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Abstract. This paper focuses on the study and investigation of quotient Riesz algebras, 

examining their properties and exploring various topologies associated with them. The aim is 

to gain a better understanding of the behavior and characteristics of these quotient Riesz 

algebras in relation to their topological structures. 
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1. INTRODUCTION 

 

 

Riesz space relies on various algebraic structures to capture the essential properties. 

One such structure of paramount importance is the Riesz algebra, which combines the 

concepts of a Riesz space and an associative real algebra. Riesz algebras play a pivotal role in 

functional analysis, offering a versatile framework for exploring and understanding a wide 

range of mathematical phenomena. The foundations of Riesz algebra were laid by Birkhoff 

and Pierce, who first introduced and investigated these algebraic structures [1]. Subsequently, 

numerous researchers have made notable contributions, expanding the scope of knowledge 

surrounding Riesz algebras. Noteworthy studies in this area include works [2-10], which have 

enriched the understanding of Riesz algebra and its associated concepts. 

In a recent publication by Aydın et al. [11], the concept of topological Riesz algebras 

with respect to different types of linear topologies was introduced. The authors provided 

insights into the locally solid topology on the quotient algebra, shedding light on its properties 

and implications. The present paper aims to extend the investigation by exploring various 

linear topologies and lattice-ordered algebraic structures on quotient Riesz algebras. 

To facilitate a comprehensive understanding of the subsequent discussions, Section 2 

of this paper presents a comprehensive review of the notations and terminologies used in 

Riesz algebras and topological Riesz spaces. These foundational concepts lay the groundwork 

for the subsequent analyses conducted in this study.  

In Section 3, we delve into the structure of quotient Riesz algebras, examining their 

inherent properties and establishing connections with the original Riesz algebras. This 

exploration involves the introduction of appropriate equivalence relations on Riesz algebras, 

leading to the formation of quotient algebras whose structure and properties are of great 

interest.  

Furthermore, Section 4 focuses on the topological aspects of quotient Riesz algebras. 

We investigate different types of linear topologies imposed on these quotient algebras, 
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studying their properties and discerning their impact on the algebraic structure. Particular 

attention is given to the locally solid topology on the quotient algebra, and notable results in 

this context are presented. 

 

 

2. NOTATION AND PRELIMINARIES  

 

 

A lattice refers to a partially ordered set (   ) with the existence of two important 

operations: the infimum               and the supremum               among to 

elements   and  . An ordered vector space is a real vector space (   ) that satisfies the 

following two properties: for any elements   and   in   and any   in  , if      , then 

             , and if          , then        . A Riesz space, also known as a vector 

lattice, is an ordered vector space that satisfies the lattice conditions. On a Riesz space E, an 

element   is considered positive if      , where   is the null element. The set of all positive 

elements in   is denoted by   . For any element   in a Riesz space, the module of  , denoted 

as | |, is defined as the supremum of   and its negation, i.e., | |       (  )   
In the context of Riesz spaces, subsets of   can possess certain characteristics. A 

subset   of a Riesz space   is called solid if, for every   in S and   in  , whenever | |  | |, 
it implies that   belongs to  . A subset   of a Riesz space   is called convex if, for any   and 

  in C and any 0 ≤ λ ≤ 1, the linear combination    (   )  also belongs to  . Moreover, 

given any elements   and   in   with      , the interval [   ]      |       is 

referred to as an order interval.  

A subset   of a Riesz space   is called full if, for every   and   in F with      , the 

order interval [   ] is completely contained within  . Moving on, a linear topology   on a 

vector space   refers to a topology on   such that both addition and scalar multiplication 

operations remain continuous with respect to the topology   on  . Furthermore, if the 

topology   has a basis consisting of solid sets, it is called a solid topology. In such cases, the 

pair (   ) is referred to as a locally solid Riesz space. It should be noted that not all 

topological Riesz spaces are locally solid. Similarly, one can define a locally convex topology 

and a locally full topology on a vector space by replacing the term 'solid' with 'convex' and 

'full,' respectively. 

Now, let's present the concept of a Riesz algebra or  -algebra. It denotes a Riesz space 

  equipped with a multiplication operation denoted by     that maps elements from       to 

 . This multiplication operation satisfies several properties:  

(i)   (   )         ,  

(ii) (   )           ,  

(iii)   (  )      ,  

(iv)   (   )  (   )   , 

(v)        for all       . 

