ORIGINAL PAPER

ON SUBULTRA-GROUPS

YILDIZ AYDIN¹

Manuscript received: 06.04.2023; Accepted paper: 15.04.2024; Published online: 30.06.2024.

Abstract. In this work subultra-groups of an ultra-group of a subgroup over a finite group are studied. Also, a subultra-group generated by a subset of an ultra-group is worked and then all the elements are determined in terms of the subset. Moreover, in which conditions the intersection of two normal subultra-groups is normal subultra-group is given. Quotient ultra-groups are also studied.

Keywords: Ultra-groups; congruence; transversal.

1. INTRODUCTION AND PRELIMINARIES

Among this work G is considered as a finite group and e is the identity of G. Before introducing ultra-groups we firstly should mention about the transversal property of set pairs. For a given group G and subsets H and U if h = h' and u = u', for every $h \in H$ and $u \in U$ while uh = h'u' then we call the pair of subsets (H, U) transversal. We can apply the transversal property to subgroups. If H and U are subgroups then (H, U) is transversal iff $H \cap U = \{e\}$. In this work, we study the case where H is a subgroup and U is a nonempty subset. In that case the pair (H, U) being transversal is when $|U \cap H_g| \leq 1$ for all g of G. In [2] an ultra-group U is of the subgroup H over the group G is defined by the operations $\alpha : U \times U \to U$ and $\beta_h : U \to U$ where (H, U) is transversal.

There are few publications on this new definition. The concept was first introduced in [1]. In the paper ultra-group homomorphism and fundamental properties are presented over the definition. The definition led to the investigation the category of ultra-groups in [2]. Then free ultra-groups, generators, and relations are studied in [3]. Finally in [4] some examples are given for ultra-groups with the help of GAP programming language.

In Section 2 we give the basic definitions and theorems which is used in this work, which were introduced in [2].

In Section 3 some subultra-group properties are presented, and the subultra-group of a generating set is introduced. It is well known that the normal subgroup intersection of a group is a normal subgroup. But for normal subultra-groups, we noticed that the intersection of normal subultra-groups need not be a normal subultra-group.

Finally in Section 4 quotient ultra-groups are studied. Throughout this paper, all fundamental definitions and theorems can be found in [5].

From now on we will give several definitions and theorems which are presented in [1].

Definition 1.1. A transversal is a set that contains only one element from each part of the partition. If $H \leq G$, then a transversal for the partition is denoted by $H \setminus G(G/H)$.

¹ Istanbul Gelisim University, Management and Information Systems, 34310 Istanbul, Turkey. E-mail: <u>yaydin@gelisim.edu.tr</u>

Let *H* be a subgroup of *G* and *U* a subset of *G*. It is shown in [2] that G = HU = UH when $|U \cap H_g| = 1$ for all $g \in G$. It means, for every $g = uh \in UH$ we have uh = h'u' for unique $h' \in H$ and $u' \in U$.

Definition 1.2. For given subgroup H of the group G a subset U of G is said to be (right unitary) complementary set of the subgroup H, if for any elements $u \in U$ and $h \in H$ there are the unique elements $h' \in H$ and $u' \in U$ such that uh = h'u' and $e \in U$. We will denote h' by ${}^{u}h$ and u' by u^{h} .

Since $U \subseteq G$ for any elements $u_1, u_2 \in U$ there are unique elements $[u_1, u_2] \in U$ and $(u_1, u_2) \in H$ such that $u_1 u_2 = (u_1, u_2)[u_1, u_2]$. If $x \in U$ there exists $u^{-1} \in G$. As G = HU, there is $x^{(-1)} \in H$ and $x^{[-1]} \in U$ such that $x^{-1} = x^{(-1)}x^{[-1]}$.

Definition 1.3. A complementary set ${}_{H}U$ is is called (right) ultra-group of H over group G with the operations $\alpha : {}_{H}U \times {}_{H}U \to {}_{H}U$ and $\beta_h : {}_{H}U \to {}_{H}U$ with $\alpha((u_1, u_2)) := [u_1, u_2]$ and $\beta_h(u) := u^h$ for all $h \in H$.

From now on, we will continue with the right ultra group and will denote it by U. If [u, v] = [v, u] for all elements $u, v \in U$ then the ultra-group U is called abelian. One can easily observe that every group is an ultra-group but the converse does not hold. A remarkable property of right ultra-groups is that every element does not have a right inverse, but they have a left inverse. The α operation of an ultra-group U has the right cancellation. Namely if [v, u] = [w, u] for $u, v, w \in U$, then we conclude v = w. We observe that we do not have left cancellations for the right ultra-groups.

