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Abstract. In this manuscript, we present a new two-parametric generalization of

Harvda-Charvat's measure of entropy Hf (P) and its salient characteristics. We also obtain
it’s most significant entropies that are widely known and have a sway in the literature of
information and coding theory. Furthermore, we also present a new generalized mean code-

word length Lﬁ(P), and we additionally ascertain how Hf(P) and Lﬁ(P) are interrelated in
terms of the source coding theorem and also demonstrate it through the Shannon-Fano
Coding Algorithm. Finally, we check it’s monotonicity through a dataset on precipitation.

Keywords: Shannon’s entropy, Harvda-Charvat’s entropy, Average length;
L’Hospital’s rule.

1. INTRODUCTION

Information Theory is a mathematical field founded by Claude E. Shannon [1] aimed
at analyzing the mechanisms involved in the transmission, storage, and measurement of
information. It establishes systematic techniques for assessing how effectively messages can
be communicated from a source to a destination through a communication channel, while
accounting for challenges such as noise, interference, and signal degradation. Consider a
discrete random variable X ={x;,x,,x3,..,x,} with its respective probabilities P =
{p1, P2, 03, .., Pn}, then the concept of entropy is defined as:

H(P) = — 2 p; logpp; (1)
i=1

The unit of entropy is taken to the base of the logarithm D, if D = 2, then entropy
measure is known as a bit; D = e, then entropy measure is known as Nat; and if D = 10, then
entropy measure is known as Hartley. Numerous generalized measures of Shannon’s entropy
under a discrete random variable have been presented in the literature of information theory.
Harvda-Charvat [2] presented an idea of parametric entropy and defined the entropy of order

B as:

_ 1

HP(P) = = [Ziipf —1].B>0,5 #1 0y
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Apart from Harvda-Charvat [2], various other researchers, viz., Rényi [3], Campbell, L. L.
[4], Sharma and Mittal [5], Hooda, D. S., Bhaker, U. S. [6], Bhat and Baig [7-12], etc., have
also developed some generalized measures in the theory of information.

2. ANEW TWO-PARAMETRIC GENERALIZATION OF HARVDA-CHARVAT'S
MEASURE OF ENTROPY

Let X = {x4,%,, X5, X, } With their respective probabilities P = {p, p,, ps; ..., pn} then

we derived a new two-parametric generalization of Harvda-Charvat’s entropy Hf (P) is given
by

B —_2 |yn ,E_
HE(P) = |5k pic— 1] a> 0,8 > 0,a % B ®

where o and B represent scaling factors that adjust how the entropy responds to different
probability distributions. Let us now explicate o and B. From the application point

e Harvda-Charvat’s entropy can be tuned to reduce the influence of rare or extreme events,
unlike Shannon’s entropy, which is very sensitive to small probabilities.

e Moreover, it is used to enhance signal extraction in a noisy environment by reducing the
effect of random outliers.

2.1. PARTICULAR CASES OF OUR PROPOSED GENERALIZED HARVDA-CHARVAT’S
MEASURE OF ENTROPY

a. When a = 1, equation (3) reduces to Harvda-Charvat’s [2] entropy of order f i.e.,
1
Hyy(P) = HP(P) = 2 [S, pf — 1]

b. When = 1, equation (3) reduces to Harvda-Charvat’s [2] entropy of orderi ie.,

= 1 1
HETH(P) = Ha(P) = =[Sy pi — 1
c. When f = 2a, equation (3) reduces to Harvda-Charvat’s quadratic entropy, i.e.

HF=24(P) = H2(P) =1 — T, p;?

d. When a« = 1 and B — 1, then by applying L’Hospital’s rule, equation (3) reduces to the
entropy given by Shannon [1], i.e.,

-1

Hcl:=1 (P) =H(P) = — XiL1 pilogpp;

e. When f =1and a — 1,then applying L’Hospital’s rule, equation (3) reduces to the
entropy given by Shannon [1], i.e.,
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HEZ1(P) = H(P) = — X2, pilogpp;

f. When B— «, then by applying L’Hospital’s rule, equation (3) reduces to the entropy given
by Shannon [1], i.e.,

HF>%(P) =H(P) = — XL, pilogpp;

g. When B> 0, a >0 and p # «, and if all the events are equally likely, i.e., pi =
1,2,3,...,n, then we have

S|

,Vi=

E(2) =H (2)=togon.
which is maximum entropy.

