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Abstract.In this paper, we have studied various types of Monte Carlo methods along 

with the Power method to evaluate the maximum and minimum eigenvalue of a linear system 

of equations. We have studied how the accuracy of the maximum eigenvalue depends on the 

parameters,   (moves in Markova chain),   (no of Markova chain),   (accelerating 

parameter), and a parameter m (the power applied on the resolving matrix). We have applied 

these methods to the randomly chosen symmetric matrices. We have also made comparisons 

for the different matrices of different orders depending on the parameters by using the Monte 

Carlo methods. We are using Matlab 2020R for the calculation. 

Keywords: Monte Carlo Method; power method; Markov chain; eigenvalues. 

 

 

1. INTRODUCTION  

 

 

Let   be a real symmetric matrix. Let’s consider the eigenvalues problem of matrix   

 

        (1) 

 

The problem of computing the smallest eigenvalue of A is known to be more 

challenging numerically than the problem of determining the largest eigenvalue. Nonetheless, 

estimating the smallest eigenvalue is essential for numerous applications in physics and 

engineering because it usually defines the most stable state of the system described by the 

relevant matrix. There are numerous fields where we get problems in terms of probability. To 

deal with such a problem Monte Carlo method followed by the Markov chain was suggested 

to solve the problems of various areas. Monte Carlo algorithms correspondingly use the 

concept of the power method combined by the given matrix, the resolvent matrix and the 

reverse matrix with Monte Carlo iterations [1-8]. Several authors have worked on 

Advancement of Monte Carlo methods [9-20]. 

One of the important test elements where high-efficiency parallel algorithms are 

needed is the problem of plotting spectral matrices pictures. In stability analysis the spectral 

portraits are used. The fundamental idea of the Monte Carlo methods is that a random process 

is constructed in order to address a particular problem. A random process can be developed in 

such a way as to give an approximate solution to the problem under study or estimate an 

integral function of the solution by a certain random estimator over the samples of this 

process. Such a random process cannot be developed in general in a single way. Efficient 

algorithms for assessing smallest eigenvalue are not easy to find for large sparse matrices 
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although some authors have worked on advanced parallel algorithm to improve the efficiency 

of the method [21-34]. 

Numerical algorithms of Monte Carlo method can be divided into two classes - direct 

method and iterative method. Here we are considering iterative stationary linear Monte Carlo 

method for the evaluation of eigenvalues. Monte Carlo method is very sensitive about optimal 

parameters. Wrong choices of the parameters may lead to a divergence in the method. In this 

research work we worked on optimal parameters to deal the challenges. Organization of the 

study is as follows: In the first section some introduction along with previous work has been 

given. In the next section methodology of the Monte Carlo method has been given. In the 

third section some numerical examples are given to illustrate how the optimal parameters 

work for Markov chain. Finally results and discussion along with the conclusion have been 

presented. 

 

 

2. MATERIALS AND METHODS 

 

 

2.1. ITERATIVE MONTE CARLO METHODS 

 

 

Numerical algorithms of Monte Carlo can be divided into two classes – direct and 

iterative. Here we are presenting stationary linear algorithms from Monte Carlo for the 

evaluation of eigenvalues. 

 

 

2.2. POWER METHOD 

 

 

Suppose        is invertble,                      ,                , and 

                        . Given     , the power method produces a vector sequences 

     as follows: 

               

                        

                                   

(2) 

 

The iterations converge to an Eigenvalue of A, with the greatest magnitude 

(dominantly the own value), and with convergence rate, except for the special starting points. 
 

|        |    (|
  

  
|
 

)  

 

We shall take the smallest eigenvalue into consideration. The Power method is 

modified as follows in order to handle this and other cases. Replace matrix A with   in such 

away both the matrices A and   have different eigenvalues of their own but the same 

eigenvectors. Matrix P can select one of the three options listed below. 

a)         , referred to as the shifted power method for the appropriate shift  . 

b)        , referred to as the inverse power method, provided A is invertible.  

c)             , referred to as the inverse shifted power method provided   is 

invertible.  
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2.3. ALMOST OPTIMAL MONTE CARLO METHOD 
 

 

Consider a matrix     {   }     

 
          and vectors                       

and h =                   . The matrix transformation         is called iteration and 

has a fundamental role in iterative Monte Carlo methods. Consider the following Markov 

chain 

              (3) 
 

where                for            are natural numbers. The probability matrix P defines 

a Markov chain with states                  where       is an absorbing state and 

                       is the one step transition probability from state   to state  . This type 

of chain is called a Markov chain. It is also termed as a random walk, as it is homogeneous 

and finite. 

