ORIGINAL PAPER AN APPROACH FOR δ_{ss} –SUPPLEMENTED MODULES WITH IDEALS

EMINE ÖNAL KIR¹, BURCU NIŞANCI TÜRKMEN²

Manuscript received: 28.09.2023; Accepted paper: 18.03.2024; Published online: 30.03.2024.

Abstract. The aim of this paper is to present $J_{\delta_{ss}}$ -supplemented modules and investigate their main algebraic properties. Let J be an ideal of a ring S and A be an S-module. We call a module A is $J_{\delta_{ss}}$ -supplemented, provided for each submodule B of A, there exists a direct summand C of A such that A = B + C, $B \cap C \leq JC$ and $B \cap C \leq$ $Soc_{\delta}(C)$. We prove that the factor module by any fully invariant submodule remains so, when the module is $J_{\delta_{ss}}$ -supplemented. We show that any direct sum of $J_{\delta_{ss}}$ -supplemented modules preserves its $J_{\delta_{ss}}$ -supplemented property when this direct sum is a duo module. Additionally, we make comparisons of $J_{\delta_{ss}}$ -supplemented modules with other module types.

Keywords: semisimple modules; δ_{ss} –supplement submodules; δ_{ss} –supplemented modules; \bigcup_{ss} –supplemented modules.

1. INTRODUCTION

Throughout the study, we denote by S an associative ring with unit, and whole modules under consideration are assumed to be unitary left S –modules. When we use the notation ${}_{S}S(S_{S})$, we refer to the left S –module (the right S –module) over the ring S. Let A be such a module. By the implications $B \leq A$ and $B \leq \oplus A$, we mean that B is a submodule of A and B is a direct summand of A, respectively. $B \leq A$ is said to be *small* in A, denoted as $B \ll A$, if $A \neq B + X$ for each proper $X \leq A$ (see [1]). Dually, $B \leq A$ is said to be *essential* in A, notated as $B \subseteq A$, if $B \cap X \neq 0$ for each nonzero $X \leq A$. A module A is said to be singular provided $A \cong A'/B$ for some module A' and $B \trianglelefteq A'$ (see [2-3]). A nonzero module A is said to be *hollow* in case each proper submodule of A is small in A and it is said to be *local* in case the sum of whole proper submodules of A is also a proper submodule of A. A ring S is said to be *local* if ${}_{S}S$ is a local module (see [4]). For a module A, Soc(A) and Rad(A)indicate the socle and the radical of A, respectively. It can be clearly observed that A is a local module if and only if $Rad(A) \leq A$ is a maximal submodule and $Rad(A) \ll A$ (see [4, 41.4]). A submodule B of a module A is called *d*-closed provided the factor module A/B has a zero socle (see [5]). In [5], a module A is called D-extending provided each d-closed submodule of A is a direct summand. A module A is called semiartinian provided each nonzero homomorphic image of A includes a simple submodule, that is, $Soc(A/B) \neq 0$ for each proper submodule *B* of *A*.

¹ Kırşehir Ahi Evran University, Faculty of Art and Science, Department of Mathematics, 40100 Kırşehir, Turkey. E-mail: <u>emine.onal@ahievran.edu.tr</u>.

² Amasya University, Faculty of Art and Science, Department of Mathematics, 05100 Amasya, Turkey. E-mail: <u>burcu.turkmen@amasya.edu.tr</u>.

Let *A* be a module and $B \le A$. A submodule *C* is termed a *supplement* of *B* in *A*, if it is a minimal element within the collection of submodules *K* of *A* where A = B + K. *C* is a supplement of *B* in *A* if and only if A = B + C and $B \cap C \ll C$. A module *A* is said to be *supplemented* if each submodule of *A* has a supplement in *A*. Semisimple, artinian and local modules are supplemented. A module *A* is said to be *amply supplemented* in case for any $B, C \le A$ with A = B + C, there exists a supplement of *B* in *A* that is included in *C* (for the details, see [4, Section 41]). In recent years, several authors have studied structures similar to supplement submodules through the use of (pre)radicals for the category of left *S* –modules. Let $B \le A$ be modules. In [6], a submodule *B* of *A* is called to be an *sa* –*supplement* in *A* provided there exists a $C \le A$ such that A = B + C and $B \cap C$ is a semiartinian module. In [7], a submodule *B* of *A* is said to have a Z^* –*supplement C* in *A* provided A = B + C and $B \cap C \le Z^*(C)$. Here $Z^*(C)$ is the set of elements $c \in C$ for which the cyclic submodule *Rc* is small in its injective hull.

In [8], Zhou has defined δ –small submodules as a more comprehensive class that includes small submodules, and has emphasized their crucial role within the context of supplements. Let *A* be a module. The author defines $B \leq A$ as δ –small in *A* if, in cases where A = B + B' and A/B' is singular, so B' = A. We signify this description with the notation $B \ll_{\delta} A$. Each projective semisimple submodule or small submodule of a module *A* is δ –small in *A*. Following a similar approach to [8, Lemma 1.5], we will employ the notation $\delta(A)$ to represent the sum of whole δ –small submodules of *A*. Given that Rad(A) denotes the sum of whole small submodules of *A*, therefore $Rad(A) \leq \delta(A)$. So for any ring *S*, $\delta(S) = \delta({}_{S}S)$.

