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Abstract. In this paper, a collocation method based on the Haar wavelet is presented 

for the solution of both linear and nonlinear first-order neutral delay differential equations. 

The Haar functions are used to approximate the first-order derivative, and the approximate 

solution is obtained by using initial condition and integration. Some examples from the 

literature are used to test the suggested method efficiency and applicability. A comparison of 

exact and approximate solutions is given in figures for different numbers of collocation 

points. The root mean square and maximum absolute errors are calculated for different 

numbers of collocation points. The rate of convergence is calculated which is approximately 

equal to 2. The comparison of the present method with the other numerical methods is also 

given. The results demonstrate that the Haar wavelet collocation method is simple and 

effective for solving first-order linear and nonlinear neutral delay differential equations. 

Keywords: Delay differential equations; neutral delay differential equations; Haar 

wavelet; numerical approximation.  
 

 

1. INTRODUCTION  
 

 

One of the most important types of delay differential equations is neutral type 

differential equations with proportional delays. To approximate the solution of neutral delay 

differential equations (NDDEs), several numerical algorithms have been developed in the 

literature. Chen and Wang [1] used an accurate numerical method termed the variational 

iteration method, {for the numerical} solution of the neutral functional delay differential 

equation (NFDDE). They were able to obtain an approximate analytical solution by only 

following a few steps in the procedure. They compared the efficiency of the method to that of 

specific Runge-Kutta and one-leg methods. They put this strategy to the test in a variety of 

scenarios to see how well it worked. Based on the Bezier surface form, Ghumanjani and 

Farahi [2] developed an effective approach for computing the approximate solution of DDEs. 

They determined the optimal residual function control points that resolve the approximate 

DDE solution. They present numerical examples to investigate the correctness and 

effectiveness of the developed method. Ibis and Baryam [3] proposed a collocation approach 

{in terms of} Hermite polynomials to {approximate solution} of NFDDEs. They used 

collocation points and said polynomials to convert these equations and the provided condition 

into a linear system with unknown coefficients. They solved this system of linear equations to 

find these unknown coefficients. They checked various examples and compared the method to 

existing ways to demonstrate its effectiveness. 
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For the numerical solution of functional integro DDEs, Gumgum et al. [4] presented 

the numerical matrix-collocation approach. They used residual error analysis to promote the 

achieved answers and evaluated certain cases to ensure the validity of the method. Giyas 

Sakar [5] utilized the residual error function to enhance the homotopy analysis approach with 

the optimal determination of auxiliary parameters for the numerical solution of NFDEs. He 

discovered that this method is so simple and useful after performing error estimation and 

convergence analysis on it, as well as comparing it to other ways and testing it on several 

samples. Barton et al. [6] proposed two collocation approaches, direct discretization of NDDE 

and related DDE with a difference equation, for the periodic solutions of NDDEs. They 

applied several examples to check the order of convergence of these methods. Hussien [7] 

suggested a numerical scheme based on the Chebyshev series to approximate the numerical 

solution of NDDEs, which is applicable to neutral and advanced DDEs with single or multiple 

delay terms. Li and Zhang [8] reviewed discontinuous Galerkin methods $L_{\infty}$ error 

estimates, for the analytical solution of DDEs. They justified the theoretical settlements with 

numerical problems. Maghami and Ulsoy [9] presented a new analytical approach for 

obtaining the entire solution for DDE systems based on the concept of Lambert functions. 

Aziz and Amin [10] developed a numerical scheme in terms of Haar wavelet for the 

approximate solution of a specific family of DDEs. This method may be used to approximate 

linear and nonlinear DDEs, and systems comprising these DDEs. They also improved the 

method for solving delayed PDEs numerically. Lee and Kung [11] used the finite-dimensional 

shifted Legendre polynomial expansion to find the solution to time-invariant linear systems 

with time delay. They obtained an integration matrix and a delay matrix for the shifted 

Legendre vector, to minimize the linear time delay state equation's solution to the linear 

algebraic equation's solution. For approximating delay systems with inverse time, Tao Wang 

[12] proposed hybrid functions using Legendre polynomials and universal block pulse 

functions. He extended the delay and inverse time functions using hybrid functions and 

therefore computed the numerical solution. Staelen et al. [13 developed a finite difference 

approach, to approximate the solution of partial DDE. They checked the convergence, 

stability, and order of approximation of the developed method. Zhong and Zhang [14] used 

the linearized compact difference technique to approximate the numerical solution of 

nonlinear delay PDE. They calculated the approach stability and unconditional convergence. 