2.2. PROPERTIES OF OUR PROPOSED GENERALIZED HARVDA-CHARVAT'S
MEASURE OF ENTROPY

Some significant features of our generalized entropy measure Hf (P) have been
scrutinized in this section:

Property 1. Hg(P) > 0, when a>0 and >0.

Proof: We have
a

Hg(P)=m

B
|Zripie - 1], 0>0,>0,%a.

Case i: For g > «a.

B

a

For B > a, we have
implies that

>1.Since0<p; <1,vi=1,2,3,..,nand 2 ; p; = 1, which

B
pi <p;

After some mathematical operation, it follows that:

n
B
[Z pia—1

i=1

<0 4)

We have § > a, which implies § — a < 0. Also, for « > 0, so we have

¢ 0
5 < (5)

On combining equations (4) and (5), we have for § > «a

HEP) = 5 [smmie - 1] > 0 ©
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Case ii: When < « .

B

a

When B < a, we have
which implies that

<1.Since, 0<p; <1,vi=1,23,.,nand Y-, p; =1,

B
pi® > p;

After some mathematical operation, it follows that:

n
B
[Z pie—1

i=1

>0 (7)

As we have < a, which implies that « — g > 0. Also for § > 0, so we have

? S0
5> ®

On combining equation (7) and (8), we get

P A\
Ha(P)—a_ﬁ[;pl 1

From equations (6) and (9), we noticed that Hf (P) is positive for the defined values of
the parameters « and g i.e.,

>0 9)

HE(P) = — [

Forf>0,a> 0,0 # a.

Property 2. Hf(P) is a symmetric functiononevery p;,i=1,2,3,...,n

Proof: This property is obviously true, i.e.,

Hg (pll P2, Pn-1, pn) = H(pnf P1, D25 > pn—l)

Property 3. The maximum value of Hf (P) is achieved when the choice of the occurrence of
all the events is equal.

Proof: We have
n

Bpy=—% |N 5
Haa))—a_ﬁ[zpl

i=1

,8>0,a>0,0 #«a
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Assume the choice of the occurrence of all the events is equal, i.e., pi = % Vi=
1,2,3,...,n, then we have

it =550
i=1

After some mathematical computations, it follows that

HF (1) H<1) l
—|=H|=)=logpn
a n n 9o
Which is the maximum entropy.

Property 4. The additive property is satisfied by Hf(P) in the following mathematical
perspective:

HE(P+ Q) = HE(P) + HE(Q)
where,

(P*xQ) = {P1Q1' o P1qm, P2,91 5 5 Pnqrs ---»Pan}

is the joint probability mass function of two independent discrete random variables.

Proof: Suppose(P * Q) = {p1q1, --»P1qm, 2,91 ~+» Pud1s - Pndm}, b€ the joint probability
mass function of two independent discrete random variables, then

We have

He(P*Q) = i i(piq,-)g -1 (10)

i=1j=1

B
We can rewrite (p;q;)< as

B g B
(piq;)* = piag;a

Thus, the summation becomes

DA FOE

i=1 ]=1 i=1

The entropy
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HE(P) = —

NGk
=
QI
L

[y

L=

Bray— % m_
Ha(Q)—a_ﬁ ;q,

and

R

-1

On simplifying the above mathematical computation, we have

n m
o 1|+ ¢ & 1
. — X —

Z_ P a—p Z &

=1 j=1

Bipyo) = &
Hy (P Q)—a_ﬁ

Which implies,
Hy (P * Q) = HY (P) + Hy (Q)

This completes the proof.
3. SOURCE CODING THEOREMS

Consider a finite input source symbol X = {x,, x,, x5, ..., x,} with their respective
probabilities of transmission P = {py, p,, P3, ..., Pn}. Suppose we have code-words which
have lengths [y, 1,, 5, ..., 1, and then the expected length of the coded message is defined by
Shannon [1] as:

L) = ) pil (11)

A code is said to be a uniquely decipherable code over an alphabet of D symbols with
length L = {l;,1,, 5, ..., [,} if and only if the Kraft’s inequality holds, i.e.,

n
2 pli<1 (12)
i=1

For all codes satisfying the inequality (12), the mean code-word length L(P) defined
at (11), lies between H(P) and H(P) + 1 i.e.,

HP)<LP)<HP)+1

This is also called Shannon’s noiseless coding theorem. Kapur [13] defined his mean
code-word length for a discrete channel as:

WWW.josa.ro Mathematics Section



Two Parametric Generalization of ... Tabasum Fatima and Mirza Abdul Khalique Baig 685

B
-1;,6>0%#1 (13)

0= 2 o7
i=1

and also showed that LA (P) lies between H#(P) and H#(P) + 1 under the condition if the
codes satisfy inequality (12), i.e.,

HA(P) < LA(P) <HA(P)+1

Numerous generalized source coding theorems under the condition of unique
decipherability have been introduced by numerous scholars over the past few decades, for
example, publications [14-16].

