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Abstract. In this article, we employ the Black Scholes model which plays a vital role in 

economic operation and financial market management. The Paul-Painlevé approach is used 

for the first time to achieve the exact wave solution to this equation. Furthermore, the 

numerical solution to this equation has been constructed by using the variational iteration 

method. 
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1. INTRODUCTION  

 

 

The main idea of this paper concentrates on using the Paul-Painlevé approach [1, 2] 

for the first time to achieve the exact wave solution to the Black-Scholes equation which has 

not been achieved before. It also aims to achieve the corresponding numerical solutions 

according to the variational iteration method (VIM).  

The Black Scholes model requires five input variables: the strike price of an option, 

the time to expiration, the current stock price, the risk-free rate, and the volatility. The Black-

Scholes model is a pricing model that is used to determine the fair price or theoretical value 

for a call or a put option based on six variables such as volatility, type of option, underlying 

stock price, time, strike price, and risk-free rate. The quantum of speculation increases in the 

case of stock market derivatives, and hence proper pricing of options eliminates the 

opportunity of any arbitrage. There are two important models for option pricing – the 

binomial model and the Black-Scholes model. The model is used to determine the price of a 

European call option, which simply means that the option can only be exercised on the 

expiration date. 

The Black-Scholes equation is a nonlinear partial differential equation that governs the 

price evolution of a European call or European put. Based on works developed previously by 

market researchers and practitioners, such as Louis Bachelier, Sheen Kassouf, and Ed Thorp 

among others, Fischer Black and Myron Scholes [3, 4] demonstrated in 1968 that the dynamic 

revision of a portfolio removes the expected return of the security, thus inventing the risk-

neutral argument. This mathematical model for the dynamics of a financial market that 

contains derivative investment instruments gives a theoretical estimation of the price of 

European-style options and shows that the option has a unique price regardless of the risk of 

the security and its expected return (instead of replacing the expected security's return with 

the risk-neutral rate). The formula leads to a boom in options trading and provides 
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mathematical legitimacy to the activities of the Chicago board options exchange and other 

options markets around the world [5]. It is widely used, although it contains some 

adjustments, by options market participants [6]. For the European call or put on an underlying 

stock paying no dividends, the equation is 

 

2 21

2
t SS Su S u rSu ru    , (1) 

 

where S(t) is the price of the underlying asset at time t, u(S, t) is the price of the option as a 

function of the underlying asset S, at time t; C(S, t) is the price of a European call option and 

P(S, t) is the price of a European put option, k is the strike price of the option, also it is known 

as the exercise price, r is the annualized risk-free interest rate. Large r implies a big market-

impact of hedging, if r→0 or no hedging demand continuously compounded and  is the 

standard deviation of the stock's returns; this is the square root of the quadratic variation of 

the stock's log price process. Furthermore, the left-hand side consists of a "time decay" term, 

the change in derivative value with respect to time is called theta; a term that involves the 

second spatial derivative gamma, and the convexity of the derivative value concerning the 

underlying value. The right-hand side is the riskless return from a long position in the 

derivative and a short position which consists of 
Su shares of the underlying , u  the price of 

the option as a function of stock price S  also t and r  the time and risk-free interest rate 

respectively and   the volatility of the stock. In general, this inequality does not have a 

closed-form solution, although an American call with no dividends is equal to a European 

call, and the Roll–Geske–Whaley method provides a solution to an American call with one 

dividend [7, 8]. Bjerksund and Stensland [9] provide an approximation based on an exercise 

strategy corresponding to a trigger price with evidence that indicates that the approximation 

may be more accurate in pricing long-dated options than Barone-Adesi and Whaley [10]. The 

formula is readily modified for the valuation of a put option by using put–call parity. By 

solving the Black–Scholes differential equation via using the boundary condition and the 