Proposition 1.4. The following statements hold for any ultra-group U of subgroup H over the group G.

- (i) $u^{hh'} = (u^h)^{h'}$,
- (ii) $[u, v]^h = [u^{(v_h)}, v^h],$
- (iii) $[[u, v], w] = [u^{(v,w)}, [v, w]],$
- (iv) $e^{h} = e_{,u}e^{e} = u_{,u}e^{e}$
- (v) [e, u] = u = [u, e],
- (vi) $[u^{-1}, u] = e = [u^{(u^{(-1)})}, u^{[-1]}]$, for $u, v, w \in U$ and $h, h' \in H$.

Definition 1.5. If U is an ultra-group of *H* over *G* then $S \subset U$ with *e*, is called the subultragroup of *H* over *G*, if *S* is an ultra-group with operations α and β_h of *U*.

If X, Y are two subsets of the ultra-group U, then [X, Y] is the set of all [x, y], where $x \in X$ and $y \in Y$. If Y is a singleton $\{y\}$ then we use [X, y] instead of [X, y]. Moreover, if X is a subultra-group of ultra-group U and $y \in U$, then the subset [X, y] is called a right coset of X in U.

Lemma 1.6. For given subultra-group S of an ultra-group U over the subgroup H of the group G we have,

- (i) $[x^{(y^{(-1)})}, y^{[-1]}] \in S \Leftrightarrow x = [s, y]$ for some $s \in S$.
- (ii) The relation σ defined as: $x\sigma y \Leftrightarrow x = [s, y]$ for some $s \in S$ on U is an equivalence relation.

Theorem 1.7. If *U* is an ultra-group over the subgroup *H* of the group *G* and *T* is a subgroup of *G* which satisfies $T \subseteq H$, then T = HS for some subultra-group *S* of *U*. Moreover if S_i , (i = 1, 2, 3, ..., n) are subultra-groups of the ultra-group Usatisfying $S_i \subseteq S_{i+1}$ for then $K_i = HS_i$ for subgroups with $K_i \subseteq K_{i+1}$ of *G*.

Definition 1.8. For given ultra-group U over the subgroup H of the group G and a congruence σ over U, the set $U/\sigma = \{[u]_{\sigma} \mid u \in U\}$ with the operations α_{σ} and β_{σ_h} given as,

(i) $\alpha_{\sigma} ([u]_{\sigma}, [u']_{\sigma}) = [\alpha(u, u')]_{\sigma}$

(ii) $\beta_{\sigma_h}([u]_{\sigma}) = [\beta_h(u)]_{\sigma}$ is an ultra-group of K over the group G, where $H \le K \le G$. is called a quotient ultra-group.

Definition 1.9. The subultra-group *N* of an ultra-group *U* over the subgroup *H* of the group *G* is said to be normal if [u, [N, v]] = [N, [u, v]], for all $a, b \in U$.

Lemma 1.10. The following are holds for a normal subultra-group N of an ultra-group U over the subgroup H of the group G,

- (i) for all $u \in U$, [u, N] = [N, u],
- (ii) for all $u, v \in U$, [[N, u], [N, v]] = [N, [u, v]],
- (iii) If [N, v] = N, then $v \in N$,
- (iv) If S is a subultra-group of U, then [N, S] is a subultra-group of U. Also if S is a normal subultra-group of U then [N, S] is a normal subultra-group of U.

Theorem 1.11. If S is a subultra-group of an ultra-group U, then the equivalence relation σ is a congruence if and only if S is a normal subultra-group U.

2. MAIN RESULTS

2.1. ON SUBULTRA-GROUPS

Lemma 2.1.1. Let *U* be an ultra-group of the subgroup *H* over the group *G* and S_1 , S_2 be subultra-groups of *U*. Then $S_1 \cap S_2$ is also a subultra-group of *U*.

Proof: Let S_1 , S_2 be subultra-groups of U. Obviously $e \in S_1 \cap S_2$. If $s_1, s_2 \in S_1 \cap S_2$ then

$$\alpha(s_1, s_2) \in S_1$$
 and $\beta_h(s_1) \in S_1$

for every $h \in H$ since S_1 is a subultra-group of U. As well as

$$\alpha(s_1, s_2), \beta_h(s_2) \in S_2$$

because S_2 is a subultra-group of U. So, we have

$$\alpha(s_1, s_2), \beta_h(s_2) \in S_1 \cap S_2$$

Yildiz Aydin

and $S_1 \cap S_2$ is a subultra-group of U.

