  as 

 

(    )
 
    

 
   

 
  

 

Thus, the summation becomes 

 

∑∑(    )
 
 

 

   

 

   

 ∑  
 
 

 

   

∑  
 
 

 

   

 

 

The entropy  
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 ( )  

 

   
[∑  

 
 

 

   

  ] 

and  

  
 ( )  

 

   
[∑  

 
 

 

   

  ] 

 

On simplifying the above mathematical computation, we have 

 

   
 (   )  

 

   
[∑  

 
 

 

   

  ]  
 

   
[∑  

 
 

 

   

  ] 

 

Which implies, 

 

  
 (   )    

 ( )    
 ( ) 

 

This completes the proof. 

 

 

3. SOURCE CODING THEOREMS  

 

 

Consider a finite input source symbol   {             } with their respective 

probabilities of transmission   {             }. Suppose we have code-words which 

have lengths               and then the expected length of the coded message is defined by 

Shannon [1] as: 

 

 ( )  ∑    

 

   

 (11) 

   

A code is said to be a uniquely decipherable code over an alphabet of D symbols with 

length   {             } if and only if the Kraft’s inequality holds, i.e., 

 

∑      

 

   

 (12) 

 

For all codes satisfying the inequality (12), the mean code-word length  ( ) defined 

at (11), lies between  ( ) and  ( )    i.e., 

 

 ( )   ( )   ( )    

  

This is also called Shannon’s noiseless coding theorem. Kapur [13] defined his mean 

code-word length for a discrete channel as: 
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  ( )  
 

   
{[∑   

   (
   
 
)

 

   

]

 

  }          (13) 

 

and also showed that   ( ) lies between   ( ) and   ( )    under the condition if the 

codes satisfy inequality (12), i.e., 

 

  ( )    ( )    ( )    

 

Numerous generalized source coding theorems under the condition of unique 

decipherability have been introduced by numerous scholars over the past few decades, for 

example, publications [14-16]. 

We presented a new generalized mean code-word length   
 
( ) in this manuscript as: 

 

  
 ( )  

 

   
{[(∑  

 

   

 
   (

   
 
)
)]

 

  }              (14) 

 

where D is the number of alphabets used to code input source symbols. 

 

 

3.1. PARTICULAR CASES OF NEW GENERALIZED MEAN CODE-WORD LENGTH 
 

 

Case i: When      (14) reduces to code-word length corresponding to Kapur’s mean code-

word length, i.e., 

 

     
 ( )    ( )  

 

   
{[∑    

   (
   

 
) 

   ]
 

  } (15) 

 

Case ii: When      and      then, by applying L’Hospital’s rule (14) reduces to the 

optimal mean code-word length corresponding to Shannon entropy i.e., 

 

    
   ( )   ( )  ∑    

 

   

 

 

Case iii: When      then, by applying L’Hospital’s rule (14) reduces to the optimum mean 

code-word length given by Shannon [1], i.e., 

 

      ( )  ∑    

 

   

 

 

Now we will derive the relationship between (3) and (14) in terms of source coding 

theorems. 
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3.2. RELATIONSHIP OF HARVDA-CHARVAT’S GENERALIZED MEASURE AND ITS 

CORRESPONDING CODE-WORD LENGTH 

 

 

The two theorems below show the relationship between the generalized measure and 

its corresponding code-word length. 

 

Theorem 1. For all alphabets with     symbols, suppose the set of code-word lengths is 

  {              }  which satisfy Kraft’s inequality. The relationship between   
 
( ) and 

  
 
( ) is given by: 

 

  
 
( )    

 
( ) 

 

and equality, i.e.,   
 ( )    

 
( ) holds if and only if 

 

        [
  
 
 

∑   
 
  

   

] (16) 

 

Proof: For all                     and 
 

 
 
 

 
      (  )    (  )   

   then by the reverse of Holder’s inequality, we have 

 

(∑  
 

 

   

)

 
 

 (∑  
 

 

   

)

 
 

 (∑    

 

   

 ) (17) 

 

The equality of (17) holds if        such that 

 

  
     

  (18) 

 

Let   

     

 
             

 
 (   ) 

 