Heaviside function, we finished pricing of options that pay one unit above some predefined 

strike price and nothing below [11]. Some manners have been demonstrated to solve this 

model numerically through different authors [12-14]. The key financial insight behind the 

equation is that, under the model assumption of a frictionless market, one can perfectly hedge 

the option by buying and selling the underlying asset in just the right way and consequently 

eliminates the risk. Paul Wilmott [14] illustrated this hedge, in turn, that there is only one 

right price for the option, as returned by the Black–Scholes formula. Pooe, et-al [15] 

transformed the Black-Scholes equation to one-dimensional linear heat equation via two sets 

of transformation, an optimal system of one-dimensional sub algebras for the one-dimensional 

heat equation which is exploited to obtain two classes of optimal systems of one-dimensional 

sub algebras for the well-known Black-Scholes equation of the mathematics of finance 

invariant solutions and conservation laws of the Black-Scholes equation. Emery, et-al. [16] 

investigated Black–Scholes call and put option thetas and derived upper and lower bounds for 

thetas as a function of underlying asset value. He showed that the maximum option theta does 

not occur at that point. Instead, it occurs when the asset value is somewhat above the exercise 

price. He also showed that option theta is not monotonic in any of the parameters in the 

Black–Scholes option-pricing model. Gulen et al. [17] captured the discrete behavior of linear 

and nonlinear Black–Scholes European option pricing models by using a sixth-order finite 

difference (FD6) scheme in space and a third–order strong stability preserving Runge–Kutta 

(SSPRK3) over time. Jørgen Veisdal [18] used the Black-Scholes formula and explained 

introduction to the most famous equation in finance. The key idea behind the model is to 

https://en.wikipedia.org/wiki/Chicago_Board_Options_Exchange
https://en.wikipedia.org/wiki/Black%E2%80%93Scholes_model#cite_note-mackenzie-2
https://en.wikipedia.org/wiki/Black%E2%80%93Scholes_model#cite_note-bodie-kane-marcus-3
https://en.wikipedia.org/wiki/Strike_price
https://en.wikipedia.org/wiki/Risk-free_interest_rate
https://en.wikipedia.org/wiki/Continuous_compounding
https://en.wikipedia.org/wiki/Quadratic_variation
https://en.wikipedia.org/wiki/Black%E2%80%93Scholes_model#cite_note-26
https://en.wikipedia.org/wiki/Black%E2%80%93Scholes_model#cite_note-27
https://en.wikipedia.org/wiki/Put%E2%80%93call_parity
https://en.wikipedia.org/wiki/Heaviside_function
https://en.wikipedia.org/wiki/Black%E2%80%93Scholes_model#cite_note-29
https://en.wikipedia.org/wiki/Paul_Wilmott
https://www.mdpi.com/search?authors=C.%20A.%20Pooe&orcid=
https://sciprofiles.com/profile/785576
https://medium.com/@JorgenVeisdal?source=post_page-----9e05b7865d8a----------------------


The Paul-Painlevé Approach of the Black Scholes …  Emad H.M. Zahran and Ahmet Bekir 

ISSN: 1844 – 9581  Mathematics Section 

113 

hedge the options in an investment portfolio by buying and selling the underlying asset (such 

as a stock) in just the right way and as a consequence, the risk will be eliminated. Also, 

Paliathanasis et al. [19] performed a classification of the Lie point symmetries for the Black-

Scholes-Merton model for European options with stochastic volatility, σ, in which the last is 

defined by a stochastic differential equation with an Orstein-Uhlenbeck term. Martin Haugh 

[20] studied the Black-Scholes Model through notes and used its lemma and a replicating 

argument to derive the famous Black-Scholes formula for European options. Moreover, he 

also discussed the weaknesses of the Black-Scholes model and geometric Brownian motion, 

derived, studied the Black-Scholes Greeks and discussed how they are used in practice to 

hedge option portfolios. Jayaraman, et-al. [21] who transformed this equation into a diffusion 

equation and solved it by using mean and covariance propagation techniques which were 

developed previously in the context of solving Fokker–Planck equations on Lie groups. 

 

 

2. TECHNIQUE DESCRIPTION OF THE PAUL-PAINLEVÉ APPROACH 

 

 

To propose the general forlasim of the nonlinear evolution equation, let us introduce R 

as a function of ( , )x t and its partial derivatives as,  

 

( , , , , ,......) 0x t xx ttR       , (1) 

 

that involves the highest order derivatives and nonlinear terms. With the aid of the 

transformation 0( , ) ( ),x t x C t       equation (2) can be reduced to the following ODE:  

 

( , , ,......) 0S       , (3) 

 

where, S  is a function in ( )  and its total derivatives, while '
d

d
 . According to Paul-

Painlevé [1-2] the exact solution to the nonlinear ordinary differential equation can be written 

in the following form,  

 

0( ) ( ) , ( )NA W X e X R     , (4) 

