HIGHER-ORDER ACCELERATIONS AND POLES UNDER THE ONEPARAMETER PLANAR DUAL MOTIONS AND THEIR INVERSE MOTIONS

SERDAL ŞAHİN ${ }^{1}$, MUTLU AKAR ${ }^{1}$, SALİM YÜCE ${ }^{1}$
Manuscript received: 02.04.2023; Accepted paper: 25.10.2023;
Published online: 30.12.2023.

Abstract

In this paper, after a brief summary of one-parameter planar dual motion [1], the higher-order accelerations and poles are analyzed under the one-parameter planar dual motion and its inverse.

Keywords: Dual numbers; planar dual motion; kinematics.

1. INTRODUCTION

Similar to complex numbers and hyperbolic numbers (split-complex numbers), dual numbers are extended the real numbers by adjoining one unreal element ϵ, where $\epsilon^{2}=0$. So, we can write the dual numbers set as below: $\mathbb{D}=\left\{z=x+\epsilon y \mid x, y \in \mathbb{R}, \quad \epsilon^{2}=0, \quad \epsilon \neq 0\right\}$.

Although the algebra of dual numbers firstly considered by Clifford, W.K. [2], its first application to kinematics and mechanics by Kotelnikov and Study [3]. The set of dual numbers \mathbb{D}, is two-dimensional, unit, commutative and associative ring over the real numbers. Dual plane can be formed by composition of all the dual numbers. The dual inner product and the modulus of a dual number $z=x+\epsilon y$ are defined by Yüce and Akar [1] and denoted as $\langle,\rangle_{d},\|z\|_{d}$ respectively. Then, if $\|z\|_{d}=0$, special modulus $\|z\|_{\delta}=|y|$ of the dual number z is defined. Also, every dual number z with nonzero modulus can be written as $z=r(\operatorname{cosg} \varphi+\epsilon \sin g \varphi)=r e^{\epsilon \varphi}$ and a dual rotation by $e^{\epsilon \varphi}$ corresponds to multiplication by the matrix [1]

$$
\left[\begin{array}{ll}
1 & 0 \tag{1}\\
\epsilon & 1
\end{array}\right]
$$

The higher-order accelerations and Poles were investigated under one-parameter planar complex motion by Müller [4] and one-parameter planar hyperbolic motion by Şahin and Yüce [5]. We are going to analyze the higher-order accelerations and Poles under oneparameter planar dual motion in a similar manner. In the paper [6], one-parameter motions on the Galilean plane were defined. Some Holditch-Type Theorems for the polar moments of inertia of the closed orbit curves presented during the 1-parameter closed homothetic motion [7, 8].

[^0]

2. ONE-PARAMETER PLANAR DUAL MOTION

Let \mathbb{D} and \mathbb{D}^{\prime} be moving and fixed dual planes and $\left\{O, \mathbf{d}_{1}, \mathbf{d}_{2}\right\},\left\{O^{\prime}, \mathbf{d}_{1}^{\prime}, \mathbf{d}_{2}^{\prime}\right\}$ be their orthonormal coordinate systems, respectively. If the vector $\overline{\mathbf{O O}^{\prime}}$ is represented by the dual number \mathbf{u}^{\prime}, then the motion can be defined by the transformation below:

$$
\begin{equation*}
\mathbf{z}^{\prime}=\mathbf{u}^{\prime}+\mathbf{z} e^{\epsilon \varphi} \tag{2}
\end{equation*}
$$

This transformation is called a one-parameter planar dual motion and denoted by $\mathbb{D} / \mathbb{D}^{\prime}$, where φ is the rotation angle of the motion $\mathbb{D} / \mathbb{D}^{\prime}$; that is, the dual angle between the vectors \mathbf{d}_{1} and \mathbf{d}_{1}^{\prime} and the dual numbers $\mathbf{z}=x_{1}+\epsilon x_{2}, \mathbf{z}^{\prime}=x_{1}^{\prime}+\epsilon x_{2}^{\prime}$ represent the point $Z \in \mathbb{D}$ with respect to the moving and the fixed perpendicular coordinate systems, respectively.
Besides, the rotation angle φ and $\mathbf{z}, \mathbf{z}^{\prime}, \mathbf{u}^{\prime}$ are continuously differentiable functions of a time parameter $t \in \mathbb{I} \subset \mathbb{R}$ and at a initial time $t=0$ the coordinate systems are coincident [1].