Corollary 2.1.2. The subultra-group mentioned in Theorem (1.7) is an ultra-group of *H* over the group *K*.

Proof: Clearly $e \in S$. Since = HS, S is a complementary set with operations α and β_h . Hence S is an ultra-group of H over the group K.

Corollary 2.1.3. Let *U* be an ultra-group of *H* over the group *G*, and S_i for i = 1, 2, 3, ..., n be subultra-groups of the ultra-group *U* such that $S_i \subseteq S_{i+1}$ for i = 1, 2, 3, ..., n - 1. Then we have subgroups $K_i = HS_i$ for i = 1, 2, 3, ..., n of group *G* such that $K_i \subseteq K_{i+1}$ for i = 1, 2, 3, ..., n - 1 and $\leq K_i \leq G$. If *H* is a maximal subgroup of *G* then one of the followings hold:

- (i) U has no subultra-group except itself.
- (ii) All the subultra-groups of U are ultra-groups of H over the group G
- (iii) Subultra-group S is a complementary set of H in G.

Proof: Seen by Theorem (1.7).

If we define the smallest of the complementary sets that contain e and are closed under the binary and unary operations α and β_h as minimal ultra-group then the (iii) would be equivalent (i) or (ii).

Definition 2.1.4. Let U be an ultra-group of the subgroup H over the group G. The set $Z(U) = \{u \in U \mid [u, u'] = [u', u], \forall u' \in U\}$ is called the center of U.

Corollary 2.1.5. Let U be an ultra-group of the subgroup H over the group G. Then

$$U \cap Z(G) \subseteq Z(U).$$

Proof: Let $u \in U \cap Z(G)$. For every $u' \in U$ we can write:

$$uu' = (u, u')[u, u']$$
 and $u'u = (u', u)[u', u]$

Since U is an ultra-group by uniqueness property for ultra-groups implies

$$uu' = (u, u')[u, u'] = (u', u)[u', u] = u'u$$

 \Rightarrow [u, u'] = [u', u]

Therefore $u \in Z(U)$ and $U \cap Z(G) \subseteq Z(U)$.

Definition 2.1.6. Let *U* be an ultra-group of the subgroup *H* over the group *G*, $e \in X \subseteq U$ and S_i be subultra-groups of *U*. Then the intersection of subultra-groups S_i is denoted by;

$$\langle X \rangle = \bigcap_{X \subseteq S_i} S_i$$

Corollary 2.1.7. $\langle X \rangle$ defined in Definition (2.1.6) is a subultra-group of U.

Proof: It is clear by Lemma (2.1.1).

Theorem 2.1.8. Let *U* be an ultra-group of the subgroup *H* over the group *G* and $\langle X \rangle$ be the subultra-group defined in Definition (2.1.6). Then

 $\langle X \rangle = \left\{ \left[\cdots \left[\left[[x_1, x_2], x_3 \right] \cdots \right], x_n \right] \middle| x_i \in X \right\}$ Here the element $\left[\cdots \left[\left[[x_1, x_2], x_3 \right] \cdots \right], x_n \right]$ is denoted by α^n in [3] where α is the binary operation of U.

Proof: Let

$$T = \left\{ \left[\cdots \left[\left[[x_1, x_2], x_3 \right] \cdots \right], x_n \right] \middle| x_i \in X \right\}$$

Firstly, since for every $x_i \in X$ we have $x_i \in S_i$ and S_i are subultra-groups then for arbitrary

$$k = \left[\cdots \left[\left[[x_1, x_2], x_3 \right] \cdots \right], x_n \right] \in S_i \Rightarrow k \in \bigcap_{X \subseteq S_i} S_i = \langle X \rangle$$

In this case $T \subseteq \langle X \rangle$. In contrary to every $x \in \langle X \rangle \Rightarrow x \in S_i$ and by Proposition (1.4) (v) $x = [e, x] \in T$ and therefore $\langle X \rangle \subseteq T$. Then we conclude

$$\langle X \rangle = T = \left\{ \left[\cdots \left[\left[[x_1, x_2], x_3 \right] \cdots \right], x_n \right] \middle| x_i \in X \right\}.$$

Definition 2.1.9. The subultra-group defined in Definition (2.1.6) is called the subultra-group generated by *X*.