In [9], a module A is said to be δ -supplemented in case each $B \leq A$ has a δ -supplement C in A, that is, A = B + C and $B \cap C \ll_{\delta} C$. Also in the same paper, a module A is said to be *amply* δ -supplemented provided, for any $B, C \leq A$ with A = B + C, B has a δ -supplement X in A such that $X \leq C$.

In [10], a submodule *C* is said to be an *ss-supplement* of *B* in a module *A* if A = B + C and $B \cap C \leq Soc_S(C)$. Here $Soc_S(C)$ is the sum of whole small submodules that are simple as defined in [11]. It is proved in [10, Lemma 3] that *C* is an ss-supplement of *B* in *A* if and only if A = B + C, $B \cap C$ is semisimple and $B \cap C \ll C$ if and only if A = B + C, $B \cap C$ is semisimple and $B \cap C \ll C$ if and only if A = B + C, $B \cap C$ is semisimple and $B \cap C \ll C$ if and only if A = B + C, $B \cap C$ is semisimple and $B \cap C \ll C$ if and only if A = B + C, $B \cap C$ is semisimple and $B \cap C \leq Rad(C)$. Moreover, the authors termed a module *A* as *ss-supplemented* if each submodule of *A* has an ss-supplement in *A*. In the same paper, a module *A* is defined as *strongly local* if the module *A* meets two criteria; firstly, *A* must be local and secondly, Rad(A) must be semisimple. A ring *S* is said to be *left strongly local* if $_SS$ is a strongly local module.

In [12], the concept of \bigoplus_{ss} -supplemented module is introduced. A module *A* is termed as \bigoplus_{ss} -supplemented if each submodule of *A* has an ss-supplement which is also a direct summand of *A*. The author has explored various properties of these modules in the paper.

In the study [13], a module *A* is said to be δ_{ss} -supplemented provided each submodule *B* of *A* has a δ_{ss} -supplement *C* in *A*, i.e, A = B + C, $B \cap C$ is semisimple and $B \cap C \ll_{\delta} C$. The authors have proved in [13, Lemma 3.3] that *C* serves as a δ_{ss} -supplement of *B* in *A* if and only if the conditions A = B + C, $B \cap C$ being semisimple and $B \cap C \leq \delta(C)$ holds. In the same study, for a module *A*, the submodule $Soc_{\delta}(A)$ is defined as the sum of whole simple submodules that are δ -small within the module *A*. [13, Proposition 3.1] presents the fact that $Soc_{\delta}(A) = Soc(A) \cap \delta(A)$. Hence $C \leq A$ is said to be δ_{ss} -supplement of *B* in *A*, if A = B + C, $B \cap C \leq Soc_{\delta}(C)$. It can be observed that $Soc_{S}(A) \leq Soc_{\delta}(A)$, for any module *A*. In [14], a module A is said to be $\oplus -\delta_{ss}$ -supplemented provided each submodule of A has a δ_{ss} -supplement that is a direct summand of A. In this paper, the author also determined the rings whose modules are $\oplus -\delta_{ss}$ -supplemented.

Based on the results mentioned above, we can define the concept of $J_{\delta_{ss}}$ -supplemented S -modules, where J is any ideal of the ring S. It is demonstrated that the class of $J_{\delta_{ss}}$ -supplemented modules remains unchanged when considering factor modules by fully invariant submodules. Exactly, it has been established that any direct sum of $J_{\delta_{ss}}$ -supplemented modules is a $J_{\delta_{ss}}$ -supplemented module provided that it is a duo module. Indeed, we draw comparisons between this concept and \bigoplus_{ss} -supplemented modules as well as δ_{ss} -supplemented modules. It is established that for a projective S -module A with the condition $Soc_{\delta}(A) \leq JA$, where J is an ideal of S, the module A is a $J_{\delta_{ss}}$ -supplemented module if and only if it is a δ_{ss} -supplemented module. It is proved that a projective S -module A is a $J_{\delta_{ss}}$ -supplemented S -module A is a $J_{\delta_{ss}}$ -supplemented module if and only if a s a δ_{ss} -supplemented module. It is verified that a $J_{\delta_{ss}}$ -supplemented S -module A, where J is an ideal of S is coatomic if and only if JA is δ - small in A. It is showed that each fully invariant direct summand B and the factor module A/B of a $J_{\delta_{ss}}$ -supplemented module A are $J_{\delta_{ss}}$ -supplemented.

2. MAIN RESULTS

Proposition 2.1. Let *A* be a projective *S* –module. Then *A* is a δ_{ss} –supplemented module if and only if for each $B \le A$, there exists a $C \le^{\oplus} A$, where A = B + C, $B \cap C$ is semisimple and $B \cap C \le \delta(S)C$.