They also used numerical examples to defend the theoretical settlements. 

Yan and Zhang [15] used the block boundary value method to solve nonlinear 

functional differential and functional equations. Both authors [16] also developed a technique 

for solving a nonlinear hybrid system with distributed delay using a combination of block 

boundary value approaches and reducible quadrature rules. In [17] Zhang and Yan expand the 

class of block boundary value methods to approximate the solutions of nonlinear DDEs with 

algebraic constraints and piecewise continuous arguments. Yan et al. [18] found nonlinear 

DDEs with proportional delay that are exponentially transformed into nonlinear DDEs with 

constant delay. 

Xu and Lin [19] proposed a simpler reproducing kernel approach for numerically 

solving fractional DDEs with starting value problems. The proposed method was significant 

since it created a new reproducing kernel space that confirms the original circumstances. They 

employed the simple replicating kernel method (SRKM) to arrive at a valid estimate. Liu et al. 

[20] proposed an approach for the stability of analysis of the system of NDDEs, which 

includes a descriptor model transformation. They began by proving that the original and 

converted sets of NDDEs and DDAEs respectively are equivalent. Then the influence on 

stability analysis is numerically evaluated using the Chebyshev discretization of the 

characteristic equations and a delay-independent stability criterion. The discontinuous 

solution of NDDEs was discussed by Baker and Paul [21]. Since discontinuous derivatives 
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may arise in the solutions of implicit and explicit NDDEs, however, it has not been 

recognized enough that the solutions of NDDEs and as a result solutions of DDAEs do not 

have to be continuous. They demonstrated and discussed how discontinuities emerge, as well 

as gave out some computational strategies for dealing with these issues. For implicit nonlinear 

NDDEs, a stable numerical scheme was proposed by Vermiglio and Torelli [22]. To develop 

efficient numerical systems with stability qualities, they use implicit nonlinear NDDEs. Their 

hypothesis on the actual problem allows us to use the theory of stability concerning the 

forcing term to investigate boundedness and asymptotics of true numerical solutions. 

In this paper, we will discuss the Haar wavelet collocation method (HWCM) for the 

numerical solution of first-order linear and nonlinear NDDE. Consider the following linear 

NDDE 

 

Q
/
 (t)a1(t) =Q(t)a2(t)+Q

/
(t − ξ)a3(t)+Q(t − ξ)a4(t) + f (t), 0 ≤ t ≤ 1, (1) 

 

and nonlinear NDDE 

 

Q
/
 (t) − Q(t − ξ)Q

/
(t − ξ)c(t) = −Q(t)a(t) + g(Q(t − ξ))b(t), 0 ≤ t ≤ 1, (2) 

 

with initial condition Q(0) = Q0, and delay condition is 

  

          , for 1,0 , (3)Q t t t    

  

where aλ, for λ = 1, 2, 3, 4, a(t), b(t), c(t), and g(t) are given functions. 
 