 

or 

 
2 2

0 1 2( ) ( ) ( ) , ( )N NA AW X e A W X e X R        , (4) 

 

where
1( ) ,

Ne
X R C

N






   and ( )W X in Eq. (4) satisfies Riccati-equation in the form 

2 0,XW AW  one can solve this equation to get,  

 

0

1
( ) .W X

AX X



 (6) 

 

Consequently, 
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( )N N

XN e W X R e W 

     , (7) 

 
2 2( ) 2N N N N

X X XXN e W X NR e W R e W R e W   

           , (8) 

 
3 2

2 3

( ) 3 3

3 3

N N N

X X

N N N

XX XX X XXX

N W X e N R W e NR W e

NR W e R R W R W e R W e

  

  

  

    

   

  

   

  
 (9) 

 

 

3. APPLICATION 

 

 

In this section, we will apply the Paul-Painlevé as a new technique to achieve the 

exact solution for the Black Scholes equation "in terms of some variables", when these 

variables take specific values the traveling wave solutions can easily be obtained. Now, we 

will apply the constructed approach to the equation (1) mentioned above, 

 

2 21
0

2
t SS Su S u rSu ru    . (10) 

 

by using the transformation ( , ) ( ),u S t kS Ct      we get,  

 
2( ) [2 ( ) )] 0.Ct r Ct C r             (11) 

 

The notation that is used throughout this equation will be defined as follows:  

According to the proposed method, the suggested solution is; 

 
2

0 1 2

1

( ) ( ) ( ),

( )

N N

N

A A e W X A e W X

e
X R C

N

 



 



 



  

  
 (12) 

 

Thus, we can easily obtain,  

 
2 2 3 3( 2 ) 2 ,N N NNe W A N e W Ae W  


        (13) 

 
2 2 2 2

2 3 3 2 4 4

(3 4 )

(2 10 ) 6

N N

N N

N e W AN N e W

A NA e W A e W

 



 

  

 

   

 
 (14) 

 

Substituting for , ,    at Eq. (11) and equating the coefficients of different powers 

of ( ) NW e  
to zero, we system of equations which solved analytically to extract this result, 

 

2 29 9 4

10 10 10
,

2

A A A

N

 
  

 
  

(15) 
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The obtained result could have been reduced to be:  

 

 9 41 .
20

A
N    (16) 

 

This split into these two results, 

 

 

 

9 41 ,
20

9 41 .
20

A
N

A
N

 

 

 (17) 

 

Each one of these two results will generate other two sub-results according to the 

value of A which is either positive or negative. 

 

Case 1. When A is positive say A=20, we have two solutions 

 

9 41 15.4N    , (18) 

 

9 41 2.6N    . (19) 

 

The solutions according to the suggested method is,  
 

0

( )

(1 )

N

N

e

e
A X

N




 






 

, 
(20) 

 
15.4

15.4

15.4
( )

323.4 20

e

e




 







, (21) 

 
2.6

2.6

2.6
( )

52.6 20

e

e




 







. (22) 

 

  Figure 1. The plot of Eq.(21) in 2D and 3D with values: 
1 015.4, 20, 1.N A C C r k X         
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Figure 2. The plot of Eq.(22) in 2D and 3D with values: 

1 02.6, 20, 1.N A C C r k X         

 

Case 2. When A is negative say A=-20, we have other two solutions which are, 

 

(9 41) 15.4N      , (23) 

 

(9 41) 2.6N      . (24) 

 

The solutions according to the suggested method are:  
 

15.4

15.4

15.4
( ) ,

292.6 20

e

e




  

 
 (25) 

 
2.6

2.6

2.6
( ) ,

49.4 20

e

e




  

 
 (26) 

 

  Figure 3. The plot of Eq.(25) in 2D and 3D with values: 
1 015.4, 20, 1.N A C C r k X           

 

  Figure 4. The plot of Eq.(26) in 2D and 3D with values: 
1 02.6, 20, 1.N A C C r k X           
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Also, more significant results for these two cases could be achieved when we choose 

other values of N, A. 

 

 

4. THE VARIATIONAL ITERATION METHOD 

 

 

Considering the differential equation with inhomogeneous term ( )f   and R, S 

denotes the linear and the nonlinear operators respectively become as: 

 

( ),LH NH f    (27) 

 

the VIM proposes a functional correction for equation (27) which is; 

 

1

0

( ) ( ) ( )( ( ) ( ) ( ))m m m mH H t LH t N H t g t dt



       . (28) 

 

where  is a general Lagrange’s multiplier which can be optimally identified via the 

variational theory, and mH  as a restricted variation which means mH . The Lagrange 

multiplier   is crucial and critical in the method, and it can be a constant or function [15]. 