Proof: The proof is derived from [13, Lemma 2.2], [13, Theorem 5.6] and [8, Lemma 1.9].

Considering the fact above, we realize that a new concept has emerged.

Definition 2.2. Let A be an S – module and J be an ideal of S. We call the module A as being $J_{\delta_{ss}}$ –supplemented, in case for each submodule B of A, there exists a $C \leq^{\oplus} A$, where $A = B + C, B \cap C \leq JC$ and $B \cap C \leq Soc_{\delta}(C)$.

It is explicit that for each ideal J of S, each $J_{\delta_{ss}}$ -supplemented S-module is δ_{ss} -supplemented. In the sequel, we will provide an example of a module which is δ_{ss} -supplemented but not $J_{\delta_{ss}}$ -supplemented for any ideal J of S. Also semisimple S-modules are $J_{\delta_{ss}}$ -supplemented for each ideal J of S.

Lemma 2.3. Let *A* be an *S*-module and *J* be an ideal of *S* having the condition JA = 0. Then *A* is a $J_{\delta_{ss}}$ -supplemented module if and only if *A* is a semisimple module.

Proof: Suppose that $B \le A$. Then by the hypothesis, there is a $C \le^{\oplus} A$, where A = B + C, $B \cap C \le JC$ and $B \cap C \le Soc_{\delta}(C)$. Since $JC \le JA = 0$, then we obtain that $A = B \oplus C$. Thus A is a semisimple module. The other part of the proof is explicit.

Assume that A represents a module over the commutative domain S. Consider the set of whole $x \in A$ for which a nonzero element s of S exists and has the property sx = 0, say

T(A). The fact that T(A) is a submodule of A is widely acknowledged. This submodule T(A) of A is named as *torsion submodule* of A. When T(A) = A, the module A is said to be *torsion module*. The module A is said to be *torsion-free* in case T(A) = 0 (see [3, Chapter 4.8, Exercise 11]).

Analysis to the explanations in [13] yields the following result.

Proposition 2.4. Let *A* be a torsion-free *S* –module, where *S* is a Dedekind domain that is not field. Then *A* is a semisimple module if and only if *A* is a $J_{\delta_{ss}}$ –supplemented module.

Proof: To prove the sufficiency, let $B \le A$. Then by the hypothesis, there exists a $C \le \oplus A$, where A = B + C, $B \cap C \le JC$ and $B \cap C \le Soc_{\delta}(C)$. Note that $B \cap C \le Soc_{\delta}(A)$. Since A is a torsion-free module, then $Soc_{\delta}(A) = 0$. This implies that $A = B \oplus C$. Hence A is semisimple. The rest of the proof is explicit.

Following [15], a module A is said to be δ –local if $\delta(A) \ll_{\delta} A$ and $\delta(A) \leq A$ is a maximal submodule. By strengthening the notion of δ –local modules, in [13], a module A is said to be strongly δ –local in cases $\delta(A) \leq A$ is a maximal submodule, $\delta(A) \ll_{\delta} A$ and $\delta(A)$ is semisimple.

Proposition 2.5. Let *A* be a finitely generated *S* –module and *J* be an ideal of *S*. If *A* is a $J_{\delta_{ss}}$ –supplemented module, then $A = \sum_{\lambda=1}^{n} A_{\lambda}$, where each A_{λ} is a strongly δ –local module or a projective semisimple module.

Proof: It follows from [13, Corollary 4.11], since $J_{\delta_{ss}}$ -supplemented modules are δ_{ss} -supplemented.

Proposition 2.6. Let A be a $J_{\delta_{ss}}$ -supplemented module with $\delta(A) = A$. Then A is a projective semisimple module.

Proof: By assumption, *A* is a δ_{ss} –supplemented module with $\delta(A) = A$. Therefore, the result is derived from [13, Proposition 4.17].

Based on the proposition mentioned above, it is evident that a hollow radical S-module cannot be considered as a $J_{\delta_{ss}}$ -supplemented for any ideal J of S. When we combine this observation with [13, Proposition 4.18], we reach the conclusion below:

Corollary 2.7. Let A be a hollow module. If A is a $J_{\delta_{ss}}$ –supplemented module, then it is a strongly local module.

As a reminder from [16] that a module A is said to be *semilocal* if the factor module A/Rad(A) is a semisimple module and a ring S is said to be *semilocal* if $_{S}S$ (or S_{S}) is a semilocal module.

Proposition 2.8. Let *A* be a projective module. If *A* is a semilocal and $J_{\delta_{ss}}$ –supplemented module, then *A* is an ss-supplemented module.

Proof: It follows from [13, Proposition 5.9].

Proposition 2.9. Let *A* be an *S* –module and *J* be an ideal of *S* with the property for any ideal *J* of *S*, $\delta(A) \leq JA$. If *A* is a strongly δ –local module, then *A* is a $J_{\delta_{ss}}$ –supplemented module.