We presented a new generalized mean code-word length Lﬁ(P) in this manuscript as:

B
Lﬁ(P)_ [(2[)1 i} ﬁT)‘ —1t,a>0,8>0,a 8 (14)

where D is the number of alphabets used to code input source symbols.
3.1. PARTICULAR CASES OF NEW GENERALIZED MEAN CODE-WORD LENGTH

Case i: When a = 1, (14) reduces to code-word length corresponding to Kapur’s mean code-
word length, i.e.,

-1\18
@) = 2P = 2 {20 7] - 1) (15)

Case ii: When o =1, and 8 — 1, then, by applying L’Hospital’s rule (14) reduces to the
optimal mean code-word length corresponding to Shannon entropy i.e.,

2P = L) = Zpl

Case iii: When a — (3, then, by applying L’Hospital’s rule (14) reduces to the optimum mean
code-word length given by Shannon [1], i.e.,

n
L = L) = ) pily
i=1

Now we will derive the relationship between (3) and (14) in terms of source coding
theorems.
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3.2. RELATIONSHIP OF HARVDA-CHARVAT’S GENERALIZED MEASURE AND ITS
CORRESPONDING CODE-WORD LENGTH

The two theorems below show the relationship between the generalized measure and
its corresponding code-word length.

Theorem 1. For all alphabets with D > 1 symbols, suppose the set of code-word lengths is
L= {ll_l2,l3', s ln}, which satisfy Kraft’s inequality. The relationship between Hf (P) and
Lﬁ(P) is given by:

HE(P) < L5 (P)

and equality, i.e., Hf (P) = Lﬁ(P) holds if and only if

B
I, = ~logp |——7 (16)

i=1 D
Proof: For all x;,y;>0,i=1,2,3,..,n and %+§= 1,06 <1(#0),6 <1(#0),6 <
0, then by the reverse of Holder’s inequality, we have

1

(Zn: xlﬂ)g (iyf) < (ixgq) (17)

O =

The equality of (17) holds if 3 ¢ > 0, such that
x% =cy® (18)

Let
P 8
x; = pif-aD iy, = paF-a@)

f—a
B

Substituting the above values in (17) and after some mathematical calculation, we get

n B_a ﬁ% n ,8 ﬁ%a n
[Z piD—li(T)] [Z p;a < Z D-li
i=1 i=1

i=1
By using inequality (17) and after some mathematical calculation, we get

9 =

6=f—a

1 _B_

@)]ﬁ-“ (19)

B

[Z?=1 Pia]m

IA
e
|\l
Ik

ey
=
o
A
=
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Again, after some mathematical calculations on inequality (19) and subtracting 1 from
both sides, we get

n n —a ﬁ
ral 2| s 7] -

Or we can rewrite the above inequality as:
Hy (P) < Le(P)

Now we will show the equality i.e., H? (P) = L (P) holds if and only if
B
.
I, = ~logy |——
Z?:l pia
After some mathematical calculations, we get

B
p-li = | P&

n =

Now, after multiplying throughout by p; to the above equation, and applying
appropriate mathematical calculations, it follows that:

n

1
> w7 - [Z pﬁr (20)

i=1

After some mathematical calculations, we have

n B
a _y(B= o«
rlr ] -2t

Or we can rewrite the above equality as

HE(P) = LE(P)

Theorem 2. For a code-word with lengths L = {l;, 1,15, ..., L} satisfying Kraft’s inequality,
and then Hf (P) and Lﬁ (P) are related as follows:

12 (p) < Hf (P)D*F +ﬁ(0“—ﬁ’ —1),whena >0,8>0,8 # a.

