ORIGINAL PAPER

ON *t*^{*}-SET AND *B*^{*}-SET IN NANO TOPOLOGICAL SPACES

SEKAR NARASIMMAN¹, ASOKAN RAGHAVAN¹, RAJASEKARAN ILANGOVAN², SELVI GANDHI³

> Manuscript received: 17.05.2023; Accepted paper: 04.03.2024; Published online: 30.03.2024.

Abstract. We investigate the class of nano locally **b-closed sets in this paper. The purpose of this work is to introduce several novel sets, such as nano closed sets, nano t*-sets, nano *b-closed sets, nano B*-set and nano **b-closed sets, and to investigate the properties of these sets. We also introduced the concept of nano **b-open sets and nano locally **b-open sets, as well as examined some of their features.

Keywords: nano**b-open sets; nano t*-set; nano B*-set; nano locally closed sets.

1. INTRODUCTION AND PRELIMINARIES

The concept of continuity is central to topology. More precisely, a function is continuous if it can guarantee arbitrarily small changes in its output by restricting it to sufficiently small changes in its input. In 2013, M. Lellis Thivagar [1] proposed the idea of topology.

We investigate the class of nano locally **b-closed sets in this paper. The purpose of this work is to introduce several novel sets, such as nano closed sets, nano t*-sets, nano *b-closed sets, nano B*-set and nano **b-closed sets, and to investigate the properties of these sets. We also introduced the concept of nano **b-open sets and nano locally **b-open sets, as well as examined some of their features.

Thus $\tau_R(X)$ is topology on U called the nano topological space with respect to X and $(U, \tau_R(X))$ is called the nano topological spaces. The elements of $\tau_R(X)$ are called nano-open sets (resp. n-open sets). The complement of a n-open set is called n-closed.

Throughout the paper, we denote a nano topological space by (U, N), where $N = \tau_R(X)$. The nano-interior and nano-closure of a subset A of U are denote by $I_n(A)$ and $C_n(A)$. respectively.

Definition 1.1. A subset A of a nano topological space $(U, \tau_R(X))$ is called

- 1. nano *b-open (resp. n*b-open) [2] if $A \subseteq C_n(I_n(A)) \cap I_n(C_n(A))$.
- 2. nano locally closed (resp. nl-closed) [3] if $A = K \cap H$, where K is n-open and H is n-closed.

¹Madurai Kamaraj University, Department of Mathematics, School of Mathematics, Madurai, Tamil Nadu, India. E-mail: <u>sekar.skrss@gmail.com; rasoka_mku@yahoo.co.in</u>.

² Tirunelveli DakshinaMara Nadar SangamCollege, Department of Mathematics, 627113 T. Kallikulam, Tirunelveli District, Tamil Nadu, India. E-mail: <u>sekarmelakkal@gmail.com</u>.

³ Saveetha Institute of Medical and Technical Sciences, SaveethaSchool of Engineering, SaveethaNagar, Thandalam, 602405Chennai, Tamil Nadu, India. E-mail: <u>mslalima11@gmail.com</u>.

2. ON *t**-SET AND *B**-SET IN NANO TOPOLOGICAL SPACES

Definition 2.1. A space X's subset A is known as

- 1. Nano t^* -set (resp. nt^* -set) if $C_n(A) = C_n(I_n(A))$.
- 2. Nano B^* -set (resp. nB^* -set) if $A = U \cap V$, where U is n-open and V is a nt^* -set.
- 3. Nano locally *b-closed (resp. nl*b-closed) if $A = U \cap V$, where U is n-open and V is n*b-closed.
- 4. Nano locally **b-closed (resp. nl**b-closed) if $A = U \cap V$, where U is n-open and V is n**b-closed.

Remark 2.2.

- 1. Every open set isnt*-set.
- 2. Every open set is nB*-set.

Example 2.3. Let $U = \{a, b, c, d, e\}$ with $U/R = \{\{a\}, \{b, c\}, \{d, e\}\}$ and $X = \{a, b\}$. Then the nano topological space $N = \{\phi, \{a\}, \{b, c\}, \{a, b, c\}, U\}$. Clear that

- 1. {d} is nt*-set but not n-open
- 2. $\{a, b, c, d\}$ is nB^* -set but not n-open.