Proof: Suppose that $B \leq A$. If $B \leq \delta(A)$, then *B* is semisimple as $\delta(A) \leq Soc(A)$. Thus $B \ll_{\delta} A$ by [13, Lemma 2.2]. Therefore we have A = B + A, $B = B \cap A \leq Soc_{\delta}(A)$. Since $B = B \cap A \leq \delta(A)$, then $B \cap A \leq JA$. Hence *A* is a $J_{\delta_{ss}}$ -supplemented module. Assume that $B \leq \delta(A)$. Since $\delta(A) \leq A$ is a maximal submodule, then $A = B + \delta(A)$. This leads to the conclusion that $A = B \bigoplus P$, where *P* is a projective semisimple submodule of $\delta(A)$ as $\delta(A) \ll_{\delta} A$ by [8, Lemma 1.2]. Hence *A* is a $J_{\delta_{ss}}$ -supplemented module.

Proposition 2.10. Let *A* be a $J_{\delta_{ss}}$ –supplemented *S* –module. If *A* is a δ –local module, then *A* is a strongly δ –local module.

Proof: By assumption, A is a δ_{ss} –supplemented module. Then the result is derived from [13, Proposition 4.5].

Proposition 2.11. Let *A* be a projective *S* –module and *J* be an ideal of *S* with $Soc_{\delta}(A) \leq JA$. Then *A* is a $J_{\delta_{ss}}$ –supplemented module if and only if *A* is a δ_{ss} –supplemented module.

Proof: The first direction of the proof is explicit. Conversely, let A be δ_{ss} -supplemented module and $B \leq A$. Then B has a δ_{ss} -supplement C with $C \leq^{\bigoplus} A$ as A is projective by [13, Theorem 5.6]. Thus we conclude that A = B + C, $B \cap C \leq Soc_{\delta}(C)$. Note that $B \cap C \leq Soc_{\delta}(A)$. Then by assumption, $B \cap C \leq JA$. Therefore, we conclude that $B \cap C \leq C \cap JA = JC$ by [17, Lemma 3.4]. Hence A is a $J_{\delta_{ss}}$ -supplemented module.

Corollary 2.12. Let S be a ring and A be an S –module. If either A is a projective module, or $S/\delta(S)$ is a semisimple ring, then A is a $J_{\delta_{ss}}$ –supplemented module for an ideal J of S containing $\delta(S)$ if and only if A is a δ_{ss} –supplemented module.

Proof: If a module *A* is projective, then $\delta(A) = \delta(S)A$ by [8, Lemma 1.9]. Also note that if $S/\delta(S)$ is a semisimple ring, then $\delta(A) = \delta(S)A$ for each *S* –module *A* by [8, Theorem 1.8]. It follows from $Soc_{\delta}(A) \leq \delta(A)$ that we can deduce the result from Proposition 2.11.

Corollary 2.13. Let A be a projective S – module and J be an ideal of S which includes $Soc(_{S}S)$. Then A is a $J_{\delta_{ss}}$ –supplemented module if and only if A is a δ_{ss} –supplemented module.

The next step will show an example of a module that is δ_{ss} –supplemented although it is not $J_{\delta_{ss}}$ –supplemented with respect to any ideal *J* of *S*.

Example 2.14. Let $Q = \prod_{\lambda=1}^{\infty} Q_{\lambda}$, where $Q_{\lambda} = \mathbb{Z}_2$. Suppose that *S* is the subring of *Q* generated by $\bigoplus_{\lambda=1}^{\infty} Q_{\lambda}$ and 1_Q . Say $A = {}_{S}S$. Then *A* is a regular module that is not semisimple. Thus Soc(A) is a maximal submodule. By [8, Example 4.1], $Soc(A) = \delta(A) \ll_{\delta} A$. *A* is a δ_{ss} -supplemented module by [13, Lemma 4.1]. On the other hand, since Rad(S)A = 0, *A* is not a $Rad(S)_{\delta_{ss}}$ -supplemented module by Proposition 2.11.

Example 2.15. Assume that t is a prime integer, $i \ge 3$ and A denotes the local \mathbb{Z} -module \mathbb{Z}_{t^i} . By [13, Example 4.4(2)], A is not a δ_{ss} -supplemented module. Hence for at least one ideal J of \mathbb{Z} , A can not be a $J_{\delta_{ss}}$ -supplemented module.

Proposition 2.16. Let *A* be an *S* –module and *J* be an ideal of *S*. If *A* is a $J_{\delta_{ss}}$ –supplemented module, then *A*/*JA* is a semisimple module.

Proof: Let $JA \leq B \leq A$. Then by the hypothesis, there is a $C \leq \oplus A$ provided that A = B + C, $B \cap C \leq JC$ and $B \cap C \leq Soc_{\delta}(C)$. Thus A/JA = B/JA + (C + JA)/JA. Therefore we obtain that $B \cap (C + JA) = JA + (B \cap C) = JA$. This implies that $B/JA \leq \oplus A/JA$. Hence A/JA is a semisimple module.