Theorem 2.1.10. Let *U* be an ultra-group of the subgroup *H* over the group *G* and N_1 , N_2 are normal subultra-group of *U*. If $K = N_1 \cap N_2$ then for every $a, b \in U$,

$$\left[a, \left[K, b\right]\right] \subseteq \left[K, \left[a, b\right]\right].$$

Proof: Since N_1 , N_2 are normal subultra-group of, then for every $a, b \in U$,

$$[a, [N_1, b]] = [N_1, [a, b]] \text{ and } [a, [N_2, b]] = [N_2, [a, b]]$$

by Definition (1.9). Let $[a, [k, b]] \in [a, [K, b]]$ for some $k \in K = N_1 \cap N_2$. Then

 $[a, [k, b]] \in [a, [N_1, b]] = [N_1, [a, b]] \text{ and } [a, [k, b]] \in [a, [N_2, b]] = [N_2, [a, b]]$

since $k \in N_1$ and $k \in N_2$. Therefore,

$$\left[a, \left[k, b\right]\right] \in \left[N_1, \left[a, b\right]\right] \cap \left[N_2, \left[a, b\right]\right].$$

Hence

$$[a, [k, b]] = [n_1, [a, b]]$$
 and $[a, [k, b]] = [n_2, [a, b]]$

for some $n_1 \in N_1$ and $n_2 \in N_2$. In this case $[a, [k, b]] = [n_1, [a, b]] = [n_2, [a, b]]$

and right cancellation implies $n_1 = n_2 \in N_1 \cap N_2 = K$. So we have,

 $[a, [k, b]] \in [N_1 \cap N_2, [a, b]] = [K, [a, b]] \Rightarrow [a, [K, b]] \subseteq [K, [a, b]].$

Lemma 2.1.11. Let *U* be an ultra-group of the subgroup *H* over the group *G*. If $U \subset C_G(H)$ then *U* has the left cancellation. Here $C_G(H) = \{g \in G | hg = gh, for \forall h \in H\}$ is the centralizer of *H* in *G*.

Proof: Let [a, b] = [a, c] for $a, b, c \in U$. We can write

ab = (a, b)[a, b] and ac = (a, c)[a, c].

Therefore

 $(a,b)^{-1}ab = (a,c)^{-1}$ ac since [a,b] = [a,c].

Because $a \in U \subseteq C_G(H)$ and $(a, b)^{-1}$, $(a, c)^{-1} \in H$ we conclude

$$(a,b)^{-1}b = (a,c)^{-1}c$$

and then by transversal property b = c.

Theorem 2.1.12. Let *U* be an ultra-group of the subgroup *H* over the group *G* and $U \subset C_G(H)$. If N_1 , N_2 are normal subultra-groups of *U*, then $N_1 \cap N_2$ is a normal subultra-group of *U*.

Proof: Let = $N_1 \cap N_2$, $a, b \in U$ and $[k, [a, b]] \in [K, [a, b]]$ for some $k \in K$.

and

$$[k, [a, b]] \in [N_1, [a, b]] = [a, [N_1, b]]$$

 $[k, [a, b]] \in [N_2, [a, b]] = [a, [N_2, b]]$

since $k \in K = N_1 \cap N_2$, so

$$[k, [a, b]] \in [a, [N_1, b]] \cap [a, [N_2, b]].$$

We can write

 $[k, [a, b]] = [a, [n_1, b]] \text{ and } [k, [a, b]] = [a, [n_2, b]]$

for some $n_1 \in N_1$ and $n_2 \in N_2$. Hence

$$[k, [a, b]] = [a, [n_1, b]] = [a, [n_2, b]]$$

and since $U \subset C_G(H)$, $[n_1, b] = [n_2, b]$ by Lemma (2.1.11). By left cancellation

$$[n_1, b] = [n_2, b] \Rightarrow n_1 = n_2 \in N_1 \cap N_2 = K$$

and then

$$[k, [a, b]] \in [a, [N_1 \cap N_2, b]] = [a, [K, b]] \Rightarrow [K, [a, b]] \subseteq [a, [K, b]]$$

In contrary $[a, [K, b]] \subseteq [K, [a, b]]$ for every $a, b \in U$ by Theorem (2.1.10). Finally, we have [a, [K, b]] = [K, [a, b]] for every $a, b \in U$ and $K = N_1 \cap N_2$ is a normal subultragroup of U.

2.2. ON QUOTIENT ULTRA-GROUPS

If σ which is defined in Lemma (1.6) preserves the operations of U then σ would be a congruence. The operations of U are also preserved for a subultra-group S of U, in this case S can be considered as a congruence. In particular, a normal subultra-group is a congruence.