Definition 2.4. A nano topological space (U, N) is said to be nano extremally disconnected if the n-closure of every n-open set of U is n-open in U.

For any subset A of an-extremally disconnected space, $C_n(I_n(A)) = I_n(C_n(A))$.

Definition 2.5. A subset A of X is n-locally closed iff $A = U \cap C_n(A)$ for some n-open.

Theorem 2.6. For a subset A of n-extremally disconnted space (U, N) , the following are equivalent:

- 1. A is open.
- 2. A is n**b-open and n-locally closed.

Proof:

 $(1) \Rightarrow (2)$: This is obvious from the Definitions.

(2) \Rightarrow (1) : Let A be n**b-open and nl-closed.

Then $A \subseteq I_n(C_n(I_n(A))) \cap C_n(I_n(C_n(A)))$ and $A = G \cap C_n(A)$ where G is n-open $A \subseteq I_n(C_n(I_n(A))) \cap C_n(I_n(C_n(A)))$ and $A \subseteq G \Rightarrow A \subseteq G \cap [I_n(C_n(I_n(A))) \cap C_n(I_n(C_n(A)))] = [G \cap I_n(C_n(I_n(A)))] \cap C_n(I_n(C_n(A))) = [I_n(G \cap (C_n(I_n(A)))] \cap C_n(C_n(I_n(A))) = I_n[U \cap I_n(C_n(A))] \cap C_n(I_n(A)) = I_n(G \cap C_n(A)) \cap (I_n(C_n(A))) = I_n(G \cap C_n(A)) = I_n(G \cap C_n(A)) \cap (I_n(C_n(A))) = I_n(G \cap C_n(A)) = I_n(G \cap C_n(A)) = I_n(G \cap C_n(A)) \cap (I_n(C_n(A))) = I_n(G \cap C_n(A)) = I_n(G \cap C_n(A)) \cap (I_n(C_n(A))) = I_n(G \cap C_n(A)) = I_n(G \cap C_n(A)) = I_n(G \cap C_n(A)) = I_n(G \cap C_n(A)) \cap (I_n(C_n(A))) = I_n(G \cap C_n(A)) = I_n(G \cap C_n(A)) \cap (I_n(C_n(A))) = I_n(G \cap C_n(A)) = I_$

Theorem 2.7. Let H be a subset of (U, N), H is nl**b-closed if and only if there exist a n-open set $G \subseteq U$ such that $H = G \cap **bC_n(H)$.

Proof:

Let H be a subset of U and H be nl**b-closed. There exists an open set $G \subseteq U \ni H = G \cap **bC_n(H)$. Since H being nl**b-closed. Then $H = G \cap F$, where G is n-open and F is n**b-closed. So $H \subseteq G$ and $H \subseteq F$. Then $H \subseteq **bC_n(H) \subseteq **bC_n(F) = F$. Therefore $H \subseteq G \cap **bC_n(H) \subseteq G \cap **bC_n(F) = G \cap F = H$. Hence $H = G \cap **bC_n(H)$.

Conversly,

Assume that $H = G \cap **bC_n(H)$. H is nl**b-closed. Since $**bC_n(H)$ is n**b-closed and $H = G \cap **bC_n(H)$. Then H is nl**b-closed.

Remark 2.8.

- 1. The union of any family of n**b-open set is n**b-open.
- 2. The intersection of n-open set and a n**b-open set is a n**b-open set.

Example 2.9. In Example 2.3,

- 1. the {a} and {b, c} are $n^{**}b$ -open sets. {a} \cup {b, c} = {a, b, c} is $n^{**}b$ -open.
- 2. the {b, c} is n-open and {a, b, c} is $n^{**}b$ -open. {b, c} \cap {a, b, c} = {b, c} is $n^{**}b$ -open.

Theorem 2.10. Let A be a subset of a nano topological space U, if A is nl**b-closed, then

- 1. $**bC_n(A) A$ is n**b-closed.
- 2. A \cup (G **bC_n(A)) is n**b-open.