A module A is called *coatomic* if, each proper submodule is included in a maximal submodule of A (see [18]). Semisimple modules and finitely generated modules can be given as examples of coatomic modules. It is a commonly established fact that coatomic modules have small radical.

Corollary 2.17. Let A be a $J_{\delta_{ss}}$ –supplemented S –module, where J is an ideal of S. Then JA is δ –small in A if and only if A is a coatomic module.

Proof: (\Rightarrow) If JA = A, then $A \ll_{\delta} A$, and hence A is a projective semisimple module. Suppose that $JA \neq A$ and $B \leq A$. If B + JA = A, then there exists a projective semisimple submodule $P \leq JA$ with $A = P \oplus B$ by [8, Lemma 1.2]. Suppose that $P = \bigoplus_{\lambda \in \Lambda} P_{\lambda}$, where each P_{λ} is simple and Λ is some index set. For some $\lambda_0 \in \Lambda$, say $X = B \oplus (\bigoplus_{\lambda \in \Lambda \setminus \{\lambda_0\}} P_{\lambda})$. Then $B \leq X$. Thus $A/X \cong P_{\lambda_0}$, and so $X \leq A$ is a maximal submodule. Now assume that $B + JA \neq A$. Then $(B + JA)/JA \leq A/JA$ is a proper submodule. Since A/JA is semisimple according to Proposition 2.16, there is a maximal submodule $K/JA \leq A/JA$ that contains (B + JA)/JA. Therefore $K \leq A$ is a maximal submodule containing B. Hence A is a coatomic module.

(⇐) Since *A* is a coatomic module, then by [8, Lemma 1.5(4)], $\delta(A)$ is the only biggest δ –small submodule of *A*. By assumption, we have A = JA + A, $JA = JA \cap A \leq JA$ and $JA \leq Soc_{\delta}(A) \leq \delta(A)$. Thus $JA \ll_{\delta} A$ by [8, Lemma 1.3(1)].

Corollary 2.18. Let *J* be an ideal of *S* and $A = \bigoplus_{\lambda \in \Lambda} A_{\lambda}$ be a $J_{\delta_{ss}}$ -supplemented *S* -module, where each A_{λ} is either a strongly δ -local module or a projective semisimple module. Then *JA* is δ -small in *A*.

Proof: It follows from [13, Theorem 2.9] and Corollary 2.17.

Proposition 2.19. Let A be a $J_{\delta_{ss}}$ -supplemented S -module for an ideal J of S. If $JA \leq Rad(A)$, then A is a \bigoplus_{ss} -supplemented module.

Proof: Suppose that $B \le A$. By the hypothesis, there exists a $C \le^{\bigoplus} A$ provided that A = B + C, $B \cap C \le JC$ and $B \cap C \le Soc_{\delta}(C)$. Note that $B \cap C$ is a semisimple module. Since $JA \le Rad(A)$, we have $JC = C \cap JA \le C \cap Rad(A) = Rad(C)$ by [17, Lemma 3.4]. Thus $B \cap C \le Rad(C)$. Hence A is a \bigoplus_{ss} -supplemented module.

Proposition 2.20. Let *S* be a Dedekind domain and A = T(A) be an *S*-module. If *A* is a $J_{\delta_{ss}}$ -supplemented module, then *A* is a \bigoplus_{ss} -supplemented module.

Proof: Suppose that $B \leq A$. Then by assumption, there exists $C \leq^{\bigoplus} A$ provided that A = B + C, $B \cap C \leq JC$ and $B \cap C \leq Soc_{\delta}(C)$. Note that $B \cap C \ll_{\delta} C$, and so $B \cap C \ll_{\delta} A$ by [8, Lemma 1.3(2)]. Then $B \cap C \ll A$ by [17, Proposition 2.6]. Therefore $B \cap C \ll C$ by [4, 19.3(5)]. So $B \cap C$ is a semisimple module. Hence A is a \bigoplus_{ss} -supplemented module.

Let $B \le A$. *B* is said to be *fully invariant* if for each endomorphism ψ of *A*, $\psi(B) \le B$. A module *A* is said to be *duo* if whole of its submodules are fully invariant as defined in [19].

Proposition 2.21. Let *J* be an ideal of *S* and an *S* –module $A = \bigoplus_{\lambda \in \Lambda} A_{\lambda}$ be a duo module. If A_{λ} is a $J_{\delta_{ss}}$ –supplemented module for each $\lambda \in \Lambda$, then *A* is a $J_{\delta_{ss}}$ –supplemented module.