Let the dual number $\mathbf{u}=u_{1}+\epsilon u_{2}$ represent the origin of the fixed point system with respect to the moving system. Then, if we take $Z^{\prime}=O^{\prime}$, we obtain $\mathbf{z}^{\prime}=\mathbf{0}$ and $\mathbf{z}=\mathbf{u}$. Thus, we can obtain \mathbf{u}^{\prime} from the Eq. (2)

$$
\begin{equation*}
\mathbf{u}^{\prime}=-\mathbf{u} e^{\epsilon \varphi} . \tag{3}
\end{equation*}
$$

If Z is a moving point of \mathbb{D}, then the velocity of Z with respect to \mathbb{D} is known as the relative velocity of the motion $\mathbb{D} / \mathbb{D}^{\prime}$ and is denoted by V_{r}. This vector can be written as $\mathbf{V}_{\mathbf{r}}=\frac{d \mathbf{z}}{d t}=\dot{\mathbf{z}}$. This vector can be expressed with respect to \mathbb{D}^{\prime} by the equation below:

$$
\begin{equation*}
\mathbf{V}_{\mathbf{r}}^{\prime}=\mathbf{V}_{\mathbf{r}} e^{\epsilon \varphi}=\dot{\mathbf{z}} e^{\epsilon \varphi} . \tag{4}
\end{equation*}
$$

If we differentiate the Eq. (2) with respect to t, we obtain the absolute velocity of the motion $\mathbb{D} / \mathbb{D}^{\prime}$ as follows:

$$
\begin{equation*}
\mathbf{V}_{\mathbf{a}}^{\prime}=\frac{d \mathbf{z}^{\prime}}{d t}=\dot{\mathbf{z}}^{\prime}=\dot{\mathbf{u}}^{\prime}+(\dot{\mathbf{z}}+\epsilon \dot{\varphi} \mathbf{z}) e^{\epsilon \varphi}, \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{V}_{\mathbf{f}}^{\prime}=\dot{\mathbf{u}}^{\prime}+\epsilon \dot{\varphi} \mathbf{z} e^{\epsilon \varphi} \tag{6}
\end{equation*}
$$

is the sliding velocity of the motion $\mathbb{D} / \mathbb{D}^{\prime}$. By differentiating the Eq. (3) with respect to t, we also obtain the following equation:

$$
\begin{equation*}
\dot{\mathbf{u}}^{\prime}=-(\dot{\mathbf{u}}+\epsilon \mathbf{u} \dot{\varphi}) e^{\epsilon \varphi} . \tag{7}
\end{equation*}
$$

Hence, we can rewrite the sliding velocity as follows:

$$
\begin{equation*}
\mathbf{V}_{\mathbf{f}}^{\prime}=\epsilon \dot{\varphi} \mathbf{z} e^{\epsilon \varphi}-(\dot{\mathbf{u}}+\epsilon \mathbf{u} \dot{\varphi}) e^{\epsilon \varphi} . \tag{8}
\end{equation*}
$$

For a general one-parameter planar dual motions, there is a point that does not move, which means that its coordinates are the same in both reference coordinate systems $\left\{O ; \mathbf{d}_{1}, \mathbf{d}_{2}\right\}$ and $\left\{O^{\prime} ; \mathbf{d}_{1}^{\prime}, \mathbf{d}_{2}^{\prime}\right\}$. This point is called the pole point or the instantaneous rotation pole center. In this case, we obtain $\mathbf{V}_{\mathbf{f}}^{\prime}=\mathbf{0}$ and use the Eq. (8), then for the pole point $P=p_{1}+\epsilon p_{2}$ of the motion, we get

$$
\begin{equation*}
\epsilon \mathbf{p}=\epsilon \mathbf{u}+\frac{\dot{\mathbf{u}}}{\dot{\varphi}} \tag{9}
\end{equation*}
$$

so, from the Eqs. (8) and (9), we can rewrite the sliding velocity with the aid of the pole point as below:

$$
\begin{equation*}
\mathbf{V}_{\mathbf{f}}^{\prime}=\epsilon \dot{\varphi}(\mathbf{z}-\mathbf{p}) e^{\epsilon \varphi} . \tag{10}
\end{equation*}
$$

For more properties of one-parameter planar dual motion the reader can see the [1].