 

2. THEORETICAL ANALYSIS 
  

 

We derive some results using a fixed-point technique for the problem (2), which 

addresses the existence and uniqueness of the solution. Problem (2) is now written as  

 

Q
/
 (t)−Q(t−ξ(t))Q

/
(t−ξ)c(t)=−Q(t)a(t)+g(Q(t− ξ(t)))b(t), 0 ≤ t ≤ 1, (4) 

 

where a, b, c and f : [0, ∞] → R are continuous functions, the function g satisfies a Lipschitz 

condition; i.e. ∃ L > 0 and l > 0 such that g satisfies  

 

|g(x) − g(y)| ≤ L|x − y|,  for x, y ∈ [−l, l], (5) 

 

An initial condition for the NDDE (3) is defined as Q(0) = Q0, and the delay 

condition as Q(t) = φ(t) for t ∈ (r0, 0), where φ ∈ C([r0, 0], R). Here C([r0, 0], R) denotes 

the set of all continuous functions φ : [r0, 0] → R with the supremum norm ǁ.ǁ. For φ ∈ 

C([r0, 0], R), we call a continuous function Q(t, φ) to be a solution of Eq. (2) with 

t h e  initial condition if Q : [r0, a) → R for some positive constant a > 0 satisfies 

 

 
  

   
         

 

  
  

/

2

2 /

2 1
, (6)

2 1

t c td d
Q t Q t a t g Q t t b t Q t t

dt dt tQ t c t


 



   
         
      

 

   0on 0, and on ,0 .a Q   Now we define  
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00 0, : || sup | ( ) | , ( ) ( ) for t ,0 , ( ) 0 asl

tS C t l t t t t                   

Then 
lS  is a complete metric space with metric       

0
sup, | | .tx y Q t y t    

Let z(t) =  (t) on [ 0 , 0], and let Q(t) = p(t)z(t) for t 0. If z satisfies 

 

   
 

 
 

    
 

  
    

 
    

    
 

   

2/

/ 2 /

,

c t p t t c t p t tp t
z t a t z t z t t z t t z t

p t p t p t

b t p t t
g z t t

p t

 
 




  
        

 


 

 (7) 

 

then it can be verified that Q satisfies Eq. (6). 

 

Definition 2.1. [23] The zero solution of Eq. (2) is said to be stable if, for every ϵ > 0, 

there exists a δ = δ(ϵ) > 0 such that φ : [ξ0, 0] → (−δ, δ) implies that Q(t) < ϵ for t ≥ 0. 

 

Definition 2.2. [23] The zero solution of Eq. (2) is said to be asymptotically stable if it is 

stable and there exists a δ > 0 such that for any initial function φ : [ξ0, 0] → (−δ, δ), the 

solution Q(t) with Q(t) = φ(t) on [ξ0, 0] tends to zero as t → ∞. 

 

Theorem 2.3. [23] Consider the NDDE (2) and the following conditions are satisfied: 

(i)  t  is twice differentiable with  / 1t  and  t t as t   , 

(ii)   a bounded function  0:[ , ) 0,p      with p(t) = 1 for 0[ ,0)t   such that p
/
(t) 

exists on 0[ ,0)  and there exists a constant  0,1  and an arbitrary continuous function

0:[ ,1)v R   such that 

           
  

0

( )
2

1

0

( )

0

| 1 | | 2
| ( ) |

( )
( ) | x

t t

t v u du t v u du b s p s s
Ll p t t c t p t t k s b s e ds e ds

p s



 
  

 
   

 
 

 
 

( )/ /

( ) 0 ( )

( ) ( )
| ( ) ( ) | | ( ) | | ( ) ( ) |

( ) ( )

t

x

t t sv u du

t t s s

p s p u
v s a s ds e v s v u a u duds

p s p u
 



 


        

   
  
  

 
/( )

/

0

| ( ( ( )) |1 |

,

t

s

t v u du p s s
e v s s a s s s ds

p s s


  





 
    





  

where 

 
          

  

/ / //

2
/

1
1 ,

c s v s c s s c s
k s s






   
     (8) 

 

 
    

 
 

       
 

2 /

1, ,
c s p s s c s p s s p s s

c s b s
p s p s

    
   (9) 
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and the constants l, L are defined as in Eq. (5), 

(iii) and such that and such that 
0

( ) ,

t

t
Lim v s ds


   then the zero solution of Eq. (2) 

is asymptotically stable if and only if 
0

( ) ,

t

v s ds as t  . 