Proof: Suppose that $B \leq A$. Then $B = \bigoplus_{\lambda \in \Lambda} (B \cap A_{\lambda})$ by [19, Lemma 2.1]. By the hypothesis, there exists a $C_{\lambda} \leq^{\oplus} A_{\lambda}$, where $A_{\lambda} = (B \cap A_{\lambda}) + C_{\lambda}$, $B \cap C_{\lambda} \leq JC_{\lambda}$ and $B \cap C_{\lambda} \leq Soc_{\delta}(C_{\lambda})$ for each $\lambda \in \Lambda$. Put $C = \bigoplus_{\lambda \in \Lambda} C_{\lambda}$. It is explicit that $C \leq^{\oplus} A$ and A = B + C. Moreover, we have $B \cap C = \bigoplus_{\lambda \in \Lambda} (B \cap C_{\lambda}) \leq JC$, and so by [8, Lemma 1.5(3)] and [4, 21.2(5)], $B \cap C \leq Soc_{\delta}(C)$. Hence A is a $J_{\delta_{ss}}$ –supplemented module.

Proposition 2.22. Let *J* be an ideal of *S* and *A* be a \bigoplus_{ss} -supplemented *S*-module having the condition $Rad(A) \leq JA$. Then *A* is a $J_{\delta_{ss}}$ -supplemented module.

Proof: Suppose that $B \leq A$. Then there is a $C \leq \oplus A$, where A = B + C, $B \cap C$ is semisimple and $B \cap C \ll C$. Note that $B \cap C \leq Soc_{\delta}(C)$. Moreover, $JC = C \cap JA$ by [17, Lemma 3.4]. Since $Rad(A) \leq JA$, $Rad(C) = Rad(A) \cap C \leq JA \cap C = JC$ by [17, Lemma 3.4]. Hence $B \cap C \leq Rad(C) \leq JC$. This gives the desired.

Corollary 2.23. Let *J* be an ideal of *S* and *A* be an *S*-module. If *A* is a \bigoplus_{ss} -supplemented module, where JA = A, then *A* is a $J_{\delta_{ss}}$ -supplemented module.

Corollary 2.24. Let *T* be a maximal ideal of a commutative ring *S*, *A* be an *S*-module and *T'* be an ideal of *S* provided that TA = T'A. If *A* is a \bigoplus_{ss} -supplemented module, then *A* is a $T'_{\delta_{ss}}$ -supplemented module.

Proof: Since $Rad(A) \leq TA = T'A$, the result follows from Proposition 2.22.

Recall from [4] that an *S*-module *A* over a commutative domain *S* is said to be *divisible* in case sA = A for each nonzero $s \in S$.

Corollary 2.25. Let *A* be a divisible *S* –module, where *S* is a commutative domain. If *A* is a \bigoplus_{ss} -supplemented module, then *A* is a $J_{\delta_{ss}}$ -supplemented module for each nonzero ideal *J* of *S*.

Proof: The proof follows from Corollary 2.23.

Recall from [4, 23.7] that a ring S is said to be *left good ring* if Rad(A) = Rad(S)A for each S –module A. For instance, semilocal rings are left good rings.

Corollary 2.26. Let A be an S – module. If either A is a projective module, or S is a left good ring, then A is a $Rad(S)_{\delta_{ss}}$ -supplemented module if and only if A is a \bigoplus_{ss} -supplemented module.

Proof: Since Rad(S)A = Rad(A) by [4, 23.7], the result can be obtained from Proposition 2.19 and Proposition 2.22.

Corollary 2.27. Let A be an S – module. If either A is a projective module, or $S/\delta(S)$ is a semisimple ring, then A is a $\delta(S)_{\delta_{ss}}$ -supplemented module if and only if A is a \bigoplus_{ss} -supplemented module.

Proof: Since $\delta(S)A = \delta(A)$ by [8, Theorem 1.8], the result can be derived from Proposition 2.19 and Proposition 2.22.

A module A is said to be *distributive* if $(B + C) \cap K = (B \cap K) + (C \cap K)$ for each $B, C, K \leq A$ (or equivalently, $(B \cap C) + K = (B + K) \cap (C + K)$, for each $B, C, K \leq A$).

- **Proposition 2.28.** Let *J* be an ideal of *S* and *A* be a $J_{\delta_{ss}}$ -supplemented module. 1) If $B \le A$ having the property $(B + C)/B \le^{\oplus} A/B$ for each $C \le^{\oplus} A$, then A/B is a $J_{\delta_{ss}}$ –supplemented module.
 - 2) If $B \le A$ is a fully invariant submodule, then A/B is a $J_{\delta_{ss}}$ –supplemented module.
 - 3) If A is a distributive module, then A/B is a $J_{\delta_{ss}}$ -supplemented module for each $B \leq A$.