Proof:

- 1. Let A be a subset of a nano topological space U and A be nl^{**b} -closed.Then there exist a n-open set G in U \ni A = G \cap **bC_n(A).**bC_n(A) A = **bC_n(A) [U \cap **bC_n(A)] = **bC_n(A) \cap [U (G \cap **bC_n(A))] = **bC_n(A) \cap [(U G) \cup (U **bC_n(A)] = [**bC_n(A) \cap (U G)] \cup [**bC_n(A) \cap (U **bC_n(A))] = **bC_n(A) \cap (U G)] \cup [**bC_n(A) \cap (U **bC_n(A))] = **bC_n(A) \cap (U G) By Theorem 2.10 **bC_n(A) A is n**b-closed.
- 2. Since **bC_n(A) − A is n**b-closed.⇒ $[U (**bC_n(A) A)]$ is n**b-open. Consider $[U - (**bC_n(A) - A)] = U - [**bC_n(A) \cap A^c] = [U - **bC_n(A)] \cup [U - A^c] = (U - **bC_n(A)) \cup A \cup (U - **bC_n(A))$ is n**b-open.
- 3. It is clear that $A \subseteq [A \cup (U **bC_n(A))] = **bI_n[A \cup (U **bC_n(A))].$

Remark 2.11.

- 1. The arbitrary intersection of $n^{**}b$ -closed set is $n^{**}b$ -closed.
- 2. The intersection of a nl**b-closed set and nl-closed set is nl**b-closed.

Example 2.12. In Example 2.3,

- 1. the $\{b, d\}$ and $\{b, e\}$ are n**b-closed. $\{b, d\} \cap \{b, e\} = \{b\}$ is n**b-closed.
- 2. the {b, c, d, e} is nl**b-closed and {a, d, e} is nl-closed. {b, c, d, e} \cap {a, d, e} = {d, e} is n**b-closed.

Definition 2.13. Let $A,B \subseteq U$. Then A and B are said to be separated if $A \cap C_n(B) = \phi$ and $B \cap C_n(A) = \phi$.

Theorem 2.14. Suppose (U, N), is n-closed under finite unions of $n^{**}b$ -closed sets. Let A and B be the $nl^{**}b$ -closed sets. If A and B are separated, then $A \cup B$ is $nl^{**}b$ -closed.

Proof:

Since A and B are nl**b-closed. Therefore, $A = G \cap **bC_n(A)$ and $B = H \cap **bC_n(B)$, where Gand H are n-open in U. Put $K = G \cap (U - C_n(B))$ and $V = H \cap (U - C_n(A))$. Then
$$\begin{split} K \cap **bC_n(A) &= G \cap (U - C_n(B)) \cap **bC_n(A) = G \cap [U - C_n(B)) \cap **bC_n(A)] = \\ G \cap [**bC_n(A) \cap (U - C_n(B))] &= [G \cap **bC_n(A)] \cap (U - C_n(B)) = A \cap (U - C_n(B)) = \\ A \cap (C_n(B))^c = A.U \cap **bC_n(A) = A. \end{split}$$

Similarly , $V \cap **bC_n(B) = B$.

 $U \cap **bC_n(B) \subseteq K \cap C_n(B) = G \cap [(U - C_n(B)) \cap C_n(B)] = G \cap [(C_n(B))^c \cap C_n(B)] = G \cap \phi = \phi.$

 $U \cap **bC_n(B) = \phi$

Similarly, $V \cap **bC_n(A) = \phi$.

Since K and V are n-open

 $(K \cup V) \cap **bC_n(A \cup B) = (K \cup V) \cap (**bC_n(A) \cup **bC_n(B)) = (K \cap **bC_n(A)) \cup (K \cap **bC_n(B)) \cup (V \cap **bC_n(A)) \cup (V \cap **bC_n(B)) = A \cup \phi \cup \phi B = A \cup B.$

Hence, $A \cup B$ is n-closed.

3. CONCLUSION

This paper introduces the concept of nano **b-closed sets and investigates its significant characterizations with several theorems, assertions, and demonstrations. We anticipate that this work will serve as the foundation for a new structure, inspiring many people to contribute to the advancement of Nano continuity in mathematics.

REFERENCES

- [1] Lellis Thivagar, M., Carmel, R., International Journal of Mathematics and Statistics Invention, 1(1), 31, 2013.
- [2] Rajasekaran, I., *Asia Mathematika*, **5**(3), 84, 2021.
- [3] Bhuvaneshwari, K., Mythili Gnanapriya, K., *International Journal of Mathematics and its Application*, **4**(1-A), 101, 2016.