Having   determined, an iteration formula should be used for the determination of the 

successive approximations 1( )mH  ; n ≥ 0 of the solution ( )H  . The zeros approximation 0H  

can be any selective function. However, using the initial values (0)H ; (0)H   are preferably 

used for the selective zeros approximation 0u as will be seen later. Consequently, the solution 

is given by ( ) lim ( )mH H


 


 . It is interesting to point out that we formally derived the 

distinct forms of the Lagrange multipliers   in (27), hence we skip details. We only set a 

summary of the obtained results. It is important to give a brief of the significant forms of 

equation (27) according to the Lagrange multipliers in these results, for the 1-st order ODE in 

the form, 

( ) ( ), (0) .H q H p H      (29) 

 

We find that 1   , and the correction function gives the iteration formula; 

 

1

0

( ) ( ) ( ( ) ( ) ( ) ( )) .m m m mH H H t q t H t p t dt



 
     (30) 

 

The 2-nd order ODE in the form is, 

 

( ) ( ) ( ) ( ), (0) , (0) .H cH dh g H H             (31) 

 

We find that t x   , and the correction function gives the iteration formula; 

 

1

0

( ) ( ) ( )( ( ) ( ) ( )) .m m m m mH H t x H t cH t dH g t dt



 
        (32) 
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The 3-th order ODE in the form is, 

 

( ) ( ) ( ) ( ) ( ), (0) , (0) , (0)H cH dH eH g H H H                  . (33) 

 

 We find that 
2

2!
1 ( )t x    , and the correction function gives the iteration formula 

  

21
1 2!

0

( ) ( ) ( ) ( ( ) ( ) ( ) ( )) .m m m m m mH H t x H t cH t dH t eH g t dt



 
          (34) 

 

Consecountly, the general form of ODE is: 

 
( ) ( 1) 1

0 1 2 1( , , ..., ) ( ), (0) , (0) , (0) ..., (0) .m m m

mH f H H H H g H H H H     


           (35) 

 

The lagrange multiplier   takes the general form as follows 
( 1)!

( 1) 1( )
m

m

m
t x  


  , while 

the general form of iteration rule becomes,  

 

 ( 1) 1 ( ) ( 1)

1 ( 1)!

0

( ) ( ) ( ) ( , , ,..., ) ( ) .
m

m m m

m m m
H H t x H f H H H H g t dt



    

 
        (36) 

 

Moreover, the zeros approximation 0 ( )H   can be perfectly selected to be,  

 

2! 3! ( 1

2 3 1 11 1 1
)!0 0( ) (0) (0) (0) (0) ....... (0)m

m

mH H H H H H    


        , (37) 

 

where m is the order of the ODE. 
For simplicity and similarity, we will apply the VIM to get the numerical solutions 

corresponding only for the first and the third exact solutions achieved above.  

 

Case 1. The numerical solution corresponding to the first exact solution 

According to VIM the initial condition: 

 

(0) 0.05, (0) 0.8   . (38) 

 

According to VIM the first and the second iterations are: 0 ( ) (0) (0),    

0 ( ) 0.05 0.8     

 

 1 0 0 0 0

0

2

1

0

( ) ( ) ( ) ( 1)

0.05 0.8 [ 0.8 0.8 0.8 0.05 0.8 ] 0.05 1.55 0.8

t t dt

t t dt





        

    

       

          





 (39) 

 



The Paul-Painlevé Approach of the Black Scholes …  Emad H.M. Zahran and Ahmet Bekir 

ISSN: 1844 – 9581  Mathematics Section 

119 

 

 

2 1 1 1 1

0

2

2

2

0

2 3

2

( ) ( ) ( ) ( 1)

( ) 0.05 1.55 0.8

1.6( ) ( 1)( 1.55 1.6 ) 0.05 1.55 0.8

( ) 0.05 3.05 0.75 1.6

t t dt

t t t t t dt





        

   

 

    

       

  

         

   





 
(40) 

 

  Figure 5. The plot of numerical solution Eq.(40) in 2D and 3D with values: 

1 015.4, 20, 1.N A C C r k X         

 