Proof: (1) Suppose that $B \le K \le A$. Since A is a $J_{\delta_{ss}}$ –supplemented module, there exists a $C \leq \oplus A$, where A = K + C, $K \cap C \leq JC$ and $K \cap C \leq Soc_{\delta}(C)$. Then A/B = (K/B) + C $(K/B) \cap ((C+B)/B) = ((K \cap C) + B)/B \le (IC + B)/B \le I((C + B)/B)/B \le I(E + B)/B)/B \le I(E + B)/B \le I(E + B)/B \le I(E + B)/B \le I(E + B)/B)/B \le I$ ((C + B)/B)and B)/B). Let $\pi: C \to (C+B)/B$ be the canonical projection. Since $K \cap C \ll_{\delta} C$, we have $\pi(K \cap C) = ((K \cap C) + B)/B \ll_{\delta} (C + B)/B$ by [8, Lemma 1.3(2)]. Also, $\pi(K \cap C)$ is a semisimple module as a factor module of the semisimple module $K \cap C$ by [3, 8.1.5]. $(C+B)/B \leq \oplus A/B$ $((K \cap C) + B)/B \leq Soc_{\delta}((C + B)/B).$ Since Therefore bv assumption, then A/B is a $J_{\delta_{ss}}$ –supplemented module.

(2) and (3) are results of (1).

Corollary 2.29. Let *J* be an ideal of *S*, *A* be an *S* –module and $B \leq^{\oplus} A$ be fully invariant. If A is a $J_{\delta_{ss}}$ –supplemented module, then B is a $J_{\delta_{ss}}$ –supplemented module.

Proof: Suppose that $L \leq B$. By the hypothesis, there are submodules A_1 and A_2 with A = $A_1 \bigoplus A_2 = A_1 + L$, $A_1 \cap L \leq JA_1$ and $A_1 \cap L \leq Soc_{\delta}(A_1)$. Note that $B = (A_1 \cap B) + L$. Since $B \leq A$ is a fully invariant submodule, then $B = (A_1 \cap B) \oplus (A_2 \cap B)$ by [19, Lemma 2.1]. Thus $A_1 \cap B \leq \bigoplus A$. However, $J(A_1 \cap B) = (A_1 \cap B) \cap JA$ by [17, Lemma 3.4]. For this reason $(A_1 \cap B) \cap L = A_1 \cap L \leq (A_1 \cap B) \cap JA = J(A_1 \cap B)$. Since $A_1 \cap L \leq Soc_{\delta}(A_1)$ and $A_1 \cap B \leq \oplus A_1$, we have $A_1 \cap L \leq Soc_{\delta}(A_1 \cap B)$ by [8, Lemma 1.3(3)]. Therefore B is a $J_{\delta_{ss}}$ –supplemented module.

Lemma 2.30. Let C be proper submodule of A, where A/C is cyclic. Then the following statements hold:

- 1) If K is a δ_{ss} -supplement of C in A, then $K = P \bigoplus Sx$, where $P \le K \cap C$ is a semisimple projective module and $x \in K$. In this case, Sx is a δ_{ss} -supplement of C in A.
- 2) If C has a δ_{ss} -supplement that is a direct summand of A, then C has a cyclic δ_{ss} -supplement that is a direct summand of A.

Proof: (1) By assumption, $A = K + C, K \cap C$ is semisimple and $K \cap C \ll_{\delta} K$. Thus, $A/C \cong K/(K \cap C)$ is cyclic. Assume that x is an element of K with $K = (K \cap C) + Sx$. Since $K \cap C \ll_{\delta} K$, there is a projective semisimple submodule $P \le K \cap C$ with $K = P \bigoplus Sx$ by [8, Lemma 1.2]. Note that $K \cap C = (P \bigoplus Sx) \cap C = P \bigoplus (Sx \cap C) \ll_{\delta} P \bigoplus Sx$. By [8, Lemma 1.3(3)], we obtain that $P \ll_{\delta} P$ and $Sx \cap C \ll_{\delta} Sx$. Therefore P is a projective semisimple module. Also note that A = Sx + C and $Sx \cap C$ is semisimple as a submodule of $K \cap C$ by [3, 8.1.5]. This indicates that Sx is a δ_{ss} –supplement of C in A.

(2) is deduced from (1).

Proposition 2.31. Let *S* be a non-local Dedekind domain and *Q* be the quotient field of *S*. If *A* is a $J_{\delta_{ss}}$ –supplemented *S* –module, where *J* is an ideal of *S*, then $A/T(A) \cong Q^{(\Lambda)}$ for some index set Λ .

Proof: Suppose that A includes a maximal submodule X containing T(A). Since A is a $J_{\delta_{ss}}$ -supplemented module, there exists a cyclic $Y \leq A$, where A = X + Y, $X \cap Y$ is semisimple and $X \cap Y \ll_{\delta} Y$ by Lemma 2.30. Let S' be an ideal of S with $Y \cong S/S'$. Since Y is not a submodule of X, Y is not a torsion module. Thus S' = 0 and $Y \cong {}_{S}S$. Therefore Y is an indecomposable module. By [17, Proposition 2.3], we have $X \cap Y \ll Y$. Since $Y/(X \cap Y) \cong A/X$, $Y \leq A$ is a strongly local submodule. This is a contradiction, since S is not a local ring. Therefore Rad(A/T(A)) = A/T(A). Hence A/T(A) is an injective module, and so there is an index set Λ with $A/T(A) \cong Q^{(\Lambda)}$.