Proof: We just need to show that the zero solution of Eq. (7) is asymptotically 

stable because p(t) is a positive bounded function. If 0

( ) ,

t

v s ds

e


is multiplied on both and 

then integrate from 0 to t, we get 

 

   
 

 
0

/( ) ( )

0

0 ( ) ( ) ( )

t t

s

tv s ds v u dup s
z t e v s a s e z s ds

p s


   
     

 
  

       /( )
2

0

( ( ))
( )

t

s

t v u du c s p s s p s s
e z s s ds

p s

 


  
   

    
  

2( )
/

0

( ( ))
( )

t

s

t v u du c s p s s
e z s s z s s ds

p s


 

 
    

    
 

( )

0

( ( )) ,
( )

t

s

t v u du b s p s s
e g z s s ds

p s

 


 
   

(10) 

Let 
    

  
2( )

/

0

( ( ))
( )

t

s

t v u du c s p s s
e z s s z s s ds

p s


 

 
   

  

    
     

 

2( )
/ /

/

0

1
( ( )) 1

( ) 1

t

s

t v u du c s p s s
e z s s z s s ds s

p s s


  



 
    

  (11) 

 

using integration by parts the right-hand side of (10), we have 

 

    
  

2( )
/

0

( ( ))
( )

t

s

t v u du c s p s s
e z s s z s s ds

p s


 

 
   

     
  

 

0

2 2 ( )
2 2

/ /

( )
2

0

0( ) (0)
( ( )) 0

2 ( ) 1 ( ) 2 (0) 1 (0)

1
( ) ( ) , (12)

2

t

t

ss

v s ds

t v u du

p t s pc t c
z t t e

p t t p

e k s z s s ds

 
  

 







 
     

 


 

 

 

where k (s) is given in Eq. (7). Using integration by parts, we have 

 

    
     

 

2( )
/ /

/

0

1
( ( )) 1

( ) 1

t

s

t v u du c s p s s
e z s s z s s ds s

p s s


  



 
    


 

(13) 



 Theoratical Analysis and Numerical Solution of … Rohul Amin et al. 

 

www.josa.ro Mathematics Section 

138 

 

   

 

 

/ /( ) ( )

0 0

( ) ( ) ( ) ( ) ( ) ( )

t t

s s

t t sv u du v u du

s s

p s p u
v s a s e z s ds e d v u a u z u du

p s p u


 



   
         

   
    

 

 

 

 

/( )

0

( ) ( ) ( )

t

s

t sv u du

s s

p u
e d v u a u z u du

p u






 
   
 
 

   

 

 
 

/( )
/

0

( )
( ) ( ) ( ( )) 1 ( ) ( ( )) ,

( )

t

s

t v u du p s s
e v s s a s s s z s s ds

p s s


   



  
         
  

 

 

/

( )

( ) ( ) ( )

t

t t

p s
v s a s z s ds

p s


 
    

 
  

 

  

/( )

0

( ) ( ) ( ) ( )

t

s

t sv u du

s s

p u
e v s v u a u z u duds

p u






  
     

 
   

 

 
 

/( )
/

0

( )
( ( )) ( ( )) 1 ( ) ( ( )) ,

( )

t

s

t v u du p s s
e v s s a s s s z s s ds

p s s


   



  
         
  

(14) 

Combining Eqs. (9), (11), and (13), we obtain the solution of Eq. (6). 
 

 

3. NUMERICAL METHOD  
 

 

In this section, we consider a linear NDDE defined in Eq. (1) and we will develop 

HWCM for its numerical solution. Initially, suppose that Q
/
(t) is a square integrable 

function and   we can write it as a sum of following Haar functions 

 

   /

1

,
N

Q t a h t 



 

(15) 

by process of integration, we get 

 

     ,1

1

0 ,
N

Q t Q a p t 


 
 

(16) 

using initial condition, we have 

 

   0 ,1

1

.
N

Q t Q a p t 


 
 

(17) 

  

Case 1. Applying the Haar approximation, the Eq. (1) become 
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1 0 ,1 2