 

A commutative  -algebra is one in which the multiplication operation is commutative, 

i.e.,           for all        . Furthermore, an  -algebra is termed a  -algebra if 
(   )    (   )  (   ) and   (   )  (   )  (   ) for all         and 

    . An  -algebra is an almost  -algebra if          implies          for all 

       . Finally, an  -algebra is an  -algebra if          implies(   )    (   )  
   , for all         and     . Remind that a Riesz space is Archimedean if the 

sequence 
 

 
      holds in   for every       It is worth mentioning that throughout this 
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paper, we assume that all  -algebras are Archimedean [12-14]. It can be concluded from a 

Theorem 140.10 [15] that every Archimedean  -algebra is also commutative. 

Recall that an  -ideal is a linear subspace of   that acts as a two-sided ring ideal. An 

order ideal refers to a solid linear subspace of a Riesz space. If an  -ideal also happens to be 

an order ideal, it is called an  -ideal. For references on Riesz groups and  -ideals, one can 

consult  [9,10]. We refer the reader for Riesz groups to [16-19]. 

Lastly, when considering an order ideal I in a Riesz space E, the equivalence class of 

an element   in   is denoted as [ ]      in    . This equivalence relation states that 

[  ]  [  ] if and only if        . Consequently, the mapping from   to     that assigns 

  to [ ] is a linear operator referred to as the canonical projection. An order relation denoted 

as   can be defined on    , where [ ]  [ ] if there exist    [ ] and    [ ] such that 

       . This ordered quotient space     inherits the structure of an ordered vector space 

and, additionally, becomes a Riesz space. 

 

 

3. QUOTIENT RIESZ ALGEBRAS 

 

 

In this section, we will examine the lattice-ordered structure of quotient  -algebras. 

Consider an  -algebra denoted as  , and let   be an  -ideal. It follows that     also forms an  -
algebra, as exemplified in [11,14]. In the context of the quotient    , we denote the 

multiplicative operation as    , where [ ]  [ ]  [   ], and     represents the 

multiplicative operation within the  -algebra  . To illustrate this concept, we begin with a 

fundamental example involving quotient Riesz algebras. 

 

Example 1. Suppose   is an  -algebra. Then, the set 𝑁( )          𝑁       
represents all nilpotent elements in  , as stated in Proposition 3.1. [5]. Consequently, 𝑁( ) 

qualifies as an  -ideal in  . Therefore, the quotient   𝑁( ) forms a quotient  -algebra. 

It is of interest to determine whether the quotient space     constitutes an  -algebra, 

given that   is not an  -algebra. To explore this question, we examine the example provided 

in Example    (   ) [8]. 

 

Example 2. Consider the set  , defined as the Cartesian product of the real numbers   , 

equipped with coordinatewise addition, scalar multiplication, and a partial ordering, thus 

forming an Archimedean Riesz space. We define the multiplication operation on E as follows: 

 

(     )  (     )  (               
 

 
     

 

 
    ). 

 

Hence, the pair (   ) constitutes an  -algebra, but it does not satisfy the conditions of 

an  -algebra. Next, let us consider the  -ideal  , defined as the set  (   )     , within the 

context of  . For any arbitrary element (     )    satisfying the condition |(     )|  
|(   )| for some      , we can establish that (     )    due to the fact that      . As a 

result,   serves as an order ideal within   and consequently qualifies as an  -ideal. 

Furthermore, it becomes evident that     also constitutes an  -algebra. 

To demonstrate that     is an f-algebra, let us take [(     )] [(     )]        such 

that [(     )]  [(     )]  [(   )]. According to Theorem 18.9 [14], we deduce the 

following: 

 

[(     )]  [(     )]  [(            )]  [(   )]  
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Therefore, it follows that (           )   , thereby implying that          

and        . Given that        , we can conclude that either      or     . 

Without loss of generality, let us assume that      and      . For any positive element 

[(   )] in    , we can observe the following: 

 

([(   )]  [(    )])  [(     )]  [(           )]  [(     )]  
 

Hence, we can deduce that ([(   )]  [(    )])  [(     )]  [(   )]. In a similar way, 
([(    )]  [(   )])  [(     )]  [(   )] is satisfied. Consequently, we can affirm that     

indeed an  -algebra. 

The fact that     becomes an  -algebra (or an almost  -algebra) when   is an  -

algebra (or an almost  -algebra) is widely recognized [5]. We present a proof specifically for 

the case of a  -algebra. 