Case 2. The numerical solution corresponding to the third exact solution 

According to VIM the initial condition: 

 

(0) 0.05, (0) 0.7   . (41) 

 

According to VIM the first and the second iterations are, 0 ( ) (0) (0),    

0 ( ) 0.05 0.7 ,      

 

 

 

1 0 0 0 0

0

2

1

0

2 1 1 1 1

0

2

2

( ) ( ) ( ) ( 1) ,

0.05 0.7 [ 0.7 0.7 0.7 0.05 0.7 ] 0.05 1.45 0.7 ,

( ) ( ) ( ) ( 1) ,

( ) 0.05 1.45 0.7

1.4( ) ( 1)( 1.45 1.4 ) 0

t t dt

t t dt

t t dt

t t t







        

    

        

   

 

       

           

       

   

       







 2

0

2 3

2

.05 1.45 0.7 ,

( ) 0.05 1.5 0.75 0.7

t t dt



    

 

    



 (42) 
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Figure 6. The plot of numerical solution Eq.(42) in 2D and 3D with values: 

1 015.4, 20, 1.N A C C r k X           

 

For the two cases of the VIM, the cascading iteration can be obtained as follow, 

  

 

 

3 2 2 2 2

0

1

0

( ) ( ) ( ) [( ) 1)] ,

..................................................................................

( ) ( ) ( ) [( ) 1)] ,N N N N N

t t dt

t t dt





        

        

       

       





 

 

Using the fact that the exact solution is obtained by using ( ) lim ( )N


   


 . 

 

 

5. RESULTS AND DISCUSSION 

 

 

According to the obtained results and the corresponding figures, it is clear that there 

are agreements with the normal form of the curve which represents the value of option. It is 

also clear that the validity of underlying first assets for the second year approximately doubles 

the first year “according to the slope of the obtaining curves” although the parameters are not 

changed. Also, the security risk “risk-free interest rate” which depends on the hazard of the 

option price lies between %2 and %3 which has never achieved by any methods previously 

and gives significant accurate value to expected security. It is more accurate than the results 

obtained by using analytical and numerical methods for pricing financial derivatives that 

obtained by other authors [12-14, 17, 23]. In addition, the solutions are isomorphic to the 

European call value by using the Black–Scholes pricing equation for varying asset price SS 

and time-to-expiry TT in which the strike price is set to one. Furthermore, our approach 

proposes new exact solutions than those obtained in [15- 19] who used different methods and 

can be considered a benchmark against any obtained numerical solutions [24-26]. 

 

 

6. CONCLUSIONS 

 

 

In this work, the exact and hence the solitary wave solutions to the Black Scholes 

equation “which weren’t previously achieved” have been successfully established. The 

obtained solutions have been demonstrated for the first time in the framework of the Paul-

Painlevé approach “Fig. 1-4”. Moreover, we can establish other new exact solutions for 
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various values of N and A. The 3D-graph explains the relationship among stock price, strike 

price and time to maturity well. It is clear that the obtained solutions agree with the fact that 

the Black–Scholes model which assumes that the market consists of at least one risky asset, 

usually called the stock, and one riskless asset, usually called the money market cash, or bond 

(riskless rate). The rate of returning riskless asset is constant and thus it is called the risk-free 

interest rate. Moreover, the benefit for this exact solution “which weren’t realized before” of 

the nonlinear Black-School model is important to represent the accurate for each one of the 

European call option and the American call option which depends on two stock price. 

Furthermore, it is clear that there are agreements between the two cases of the obtained exact 

solutions figures (3,4) and the corresponding numerical cases figures (5,6) respectively. In 

addition, our exact solutions are new compared with that obtained by [14-19]. In related 

subject, the achieved numerical solutions by using VIM is more stable compared with the 

numerical solutions achieved by using the standard methods of numerical analysis [12-14, 17, 

23]. The power of the obtained numerical solutions refers to that its initial conditions are 

derived from the achieved exact solutions. The stability and symmetry of the obtained curves 

“which are corresponding to the achieved solutions” with respect to the axes in consecutive 

intervals proved the powerful and accuracy of the obtained solutions as well as the 

effectiveness of the suggested methods. Finally, the achieved closed form solution “which 

were not achieved before” will establish the fact that the American call with no dividends is 

equal to a European call price and the risk-free interest rate lies between %2 and %3 which 

has never previously realized by any methods. 
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