1 1

/

3 4

3 0 ,1 4

1 1

( ) ( )

( ) ( ) ( ), for 0,

( ) ( ) ( ), for 0,

N N

N N

a h t a t Q a p t a t

t a t t a t f t t

a h t a t Q a p t a t f t t

   
 

   
 

   

 

 

 

 
  
 

     


   
       

 

 

 
 

(18) 

After simplification, we have  

 

   

   

   

1 ,1 2

1 1

/

0 2 3 4

0 2 3 0 ,1 4

1 1

( ) ( )

( ) ( ) ( ) ( ), for 0,

( ) ( ) ( ) ( ), for 0,

N N

N N

a h t a t a p t a t

Q a t t a t t a t f t t

Q a t a h t a t Q a p t a t f t t

   
 

   
 

   

 

 

 



      


   
        

 

 

 
 

(19) 

 

Now putting collocation points (CPs) tj, j = 1, 2, 3, . . . , N , the above equation 

becomes 

 

   

   

   

1 ,1 2

1 1

/

0 2 3 4

0 2 3 0 ,1 4

1 1

( ) ( )

( ) ( ) ( ) ( ), for 0,

( ) ( ) ( ) ( ), for 0,

N N

j j j j

j j j j j j j

N N

j j j j j j j

a h t a t a p t a t

Q a t t a t t a t f t t

Q a t a h t a t Q a p t a t f t t

   
 

   

 

   

 

 

 



      


   
        

 

 

 
 

(20) 

 

In matrix notation this system can be written as, 

 

KA = B, (21) 

where   

, , ,11
B b A a K k jNN N N          
   

 

and  

   

       
1 ,1 2

1 ,1 2 3 ,1 4

( ) ( ), for 0

( ) ( ) ( ) ( ), for 0.

j j j j j

j

j j j j j j j j j

h t a t p t a t t
k

h t a t p t a t h t a t p t a t t

 



    

  
 

     

 

   

 

/

0 2 3 4

0 2 0 4

( ) ( ) ( ) ( ), for 0,

( ) ( ) , for 0.

j j j j j j j

j

j j j j

Q a t t a t t a t f t t
b

Q a t Q a t f t t

         
 

  

 

 

Hence aλ, λ = 1, 2, 3, . . . , N can be calculated as A = K
−1

B. Finally, by substituting 

aλ, λ = 1, 2, 3, . . . N in Eq.(17) we obtained approximate solution at the CPs. 

 

Case 2. In this section, we consider a nonlinear NDDE defined in Eq. (2) and 

develop HWCM for its solution. Suppose that Q
/
(t) is a square integrable function and 

can write as a sum   of following Haar functions 

 

   /

1

,
N

Q t a h t 



 

(24) 

by process of integration, we get 
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     ,1

1

0 ,
N

Q t Q a p t 


 
 

(25) 

using initial condition, we have 

 

   0 ,1

1

.
N

Q t Q a p t 


 
 

(26) 

 

Applying the Haar approximation, the Eq. (3) become 

 

            / /

0 ,1

1 1

( ) ( ) , for t<0,
N N

a h t t t c t Q a p t a t g t b t   
 

     
 

 
       

 
 

 
(27) 

 

             0 ,1 0 ,1 0 ,1

1 1 1 1 1

( ) , for t>0,
N N N N N

a h t Q a p t a h t c t Q a p t a t g Q a p t b t         

    

  
    

     
              
     

    
 

(28) 

 

Let 

 

            

             

/ /

0 ,1

1 1

0 ,1 0 ,1 0 ,1

1 1 1 1 1

( ) ( ) 0, for t<0,

( ) 0, for t<0,

N N

N N N N N

a h t t t c t Q a p t a t g t b t

F

a h t Q a p t a h t c t Q a p t a t g Q a p t b t

   

 

         

    

     

  

 

    

  
         

  
 

                             

 

    
 

(29) 

 
Discretizing this equation at CPs tj , j = 1, 2, . . , N, we have 

 