Proof: From Theorem 1, we see that Hg (P) = Lﬁ (P) is satisfied if and only if
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B
p;a

l; = —logp

n =
i=1 pla

The above expression can also be written as

B o
li = —logppi* + logp ZW

=1

Let code-word lengths L = {l,l,, 1, ..., ,} be such that they satisfy the following
inequalities:

n

8 = B 8 8
—logpp;® + logp [2 pia] < l; < —logpp;« + logp [Z p;®
i=1 [

=1

+1 (21)

Consider the interval

8 o B = B
0; = |—logpp;* + logp Zpi“ ,—logpp;« + logp Zpia +1
i=1 i=1
of length 1. In every 8, there lies exactly one positive integral [;, such that
n n
B B B B
0 < =logpp;x + logp [Z pl-a] < l; < =logpp;x + logp Z pie|+1 (22)
i=1 i=1

We will first show that sequencely,l,, (s, ..., 1,,, defined satisfies the Kraft’s
inequality. From the left-hand side of (23), we have

n
B
z Pi“‘ <

=1

B
—logpp;« + logp

or equivalently

RI™®

D_li < pi

(23)

=1 Pi
Taking the summation over i = 1, 2, 3, ..., n on both sides of (23), we have

n
ZD—lis1

i=1

This is Kraft’s (1949) inequality. Now the last inequality of (23) gives:
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B -1
pl < |[—PZ

z| D (24)

Y pia
After some mathematical calculations, we have

i 15
8 18
G 25)

Dl"(af%ﬁ) < p
=1 Di®

Now multiplying inequality (25) both sides by p; , then summing overi =1,2,3,...,n
and after suitable simplifications, we have

DB (26)

i=1

Raising both sides to the power 8 and subtracting 1 throughout the inequality (26), we
have

n

B n
a Z D‘“(%) 1Y <« ® Z g
a — ' pl a — ﬁ — pl
From right hand side of (27) we have

=1
a : _ﬁ a—B
I {|:'—I i }
i=

2|ty
i=1

D* B — 1} (27)

or we can write that
12(p) < Hf(P)D*F + ﬁ(m—ﬁ —1).
Hence from above two coding theorems, we conclude that
H(P) < 1E(P) < HF (P)D*F + ﬁ(m—ﬁ ~1)

whena >0,6>0,a #f.
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4. SHANNON-FANO CODING ALGORITHM

In this portion, we will demonstrate the validity of Theorems 1 and 2 by taking
empirical data from [17] given in Table 1. The probability values of p,, p,, p4, ps are given as
0.25,0.5,0.125,0.125 respectively. Now, by using the Shannon-Fano Coding Algorithm, we
have got the binary codes and code-word lengths corresponding to each probability given in
Table 1.

Table 1. Shannon-Fano Coding Algorithm.

Shannon- 5 s g (D* B Hf,(P)Da—B
D FanoCodes |Il; | a« | B | HL,(P) | LL,(P) | D ~1 +a“ﬁ(Da—p_1)
0.25 001 3109]0.6| 15603 | 24527 | 1.2311 | 0.6933 2.6142
0.5 10 2
0.125 1101 4
0.125 1111 4

Now the table allows us to deduce that the validity of Theorem 1 and Theorem 2
extends to the Shannon-Fano coding scheme as Hf(P) < Lﬁ(P) and Hf(P) < Lﬁ(P) <
Hf(P)Da-F +ﬁ(D“—f” —1)when,a>0,8>0,a # .

5. REAL LIFE APPLICATION

Hinkley [18] provided a dataset comprising thirty consecutive years of March
precipitation measurements, recorded in inches, which has also been used by [19]. The dataset
captures variations in rainfall over this period and serves as a valuable resource for statistical
and climatological analysis. The recorded values are as follows:

0.771.740.811.201.951.200.47 1.43 3.37 2.20
3.003.091.512.100.521.62 1.31 0.32 0.59 0.81
2.811.871.181.354.752.48 0.96 1.89 0.90 2.05

Table 2. The behaviour of our proposed Harvda-Charvat’s measure, when «a is fixed at 3.5, and B varies
for the given Database.

4 H%(P) B H5(P) B HY(P)
0.10 27.64168 0.20 27.32464 0.30 27.04876
0.11 27.60812 0.21 27.29520 0.31 27.02344
0.12 27.57498 0.22 27.26617 0.32 26.99854
0.13 27.54224 0.23 27.23755 0.33 26.97405
0.14 27.50992 0.24 27.20934 0.34 26.94997
0.15 27.47801 0.25 27.18155 0.35 26.92631
0.16 27.44651 0.26 27.15417 0.36 26.90306
0.17 27.41543 0.27 27.12720 0.37 26.88023
0.18 27.38475 0.28 27.10064 0.38 26.85781
0.19 27.35449 0.29 27.07450 0.39 26.83581

WWW.josa.ro Mathematics Section




Two Parametric Generalization of ...