Let the trajectory is denoted as,                       . The initial state of the 

trajectory is         . It contains the sequence of states such as             ends with a 

final state which is known as an absorbing state such as         . Consider a vector 

                 where                 is the probability that a trajectory starts in state i.  

Mathematically, 
 

                                 ∑  

 

   

   (4) 

 

The probability to follow trajectory   is                                 We consider 

the space of trajectories and define the estimators 
 

               and                 . 
 

For a single trajectory                           the values of these estimators are 

defined as 

           
    

   
 

      ∑   

 

   

                      

 

where                random variables are also termed as weight functions whosevalues 

for a particular trajectory are given as 
 

               

                       

                                            
 

The above values are taken with probability                 is the kronecker 

symbol, i.e.,        if       and 0 otherwise). It can be proved that   and    are unbiased 

estimators of         
                                 

 

The chain (3) is constructed according to the rule as 
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∑      
   

  

  (             )  
|   |

∑ |   | 
   

             

(5) 

 

One can use the initial density vector            and the transition density matrix 

  (             ) to apply Almost Monte Carlo method.  

Now define the random variables    using the following recursion formula. 
 

   
   

   

    
            

       

             

 (     
)  (     )  

(6) 

 

     
 {     

}

 {         
}
 , for sufficiently large i (7) 

 

     

 

 
[∑       

  
   ]

 

 
[∑           

  
   ]

  (8) 

 

 

2.4. INVERSE SHIFTED MONTE CARLO METHOD (THE RESOLVENT MONTE CARLO 

METHOD) 
 

 

Now consider an algorithm based on Monte Carlo iterations by the resolvent matrix 

                    where   is an applied appropriate shift. The following 

presentation holds 

          ∑        
 

 

   

            

                {∑        
   

 

   

}   

 

 According to Monte Carlo algorithm, 
 

     
 

 
(   

 

    
)  

              

             
  

 
 ∑           

          
 
   

 ∑         
        

 
   

  

 
 ∑         

            
 
   

 ∑         
        

 
   

  

 

where     
   

   

 ,    are defined by (6) and   
 
 are binomial coefficients. Let us note that if 

     the algorithm evaluates maximum eigenvalue, if      the algorithm computes the 

minimum eigenvalue without inverting the matrix. This parameter could be used to control 
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the convergency. The following recursion formula is used to calculate the binomil coefficients 

    
  

    
          

         
     

 

The RMC algorithm's matrices should be carefully chosen in order to be 

applicable.The value of the parameter m is determined by the absolute error from the Power 

method applied to the resolvent matrix.The absolute error caused by representing the 

resolvent matrix as a series specifies the value of the variable  , and the values of m and   are 

not independent because they establish the binomial coefficients       
  which grow 

exponentially with  . 
 

 

2.5. THEOREM 
 

 

Let     
 

 be the largest eigenvalue of the matrix    {|   |}     

 
 If parameter   is 

chosen in such a way that |    
 

 |   , then  
 

                {∑        
        

 

   

}  (9) 

 

Proof: Since the expansion (8) converges in uniform operator topology it converges for any 

vector   

                {∑        
        

 

   

}  (10) 

 

For obtaining (10) from (9) one needs to apply (7) and to average every term of the 

presentation (10). Such averaging will be correct if       and   in (9) are replaced by their 

absolute values. If it is done the sum (9) will be finite since the condition |    
 

 |    is 

fulfilled. Thus, for a finite sum (9) there is a finite major ant summed over all terms and the 

expansion can be average over all terms. The theorem is proved. After some calculations one 

can obtain 

     
 

 
(   

 

    
)  

              

             
  

 
   ∑           

           
 
   

   ∑         
          

 
   

  

  
 {∑         

            
 
   }

 {∑         
        

 
   }

  

 

where    and    are defined by (6). The parameter     must be chosen in order to 

minimize the following expression 

       
       

       
  

or if       (        
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 ‖ ‖
  

 

However, a slightly different value of   ( 
 

‖ ‖
) may yield better results, when a 

number of algorithm realisations are considered.  
 