Proposition 2.32. Let *S* be a Dedekind domain which is not local and *A* be a finitely generated *S* –module. If *A* is a $J_{\delta_{ss}}$ –supplemented module, where *J* is an ideal of *S*, then *A* is a torsion module.

Proof: Since A is a $J_{\delta_{ss}}$ -supplemented module, there exist $X, Y \leq A$, where $A = X \oplus Y = T(A) + Y$, $T(A) \cap Y \leq JY$ and $T(A) \cap Y \leq Soc_{\delta}(Y)$. Since $T(A) = T(X) \oplus T(Y)$, we have $A = T(X) \oplus Y$ and $T(A) = T(X) \oplus (T(A) \cap Y)$. Hence T(X) = X and $T(Y) = T(A) \cap Y$. Thus $T(Y) \ll_{\delta} Y$. So $T(Y) \ll Y$ by [17, Proposition 2.6]. Note that $A/T(A) \cong Y/T(Y)$ is divisible by Proposition 2.31. Then we have sY + T(Y) = Y for each nonzero element s of S. Accordingly, for each nonzero $s \in S, sY = Y$. This means that Y is a divisible module, that is, Rad(Y) = Y. But $Rad(Y) \ll Y$ since $Rad(A) \ll A$. Hence Y = 0 and A = X is a torsion module.

Corollary 2.33. Let *S* be a Dedekind domain which is not local and *A* be a finitely generated *S* –module. If *A* is a $J_{\delta_{ss}}$ –supplemented module, where *J* is an ideal of *S*, then *A* is a torsion module, where *JA* is δ –small in *A*.

Proof: It is derived from Corollary 2.17 and Proposition 2.32.

3. CONCLUSION

In [13], Nişancı Türkmen and Türkmen described the notion of δ_{ss} -supplemented modules and analyzed all of their algebraic properties. They have established that when the module is projective, necessary and sufficient condition for it to be δ_{ss} -supplemented is that each submodule of it has a δ_{ss} -supplement which is also a direct summand of the module itself. Moreover, as mentioned in Zhou's paper, for a projective *S* -module *A*, $\delta(A)$ equals $\delta(S)A$. With these observations, we arrive at the fact that we can approach δ_{ss} -supplemented *S* -modules by considering any ideal *J* of the ring *S*, for which we can also make use of direct summands, and thus we define the modules in this study.

Acknowledgement: The authors would like to thank the reviewers for their valuable comments that improved and refined the manuscript.

REFERENCES

- [1] Leonard, W.W., *Proceedings of the American Mathematical Society*, **17**, 527, 1966.
- [2] Goodearl, K.R., *Ring theory: Nonsingular Rings and Modules*, Marcel Dekker, New York, 1976.
- [3] Kasch, F., *Modules and Rings*, London Mathematical Society by Academic Press, Teubner, 1982.
- [4] Wisbauer, R., *Foundations of Module and Ring Theory*, Gordon and Breach, 1991.
- [5] Durğun, Y., *Hacettepe Journal of Mathematics and Statistics*, **49**(3), 914, 2020.
- [6] Durğun, Y., Bulletin of the Korean Mathematical Society, 58(1), 147, 2021.
- [7] Türkmen, E., Ukrainian Mathematical Journal, **71**(3), 400, 2019.
- [8] Zhou, Y., *Algebra Colloquium*, **7**(3), 305, 2000.
- [9] Koşan, M.T., Algebra Colloquium, **14**(1), 53, 2007.
- [10] Kaynar, E., Çalışıcı, H., Türkmen, E., Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics, **69**(1), 473, 2020.
- [11] Zhou, D.X., Zhang, X.R., Southeast Asian Bulletin of Mathematics, 35(6), 1051, 2011.
- [12] Kaynar, E., Preprint Research Square: On a variation of *⊕*-supplemented modules, https://doi.org/10.21203/rs.3.rs-2898299/v1, 2023.
- [13] Nişancı Türkmen, B., Türkmen, E., Analele Stiintifice ale Universitatii Ovidius Constanta, 28(3), 193, 2020.
- [14] Öztürk Sözen, E., Publications de l'Institut Mathématique, **112**(126), 59, 2022.
- [15] Büyükaşık, E., Lomp, C., Turkish Journal of Mathematics, 34, 317, 2010.
- [16] Lomp, C., *Communications in Algebra*, **27**(4), 1921, 1999.
- [17] Tribak, R., Talebi, Y., Hamzakolaee, A.R.M., Asgari, S., *Hacettepe Journal of. Mathematics and Statistics*, **45**(1), 107, 2016.
- [18] Zöschinger, H., Rosenberg, F.A., Mathematische Zeitschrift, 170, 221, 1980.
- [19] Özcan, A.Ç., Harmancı, A., Smith, P.F., Glasgow Mathematical Journal, 48, 533, 2006.