 

Proposition 1. Let   a Riesz space. If   is a  -algebra and   is an  -ideal, then the quotient 

space     is a  -algebra. 

 

Proof: Let us assume that   is a  -algebra, which implies that the following properties hold 

for any elements   and   in  , and w in   : 

 

(   )    (   )  (   ) and   (   )  (   )  (   ) 

 

Consider [ ] and [ ] in    , and [ ] in (   ) : 

 

[ ]  ([ ]  [ ])  [ ]  [   ]  [  (   )] 
  [       ]  [   ]  [   ] 

 [ ]  [ ]  [ ]  [ ] 
Similarly, we can demonstrate that ([ ]  [ ])   [ ]   [ ]   [ ]  [ ]   [ ]  Thus, 

    satisfies all the properties required to be classified as a  -algebra. 

Recall that an  -algebra   is referred to as semiprime when the zero element is the 

only nilpotent element in E. It is known that an algebra   is semiprime if and only if      

in   implies    . 

 

Remark 2. If   is an almost  -algebra, it follows from Lemma 2.2 [20] that   𝑁( ) is an 

Archimedean semiprime  -algebra. 

It is important to note that, even if   is a semiprime  -algebra, E/I does not necessarily 

possess the semiprime property for any  -ideal   in  . This is due to the fact that the square of 

an element being in   does not guarantee that the element itself belongs to  . On the other 

hand, it is well known that     if and only if       in semiprime  -algebra; see 

Theorem 3.7. [10]. Thus, we observe the following fact. 

 

Lemma 3. Let   be a semiprime  -algebra,   is an  -ideal and       . Then [ ]  [ ] if and 

only if [ ]  [ ]  [ ] whenever     is a semiprime  -algebra. 

 

Proof: It can be easily seen that [ ]  [ ] implies [ ]  [ ]  [ ] because     is an  -algebra 

by considering Theorem 3.4. [10]. Now, consider the inequality  

 

(|[ ]|  |[ ]|)  |[ ]|  |[ ]|  |[   ]|  [ ]. 
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Thus, it follows from Theorem 3.7. [10] that (|[ ]|  |[ ]|)  [ ] which implies [ ]  [ ]  
[ ], i.e., [ ]  [ ].  

Recall that a sequence (  ) in a Riesz space is relatively uniformly convergent to   if 

there exist a sequence (  )    of real numbers and some     such that |    |      

holds for all  . It is known that every uniformly closed order ideal is an  -ideal in 

Archimedean  -algebras; see Theorem 10.5.(  ) [10]. 

 

Question 4. Is a uniformly closed order ideal an  -ideal in Archimedean  -algebras? 

Since we cannot provide a positive answer to the Question 4, we give the following 

theorem for  -algebras.  

 

Theorem 6. Let   be a uniformly closed order ideal in an  -algebra E. Then     is an 

Archimedean  -algebra. 

 

Proof: We assume that   is an  -algebra with the multiplication     and   is a uniformly 

closed order ideal in  . It follows from Theorem 18.9 [14] that     is a Riesz space. 

Moreover, following from Theorem 2.23. [13],     is also Archimedean.  

On the other hand, it is not hard to see that     is an associative algebra on the 

quotient Riesz space    . Moreover, the quotient Riesz space     is an  -algebra with 

multiplication      given by  

 

(   )   (   )            . 
 

Indeed, consider two positive elements [ ] [ ] in    . Then there exist       in    such that 

[  ]  [ ] and [  ]  [ ]; see [21]. Thus, by using  

 

[     ]  [  ]  [  ]  [ ]  [ ] and          , 

we obtain  

[ ]  [ ]   (  )  
 

where   is the canonical projection from   to    . Hence, we get the desired result. 

If an  -algebra E is Archimedean, then     may not be Archimedean in general (see, 

for example Example 60.1 [12]). The following fact shows the necessary and sufficient 

conditions for that. 
 

Corollary 7. If   is a uniformly closed order ideal in an  -algebra  , then     is an 

Archimedean f-algebra. 
 

Corollary 8. If   is a uniformly closed order ideal in an  -algebra   with unit  , then [ ] is 

an algebraic unit of    . 