Theorem 2.2.1. Let *U* be an ultra-group, *S*, is a subultra-group of *U* and σ be a congruence on *U*. The set $S/\sigma = \{[s]_{\sigma} | s \in S\}$ is an ultra-group by the operations defined in Definition (1.3). If S/σ is an abelian ultra-group, then $[s_1, s_2]\sigma[s_2, s_1]$ for all $s_1, s_2 \in S$.

Proof: Let S/σ is an abelian ultra-group then for every $[s_1]_{\sigma}, [s_2]_{\sigma} \in S/\sigma$, where s_1, s_2 are arbitrary elements of *S*, we have:

$$\begin{split} & [[s_1]_{\sigma}, [s_2]_{\sigma}] = [[s_2]_{\sigma}, [s_1]_{\sigma}] \\ & \Leftrightarrow \alpha([s_1]_{\sigma}, [s_2]_{\sigma}) = \alpha([s_2]_{\sigma}, [s_1]_{\sigma}) \\ & \Leftrightarrow [\alpha(s_1, s_2)]_{\sigma} = [\alpha(s_2, s_1)]_{\sigma} \\ & \Leftrightarrow [[s_1, s_2]]_{\sigma} = [[s_2, s_1]]_{\sigma} \\ & \Leftrightarrow [s_1, s_2]\sigma[s_2, s_1]. \end{split}$$

Corollary 2.2.2. Let *U* be an ultra-group of the subgroup *H* over the group *G*, *N* be a normal subultra-group of *U*. If U/N is abelian then

 $[u_1, u_2] \in [u_2, [N, u_1]]$ and $[u_2, u_1] \in [u_1, [N, u_2]]$

for every u_1 , $u_2 \in U$.

Proof: Since U/N is an abelian then for every $u_1, u_2 \in U$ we have

$$[u_1, u_2]N[u_2, u_1] \Rightarrow [u_1, u_2] = [n, [u_2, u_1]]$$

for some $n \in N$, then

 $[u_1, u_2] \in [N, [u_2, u_1]].$

By Lemma (1.10),

$$[u_1, u_2] \in [[N, u_2], [N, u_1]]$$
 as well as $[u_2, u_1] \in [[N, u_1], [N, u_2]]$

and we have

$$[u_1, u_2] \in [u_2, [N, u_1]] \text{ and } [u_2, u_1] \in [u_1, [N, u_2]]$$

by the Definition (1.2).

Corollary 2.2.3. Let *U* be an ultra-group of the subgroup *H* over the group *G*. If $U/N = [e]_N$ for every normal subultra-group *N* of *U* then *U* is abelian ultra-group.

Proof: If $U/N = [e]_N$ we have $[u_1, u_2][e]_N[u_2, u_1]$ for every $u_1, u_2 \in U$. Then

$$[u_1, u_2][e]_N[u_2, u_1] \Rightarrow [u_1, u_2] = [e, [u_2, u_1]]$$

and by the Proposition (1.4)

$$[u_1, u_2] = [e, [u_2, u_1]] = [u_2, u_1].$$

Therefore *U* is abelian ultra-group.

3. CONCLUSIONS

In this article, it was obtained some algebraic structural elements which are derived from the definitions of ultra-groups and (normal) subultra-groups. Moreover, we studied the quotient ultra-groups and determined some results. Since it is a new field for researchers only a few papers have been made on this subject, such basic algebraic results will help to construct more on this new concept.

By the center definition and quotient ultra-group properties presented in this paper, researchers could focus on defining and adapting basic result of nilpotent or soluble subultragroups.

Acknowledgement: This research is supported by the Istanbul Gelişim University Scientific Research Projects Application and Research Center. Project number: DUP-011220-YA.

REFERENCES

- [1] Gholamreza, M., Tolue, B., Zolfaghari, P., U.P.B. Bull. Series A, 78, 173, 2016.
- [2] Tolue, B., Gholamreza, M., Zolfaghari, P., *Hacettepe Journal of Mathematics and Statistics*, **46**, 437, 2017
- [3] Tolue, B., Zolfaghari, P., Gholamreza, M., *Algebra and Discrete Mathematics*, **28**, 308, 2019
- [4] Yılmaz, E.S., Arslan, U.E., Kundakçıoğlu, Ş., Ukonion Journal of Mathematics, 4, 1, 2022
- [5] Kurosh, A. G., *The Theory of Groups*, American Mathematical Society, 1960.