            

             

/ /

0 ,1

1 1

0 ,1 0 ,1 0 ,1

1 1 1 1 1

( ) ( ) 0, for <0,

( ) 0, for

N N

j j j j j j j j

N N N N N

j j j j j j j j

a h t t t c t Q a p t a t g t b t t

F

a h t Q a p t a h t c t Q a p t a t g Q a p t b t

   

 

         

    

     

  

 

    

 
        

 


      
               
      

 

     <0,jt









 
(30) 

 

To solve this system by Broyden’s method we obtain the Jacobian matrix J which 

is the partial differentiation of the above equation with respect to unknown aλ, λ = 1, 2, 3, 

. . . , N as follows 

 

   

                    

,1

,1 ,1 ,1 ,1

1 1

( ) 0, for <0,

( ) 0, for <0,

j j j j

N N

j j j j j j j j j j j j

h t p t a t t

J
h t p t a h t c t a p t h t c t p t a t g p t b t t

 

        

 

    
 

  


     
             
   

   
(31) 

 

Finally, by substituting aλ, λ = 1, 2, 3, . . ., N in Eq. (26) we obtained 

approximate solution at the CPs. 
 

 

4. NUMERICAL EXPERIMENTS 
 

 

In this section, we use HWCM to solve some problems. To demonstrate the 

method efficiency, we compare approximate solutions with exact solutions and the results 

are shown in tables and figures for each example. If Qex denote the exact solution and Qap 

denote the approximate solution at N CPs. Then the maximum absolute error (MAE) is 

defined as 
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MAE = max | Qex − Qap |, 
 

and root mean square error (RMSE) is defined by 
 

    
2

1 .

N

ex j ap jQ t Q t

RMSE
N








 

 

Also we calculate experimental rate of convergence Rc(N ) which is given as 
 

 

 

 

2
log

.
log 2

c

N
MAE

MAE N

R N

  
  
  

 
    

 

Problem 1. Consider the following first-order NDDE with proportional delay 
 

Q
/
(t) = −Q(t) + 0.1Q(0.8t) + 0.5Q

/
(0.8t) +(0.32t − 0.5)e

−0.8t
 + e

−t
, 0 ≤ t ≤ 1, 

 

with initial condition Q(0) = 0 and which has the exact solution Q(t) = e
−t

 [24-26]. 
 

Table 1. MAE, RMSE, Rc(N) and CPU time for Problem 1 

J N=2
J+1 

MAE Rc(N) RMSE Rc(N) 

1 4 1.225690 ×10
-02 

--- 7.357118 ×10
-03

 --- 

2 8 3.453724 ×10
-03

 1.8274 1.853621 ×10
-03

 1.9888 

3 16 9.178345 ×10
-04

 1.9118 4.643077 ×10
-04

 1.9972 

4 32 2.366578 ×10
-04

 1.9554 1.161334 ×10
-04

 1.9993 

5 64 6.009072 ×10
-05

 1.9776 2.903688 ×10
-05

 1.9999 

6 128 1.514016 ×10
-05

 1.9888 7.259441 ×10
-06

 1.9999 

7 256 3.799832 ×10
-06

 1.9944 1.814874 ×10
-06

 1.9999 

8 1012 9.518139 ×10
-07

 1.9972 4.537194 ×10
-07

 1.9999 

9 2024 2.381859 ×10
-07

 1.9986 1.134299 ×10
-07

 1.9999 

  

Table 2. Comparisons of MAE errors of present method with other methods for Problem 1 
Present method Runge Kutta 

method [24] 

One-leg θ method 

[25] 

variational iteration 

method [26] 

1.13 ×10
−07

 8.68 ×10
−04

 4.65 ×10
−03

 1.30 ×10
−03

 

 

 
 Figure 1. Comparison of exact and approximate solution for 16 CPs of Problem 1 
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Problem 2. Consider the following first order nonlinear NDDE 

 

 Q
/
(t) = Q

2
(t) + cos(0.25t)Q(0.2t) − sin(0.2t)Q

/
(0.25t) + cos(t) − sin

2
(t), 0 ≤ t ≤ 1, 

 

with initial condition Q(0) = 0 and which has the exact solution Q(t) = sin(t). 