 

Remark 9. It is well known that relatively uniform convergence implies order convergence in 

Archimedean Riesz spaces; see, for example, Lemma 2.2(   ) in [4]. It follows from [2] that 

    is a Dedekind complete Riesz algebra whenever   is a band in a Dedekind complete 

Riesz algebra  , because     is isomorphic to   , where    is the disjoint complement of  . 
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4. TOPOLOGY ON THE QUOTIENT ALGEBRAS 

 

 

It is shown in Theorem 2.24 [12] that if (   ) is a locally solid Riesz space and   is an 

order ideal of E, then (      )is also a locally solid Riesz space, where            is the 

canonical projection and    is the quotient topology. It follows from Theorem 1.33 [12] that   

sends solid sets in   to solid sets in    . Moreover, by considering Theorem 2.10.(  ) [12], it 

can be seen that the image of a base of  -neighborhoods of zero in   is also a base of   -

neighborhoods of zero in    .  

In this section, we consider the locally full and locally convex topologies on Riesz 

algebras to obtain similar results as above. 

We remind that if the formula  

 

 (   )   ( )   ( ) 
 

holds for all elements         and an operator          between two Riesz spaces, then   

is called a Riesz homomorphism. We begin the section with the following useful fact. 

 

Proposition 10. Let   and   be Riesz spaces, and          be an onto Riesz 

homomorphism. Then   maps full sets to full sets. 

 

Proof: Assume that   is a full subset of a Riesz space   and         such that      . Then 

it follows from the positivity of f that  ( )   ( ). Now, we want to show that 

[ ( )  ( )]   ( ) holds. To see this, take an arbitrary element   [ ( )  ( )]. So, there 

exists an element       such that  ( )    because   is onto. Then consider   (   )  
  such that      . Thus, we obtain   [   ] because   is a full set. Then we have 

 

 ( )  ( ( )   ( ))   ( )   ( ). 

 

Hence  ( )  [ ( )  ( )], and so,  ( ) is a full subset of  . It is well known that the 

canonical map   is a Riesz homomorphism of   onto    . Thus, we observe the following 

result. 
 

Corollary 11. Let   be an  -ideal in a Riesz space   and            be the canonical 

projection. Then   maps full subsets of   to full subsets of    . 

The Cartesian product of Riesz spaces under the componentwise order is a Riesz 

space. Moreover, it is not hard to see that the product of locally full Riesz spaces becomes a 

locally full Riesz space with the product topology. Thus, we observe the following result. 

 

Theorem 12. Let (   ) be a locally full Riesz space and   be an onto Riesz homomorphism 

from   to  . Then   is also a locally full Riesz space with the quotient topology. 

 

Proof: Assume that a collection 𝑁 consisting of full sets is a base at zero for  . One can show 

that   ( )   𝑁  is a base of quotient topology   . Also, it follows from Proposition 10 that 

 ( ) is a full set for every     𝑁. Therefore, the linear topology    is locally full. 

 

Corollary 13. Let (   ) be a locally full  -algebra and   be an  -ideal in  . Then if (      ) 

is a locally full topological l-algebra. 
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Theorem 14. Let (   ) be a topological Riesz space,   be an  -ideal of  , and            

be the canonical projection. If (   ) is locally convex, then (      ) is also a locally convex 

Riesz space. 
 

Proof: Assume   is a convex subset of  . Take arbitrary two elements      ( ). Then 

there exist         such that  ( )    and  ( )   . Fix a scalar   [   ]. Thus, we have 

  ( )  (   ) ( )   (   (   ) ). 
 

As   is convex,  (   (   ) )   ( ). Therefore, π maps convex sets in   to convex 

sets in    . On the other hand, the product of locally convex Riesz spaces becomes a locally 

convex Riesz space with the product topology. So, for a base 𝑁 at zero for the topology   

consisting of convex sets, we have   ( )   𝑁  is a base of quotient topology   . It follows 

that  ( ) is a convex set for every     𝑁. Therefore, the linear topology    is locally 

convex. 

 

Corollary 15. Let (   ) be a topological  -algebra and   be an  -ideal of  . If (   ) is locally 

convex, then (      ) is a locally convex topological l-algebra. 

 

 

5. CONCLUSIONS 

 

 

This paper has delved into the realm of quotient Riesz algebras, aiming to deepen our 

understanding of their properties and shed light on the various topologies associated with 

them. By exploring the behavior and characteristics of these quotient Riesz algebras within 

their topological structures, valuable insights have been gained into the intricate nature of 

these mathematical entities. The findings presented here contribute to the existing body of 

knowledge in the field, paving the way for further research and advancements in the study of 

quotient Riesz algebras and their related topologies. This paper serves as a stepping stone 

toward a more comprehensive understanding of these algebraic structures, with potential 

applications in areas such as functional analysis. 
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