 

2.6. THE INVERSE MONTE CARLO ITERATIVE ALGORITHM (IMCI): 
 

 

When A is a non-singular matrix, the IMCI algorithm can be used. The smallest by 

modulus eigenvalue of A is much smaller than the other eigenvalues, the algorithm becomes 

more efficient. This algorithm can be implemented in two ways. 

We begin by computing the inversion of matrix A. Then, using iterations with the 

inverse matrix, apply the direct Monte Carlo algorithm. When we apply Resolvent Monte 

Carlo algorithm with       , i.e. 
 

     
 {∑         

            
 
   }

 {∑         
        

 
   }

  

 

 

3. NUMERICAL EXAMPLES 

 

 

3.1. EXAMPLE 1 

 

 

Let us consider A x = b to be a linear system of equations, where A       is a 

coefficient matrix,      is a column vector and   is a also a column vector, choosen 

randomly from the any four dimensional real space. The exact maximum eigenvalue of the 

matrix A is 1.341869385397356. 

 

  (

    
    
    
    

    
    
    
    

    
    
    
    

    
    
    
    

)    (

   
   
   
   

)    (

   
   
   
   

) 

 
Table 1. Calculation of Eigen values for different values of m &   by using RMC method when  =6,   =9. 

No.   m Max Eigen value Absolute error 

1.  0.365 3 1.613798889864895 0.272444913967647 

2.  0.438 3 1.255612556953081 0.085741418944167 

3.  0.510 3 1.258495739613585 0.082858236283663 

4.  0.583 3 1.290223849765392 0.051130126131856 

5.  0.656 3 1.343632363054793 0.002278387157545 
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Table 2. Calculation of Eigen values for different values of   when m &  are fixed by using RMC method. 

When   = 9, m = 3,   = 0.656. 

No.   Max Eigen value Absolute error 

1.  2 1.372919664841931 0.031565688944683 

2.  3 1.393132340671615 0.051778364774367 

3.  4 1.363465382862886 0.022111406965638 

4.  5 1.343632363054793 0.002278387157545 

5.  6 1.345167683205606 0.003813707308358 

 

3.2. EXAMPLE 2 

 

 

Let us consider A x = b be a linear system of equations, where         is a 

coefficient matrix,      is a column vector and   is a also a column vector, choosen 

randomly from the any five dimensional real space The exact maximum eigenvalue of the 

matrix A is 5.800000000000002. 
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Table 3. Calculation of Eigen values for different values of m &  by using RMC method, when  =5,   =16. 

No.   m Max Eigen value Absolute error 

1.  0.086 3 6.375886477253936 0.575886477253935 

2.  0.103 3 6.144106292513895 0.344106292513893 

3.  0.120 3 6.084206321399225 0.284206321399224 

4.  0.137 3 6.168443761220227 0.368443761220226 

5.  0.155 3 6.421559800643887 0.621559800643885 

 
Table 4. Calculation of Eigen values for different values of   when m &  are fixed by using RMC method, 

  =16, m=3,   =0.120. 

No.   Max Eigen value Absolute error 

1.  5 6.084206321399225 0.284206321399224 

2.  10 6.020614482144025 0.220614482144024 

3.  15 5.992782487839938 0.192782487839937 

4.  20 5.988353488256137 0.188353488256135 

5.  25 5.982723388980260 0.182723388980259 
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3.3. EXAMPLE 3 

 

 

Let us consider A x = b be a linear system of equations, where A       is a 

coefficient matrix,      is a column vector and   is a also a column vector, chosen 

randomly from the any six dimensional real space. The exact maximum eigenvalue of the 

matrix A is 20.999999999999993. 
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Table 5. Calculation of Eigen values for different values of m &  by using RMC method, when  =5,   =16. 

No.   m Max Eigen value Absolute error 

1.  0.023 3 22.764707533517416 1.764707533517424 

2.  0.028 3 21.794505896943459 0.794505896943466 

3.  0.033 3 21.613634579141195 0.613634579141202 

4.  0.038 3 22.167539215877234 1.167539215877241 

5.  0.042 3 23.121942269419300 2.121942269419307 

 
Table 6. Calculation of Eigen values for different values of   when m &  are fixed by using RMC method, 

when   = 16, m= 3,  =0.033. 