 
Table 3. MAE, RMSE, Rc(N) and CPU time for Problem 2 

J N=2
J+1 

MAE Rc(N) RMSE Rc(N) CPU 

time(seconds) 

1 4 8.499963×10
-03

 --- 4.187245 ×10
-03

 --- 0.013119 

2 8 1.934085 ×10
-03

 1.8471 1.043434 ×10
-03

 2.0047 0.081571 

3 16 5.139050 ×10
-04

 1.9121 2.617939 ×10
-04

 1.9948 0.574093 

4 32 1.311445 ×10
-04

 1.9703 6.560273 ×10
-05

 1.9966 3.402875 

5 64 3.036939 ×10
-05

 2.1105 1.605393 ×10
-05

 2.0308 9.930585 

6 128 5.063225 ×10
-06

 2.5845 3.609328 ×10
-06

 2.1531 13.326847 

 

 
Figure 2. Comparison of exact and approximate solution for 16 CPs of Problem 2  

 

Problem 3. Consider the following first order nonlinear NDDE 

 

                    sin/ /cos sin sin 2 cos sin , 0 1,
tt t t tQ t Q t t Q t t e Q t e t e t e e t          

 

with initial condition Q(0) = 0 and which has the exact solution Q(t) = e
t
. 

 
Table 4. MAE, RMSE, Rc(N) and CPU time for Problem 3 

J N=2
J+1 

MAE Rc(N) RMSE Rc(N) CPU time(seconds) 

1 4 8.499963 ×10
-03

 --- 7.818018 ×10
-03

 --- 0.015475 

2 8 2.159772 ×10
-03

 1.9766 1.935762 ×10
-03

 2.0139 0.127520 

3 16 5.461964 ×10
-04

 1.9834 4.809678 ×10
-04

 2.0088 1.484438 

4 32 1.305248 ×10
-04

 2.0651 1.141202 ×10
-04

 2.0754 10.481233 

5 64 3.825854 ×10
-05

 1.7705 3.226524 ×10
-05

 1.8225 15.12185 

6 128 1.640562 ×10
-05

 1.2216 9.838679 ×10
-06

 1.7134 20.08573 
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Figure 3. Comparison of exact and approximate solution for 64 CPs of Problem 3 

 

 

5. RESULTS AND DISCUSSION 
 

 

The HWCM is applied to some examples available in the literature. The first order 

derivative is approximated by the Haar function and the process of integration is used for 

expression of the approximate solution. By putting the CPs in given NDDEs, we 

obtain a system of algebraic equations. The Gauss elimination method is used for the 

solution of this linear system. By solving this system we obtain the unknown Haar 

coefficients ai, i = 1, 2, . . . N . 

Two errors MAE and RMSE are calculated for different numbers of CPs. 

Tables show that by increasing the number of CPs both the errors are decreased. The rate 

of convergence is also calculated which is approximately equal to 2 which confirms the 

theoretical results proved by Majak et al [27]. Table 2 shows the comparison of the 

present method with the Runge-Kutta method [24], one-leg θ-method [25], and 

variational iteration method [26] of absolute errors. The comparison of exact and 

approximate solution for different number of CPs is also shown in figure. The figures 

show that the approximate solution is close to the exact solution. 
 

 

6. CONCLUSIONS 
 

 

In this work, we consider first order linear and nonlinear NDDEs studied HWCM 

for solution of these equations. The NDDEs are converted to the system of algebraic 

equations. This system is solved by Gauss elimination method. The MAE and RMSE are 

calculated for each example. A comparison of our technique with Runge-Kutta method 

[24], one-leg θ-method [25], and variational iteration method [26] is also given. The 

comparison of exact and approximate solutions is given in figure. All computational 

calculations are done in Matlab software. 
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