  
   

 
       

 

Substituting the above values in (17) and after some mathematical calculation, we get 

 

[∑   
   (

   
 
)

 

   

]

 
   

 [∑  
 
 

 

   

]

 
   

 ∑    

 

   

 

 

By using inequality (17) and after some mathematical calculation, we get 

 

 [∑   
 

  
   ]

 

   

 [∑    
   (

   

 
) 

   ]

 

   

 (19) 
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Again, after some mathematical calculations on inequality (19) and subtracting 1 from 

both sides, we get 

 

 

   
[∑  

 
 

 

   

  ]  
 

   
{[∑   

   (
   
 
)

 

   

]

 

  }  

 

Or we can rewrite the above inequality as: 

 

  
 
( )    

 
( ) 

 

Now we will show the equality i.e.,   
 ( )    

 
( ) holds if and only if 

 

        [
  
 
 

∑   
 
  

   

]  

 

After some mathematical calculations, we get 

 

     [
  
 
 

∑   
 
  

   

] 

 

Now, after multiplying throughout by    to the above equation, and applying 

appropriate mathematical calculations, it follows that: 

 

∑   
   (

   
 
)

 

   

 [∑  
 
 

 

   

]

 
 

 (20) 

 

After some mathematical calculations, we have 

 

 

   
{[∑   

   (
   
 
)

 

   

]

 

  }  
 

   
[∑  

 
 

 

   

  ] 

 

Or we can rewrite the above equality as 

  

  
 ( )    

 
( ) 

   

Theorem 2. For a code-word with lengths   {             } satisfying Kraft’s inequality, 

and then   
 ( ) and   

 
( ) are related as follows: 

 

  
 ( )    

 ( )     
 

   
(      )                   . 

 

Proof: From Theorem 1, we see that   
 ( )    

 
( ) is satisfied if and only if 
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        [
  
 
 

∑   
 
  

   

] 

 

The above expression can also be written as 

 

          
 
      [∑  

 
 

 

   

] 

  

Let code-word lengths   {             } be such that they satisfy the following 

inequalities: 

 

       
 
      [∑  

 
 

 

   

]            
 
      [∑  

 
 

 

   

]    (21) 

 

Consider the interval 

 

   [       
 
      [∑  

 
 

 

   

]         
 
      [∑  

 
 

 

   

]   ] 

 

of length 1. In every     there lies exactly one positive integral     such that 

 

         
 
      [∑  

 
 

 

   

]            
 
      [∑  

 
 

 

   

]    (22) 

 

We will first show that sequence              , defined satisfies the Kraft’s 

inequality. From the left-hand side of (23), we have 

 

       
 
      [∑  

 
 

 

   

]     

or equivalently 

 

     [
  
 
 

∑   
 
  

   

] (23) 

 

Taking the summation over             on both sides of (23), we have 

 

∑    

 

   

   

 

This is Kraft’s (1949) inequality. Now the last inequality of (23) gives: 
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    [
  
 
 

∑   
 
  

   

]

  

  (24) 

 

After some mathematical calculations, we have 

 

 
  (
   
 
)
 [

  
 
 

∑   
 
  

   

]

   
 

 
   
  (25) 

 

Now multiplying inequality (25) both sides by    , then summing over             

and after suitable simplifications, we have 

 

∑   
  (
   
 
)

 

   

 [∑  
 
 

 

   

]

 
 

 
   
  (26) 

 

Raising both sides to the power   and subtracting 1 throughout the inequality (26), we 

have 

 

 

   
{[∑   

   (
   
 
)

 

   

]

 

  }  
 

   
{[∑  

 
 

 

   

]       } (27) 

 

From right hand side of (27) we have 

 

 

   
{[∑  

 
 

 

   

]       } 

 
 

   
{[∑  

 
 

 

   

]   }     
 

   
(      ) 

 

or we can write that 

 

  
 ( )    

 ( )     
 

   
(      )  

 

Hence from above two coding theorems, we conclude that 

 

  
 ( )    

 ( )    
 ( )     

 

   
(      ) 

 

when                
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4. SHANNON-FANO CODING ALGORITHM 

 

 

In this portion, we will demonstrate the validity of Theorems 1 and 2 by taking 

empirical data from [17] given in Table 1. The probability values of             are given as 

                     respectively. Now, by using the Shannon-Fano Coding Algorithm, we 

have got the binary codes and code-word lengths corresponding to each probability given in 

Table 1. 