Tabasum Fatima and Mirza Abdul Khalique Baig

691

Table 3. The behaviour of our proposed Harvda-Charvat’s measure When p=0.02 is fixed and «a varies for
the given Dataset.

a HE(P) a HE(P) a HE (P)
0.10 26.36485 0.20 26.92631 0.30 27.22810
0.11 26.42747 0.21 26.96598 0.31 27.24950
0.12 26.49334 0.22 27.00304 0.32 27.26977
0.13 26.55863 0.23 27.03770 0.33 27.28900
0.14 26.62148 0.24 27.07018 0.34 27.30727
0.15 26.68105 0.25 27.10064 0.35 27.32464
0.16 26.73701 0.26 27.12926 0.36 27.34117
0.17 26.78937 0.27 27.15618 0.37 27.35693
0.18 26.83823 0.28 27.18155 0.38 27.37196
0.19 26.88380 0.29 27.20549 0.39 27.38632
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Figure 1. Monotonicity of our Proposed Measure.

6. CONCLUSIONS

This study presents a new generalization of Harvda-Charvat’s measure of entropy,
highlighting it’s importance in information theory and applied mathematics. The paper
explores the key properties of this novel generalization. Furthermore, a new generalized mean

code-word length is introduced, and the relationship between Hf (P) and Lg(P)is established
through the source coding theorems presented in this paper, and also demonstrated through
the Shannon-Fano Coding Algorithm. Finally, we checked it’s monotonicity through a
precipitation dataset through which we can better anticipate the future changes to changing

climatic patterns.

ISSN: 1844 — 9581

Mathematics Section




692 Two Parametric Generalization of ... Tabasum Fatima and Mirza Abdul Khalique Baig

REFERENCES

[1] Shannon, C., The Mathematical Theory of Communication, 27(29), 379, 1948.

[2] Harvda, J., Charvat, F., Kybernetika, 3(1), 30, 1967.

[3] Alfréd, R. A., On measures of entropy and information. In Proceedings of the fourth
Berkeley symposium on mathematical statistics and probability, Volume 1
Contributions to the theory of statistics, University of California Press, Berkeley,
California, United States, pp. 563-574, 1961.

[4] Campbell, L. L., Information and control, 8(4), 423, 1965.

[5] Sharma, B. D., Dharam, P. M., Journal of Mathematical Sciences, 10(75), 28, 1975.

[6] Hooda, D. S., Bhaker, U. S., Soochow Journal of Mathematics, 23(1), 53, 1997.

[7] Bhat, A. H., Baig, M. A. K. Journal of Information Science Theory and Practice, 4(4),

64, 2016.

[8] Bhat, A. H., Baig M. A. K., Asian Journal of Fuzzy and Applied Mathematics, 4(6), 73,
2016.

[9] Bhat, A. H., Baig, M. A. K., International Journal of Information Science and System
5(1), 1, 2016.

[10] Bhat, A. H., Baig, M. A. K., Dar, M. H., International Journal of Advance Research in
Science and Engineering, 6(1), 863, 2017.

[11] Bhat, A. H., Manzoor, S., Peerzada, S., Baig, M. A. K., Sohag Journal of Mathematics,
5(2), 71, 2018.

[12] Bhat, A. H., Siddiqui, N. A., Mageed, I. A., Alkhazaleh, S., Das, V. R., Baig, M. A. K.,
Applied Mathematics and Information Sciences, 17(5), 941, 2023.

[13] Kapur, J.N., Journal of Bihar Mathematical Society, 1(10), 10, 1986.

[14] Gupta, R., Kumar, S., AIP Conference Proceedings, 2555(1), 040003, 2022.

[15] Kumar, S., Choudhary, A., Tamkang journal of mathematics, 43(3), 437, 2012.

[16] Sharma, B. D., Dharam, P. M., Journal of Mathematical Sciences, 10(75), 28, 1975.

[17] Cover, T. M., Thomas, J. A., Elements of information theory, John Wiley & Sons,
Hoboken, New Jersey, United States, 1999.

[18] Hinkley, D., Journal of the Royal Statistical Society: Series C (Applied Statistics),
26(1), 67, 1977.

[19] Badr, M. M., Heliyon, 5(8), e02225, 2019.

WWW.josa.ro Mathematics Section