No.   Max Eigen value Absolute error 

1. 5 21.626732990665886 0.626732990665893 

2. 10 21.613634579141195 0.613634579141202 

3. 15 21.575979991094780 0.575979991094787 

4. 20 21.418615804831859 0.418615804831866 

5. 25 21.252610488358055 0.252610488358062 

 

 

3.4. EXAMPLE 4 
 

 

Let us consider another linear system of equations A x = b, where A       is a 

coefficient matrix,      is a column vector and   is a also a column vector, chosen 

randomly from the any seven dimensional real space. The maximum eigen value of the matrix 

A is 1.40000000000. 
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Table 7. Calculation of Eigen values for different values of m &  by using RMC method, 

when  =25,   =7. 

No.   m Max Eigen value Absolute error 

1. 0.357 3 1.635180872535320 0.235180872535320 

2. 0.428 3 1.612654955585784 0.212654955585784 

3. 0.500 3 1.638723010749928 0.238723010749928 

4. 0.521 3 1.653269274102666 0.253269274102666 

5. 0.571 3 1.695505263739988 0.295505263739988 

 
Table 8. Calculation of Eigen values for different values of   when m &  are fixed by using RMC   =7, 

when m=3,  =0.428 method. 

No.   Max Eigen value Absolute error 

1. 5 1.645738997710506 0.245738997710506 

2. 10 1.615343848580442 0.215343848580442 

3. 15 1.633170305676856 0.233170305676856 

4. 20 1.647414583060610 0.247414583060610 

5. 25 1.635180872535320 0.235180872535320 

 

 

3.5. EXAMPLE 5 

 

 

Let us consider another linear system of equations A x = b, where A       is a 

coefficient matrix,      is a column vector and   is a also a column vector, chosen 

randomly from the any eight dimensional real space. The maximum eigen value of matrix A 

is 8.350000000000001. 
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Table 9. Calculation of Eigen values for different values of m &  by using RMC method when  =6,   =16.  

No.   m Max Eigen value Absolute error 

1. 0.059 3 8.723307565754229 0.373307565754228 

2. 0.071 3 8.369707564900617 0.019707564900616 

3. 0.083 3 8.399291153619075 0.049291153619073 

4. 0.095 3 8.713310371717281 0.363310371717279 

5. 0.107 3 9.254281417603707 0.904281417603706 
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Table 10. Calculation of Eigen values for different values of   when m &  are fixed by using RMC 

method when   =16, m=3,  =0.071. 

No.   Max Eigen value Absolute error 

1. 2 8.388775113953232 0.038775113953230 

2. 3 8.332847707251782 0.017152292748220 

3. 4 8.333394730772749 0.016605269227252 

4. 5 8.353886995684995 0.003886995684994 

5. 6 8.369707564900617 0.019707564900616 

 

 

4. DISCUSSION 

 

 

Here we have some symmetric matrices of a different order as given in the examples. 

We will first apply the Almost Optimal Monte Carlo method to find the maximum eigenvalue 

of the coefficient matrix A as well as the Absolute error from the exact eigenvalue. For this, 

we first obtain a probability distribution matrix P as given in (5). Then we make a random 

absorbing Markov chain      of length   on the space set S = (1, 2, 3,...) according to the 

order of given matrices with 1 as the primary or initial stage according to equation (3). Then 

we find weights   (i=0, 1, 2......) for every Markov chain as (6). An expectation value 

according to equation (7) will give a maximum eigenvalue for matrix A for a sufficiently 

large value of i. For the resolvent Monte Carlo method we choose a suitable positive value of 

parameters   and m for the maximum eigenvalues. 

 

 

5. CONCLUSION 

 

 

This study presents different types of Monte Carlo methods to deal with probabilistic 

situations. Tables of comparison for the different order of matrices have been presented for 

maximum eigenvalues (depending upon the moves, length, and accelerating parameters of the 

Markov chain). We have concluded that by increasing the no of moves (in Markov chain) and 

no of trajectories we get results with more accuracy. We have found that a small change in 

parameter   produces a change in the maximum eigenvalue. So finally we must be very 

careful about the choice of the accelerating parameter   because the accuracy of the 

maximum eigenvalues strongly depends on it. 
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