 
Table 1. Shannon-Fano Coding Algorithm. 

 

Now the table allows us to deduce that the validity of Theorem 1 and Theorem 2 

extends to the Shannon-Fano coding scheme as   
 
( )    

 
( ) and   

 ( )    
 ( )  

  
 ( )     

 

   
(      ) when                 

 

 

5. REAL LIFE APPLICATION 

 

 

Hinkley [18] provided a dataset comprising thirty consecutive years of March 

precipitation measurements, recorded in inches, which has also been used by [19]. The dataset 

captures variations in rainfall over this period and serves as a valuable resource for statistical 

and climatological analysis. The recorded values are as follows: 

 

0.77 1.74 0.81 1.20 1.95 1.20 0.47 1.43 3.37 2.20 

3.00 3.09 1.51 2.10 0.52 1.62 1.31 0.32 0.59 0.81 

2.81 1.87 1.18 1.35 4.75 2.48 0.96 1.89 0.90 2.05 
 

Table 2. The behaviour of our proposed Harvda-Charvat’s measure, when α is fixed at 3.5, and β varies 

for the given Database. 

    
 
( ) 

    
 
( ) 

    
 
( ) 

0.10 27.64168 0.20 27.32464 0.30 27.04876 

0.11 27.60812 0.21 27.29520 0.31 27.02344 

0.12 27.57498 0.22 27.26617 0.32 26.99854 

0.13 27.54224 0.23 27.23755 0.33 26.97405 

0.14 27.50992 0.24 27.20934 0.34 26.94997 

0.15 27.47801 0.25 27.18155 0.35 26.92631 

0.16 27.44651 0.26 27.15417 0.36 26.90306 

0.17 27.41543 0.27 27.12720 0.37 26.88023 

0.18 27.38475 0.28 27.10064 0.38 26.85781 

0.19 27.35449 0.29 27.07450 0.39 26.83581 
 

  

   
 Shannon-

Fano Codes    
 

  

 

  

 

  
 ( ) 

 

  
 ( ) 

 

     

 
(    

  ) 

 
  
 ( )    

 
 

   
(      ) 

 

0.25 001 3 0.9 0.6 1.5603 2.4527 1.2311 0.6933 2.6142 

0.5 10 2        

0.125 1101 4        

0.125 1111 4        
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Table 3. The behaviour of our proposed Harvda-Charvat’s measure when β=0.02 is fixed and α varies for 

the given Dataset. 

    
 
( )     

 
( )     

 
( ) 

0.10 26.36485 0.20 26.92631 0.30 27.22810 

0.11 26.42747 0.21 26.96598 0.31 27.24950 

0.12 26.49334 0.22 27.00304 0.32 27.26977 

0.13 26.55863 0.23 27.03770 0.33 27.28900 

0.14 26.62148 0.24 27.07018 0.34 27.30727 

0.15 26.68105 0.25 27.10064 0.35 27.32464 

0.16 26.73701 0.26 27.12926 0.36 27.34117 

0.17 26.78937 0.27 27.15618 0.37 27.35693 

0.18 26.83823 0.28 27.18155 0.38 27.37196 

0.19 26.88380 0.29 27.20549 0.39 27.38632 

 

 
Figure 1. Monotonicity of our Proposed Measure. 

 

 

6. CONCLUSIONS 

 

 

This study presents a new generalization of Harvda-Charvat’s measure of entropy, 

highlighting it’s importance in information theory and applied mathematics. The paper 

explores the key properties of this novel generalization. Furthermore, a new generalized mean 

code-word length is introduced, and the relationship between   
 
( ) and   

 
( )is established 

through the source coding theorems presented in this paper, and also demonstrated through 

the Shannon-Fano Coding Algorithm. Finally, we checked it’s monotonicity through a 

precipitation dataset through which we can better anticipate the future changes to changing 

climatic patterns. 
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