3. HIGHER-ORDER ACCELERATIONS AND POLES UNDER ONE-PARAMETER PLANAR DUAL MOTION

3.1. HIGHER-ORDER ACCELERATIONS UNDER THE ONE-PARAMETER PLANAR DUAL MOTIONS

Let the motion $\mathbb{D} / \mathbb{D}^{\prime}$ be the one-parameter planar Dual motion and let $Z \in \mathbb{D}$ be a fixed point. Then, the absolute velocity and the sliding velocity are equal to each other and this velocity is given as below:

$$
\begin{equation*}
\mathbf{V}_{\mathbf{a}}^{\prime}=\mathbf{V}_{\mathbf{f}}^{\prime}=\dot{\mathbf{z}}^{\prime}=\dot{\mathbf{u}}^{\prime}+\epsilon \dot{\varphi}\left(\mathbf{z}^{\prime}-\mathbf{u}^{\prime}\right) . \tag{11}
\end{equation*}
$$

If we differentiate the Eq. (11) with respect to t, then we obtain the second-order velocity (absolute velocity or sliding velocity) as below:

$$
\begin{equation*}
\ddot{\mathbf{z}}^{\prime}=\ddot{\mathbf{u}}^{\prime}+\epsilon \ddot{\varphi}\left(\mathbf{z}^{\prime}-\mathbf{u}^{\prime}\right)+\epsilon \dot{\varphi}\left(\dot{\mathbf{z}}^{\prime}-\dot{\mathbf{u}}^{\prime}\right) . \tag{12}
\end{equation*}
$$

or from the Eq. (11) and latter equation, we obtain the second-order velocity (or the first-order acceleration) as below:

$$
\begin{equation*}
\ddot{\mathbf{z}}^{\prime}=\ddot{\mathbf{u}}^{\prime}+\epsilon \ddot{\varphi}\left(\mathbf{z}^{\prime}-\mathbf{u}^{\prime}\right) . \tag{13}
\end{equation*}
$$

Then, if we differentiate the Eq. (13) with respect to t, then we obtain the third-order velocity (or the second-order acceleration) as below:

$$
\begin{equation*}
\dddot{\mathbf{z}}^{\prime}=\dddot{\mathbf{u}}^{\prime}+\epsilon \dddot{\varphi}\left(\mathbf{z}^{\prime}-\mathbf{u}^{\prime}\right) . \tag{14}
\end{equation*}
$$

If we differentiate the Eq. (14) with respect to t, then we obtain the fourth-order velocity (or the third-order acceleration) as below:

$$
\begin{equation*}
\mathbf{z}^{\prime}=\mathbf{u}^{\prime}+\epsilon \varphi\left(\mathbf{z}^{\prime}-\mathbf{u}^{\prime}\right) \tag{15}
\end{equation*}
$$

If we continue to subsequent differentiations, we can get higher-order velocities and accelerations. So, we can give the following theorem:

Theorem 1. During the one-parameter planar dual motion $\mathbb{D} / \mathbb{D}^{\prime}$, if $Z \in \mathbb{D}$ is a fixed point, then we get

$$
\begin{equation*}
\stackrel{(\mathbf{n})}{\mathbf{z}^{\prime}}=\stackrel{(\mathbf{n})}{\mathbf{u}^{\prime}}+\epsilon \stackrel{(n)}{\varphi}\left(\mathbf{z}^{\prime}-\mathbf{u}^{\prime}\right) \tag{16}
\end{equation*}
$$

for the velocities from nth order and the acceleration from $(n-1)$ th order for each t.
Proof: We are going to use the induction method. First of all we can see above that the Eq. (16) is true for $n=1, n=2, n=3$ and $n=4$. Now we assume that the Eq. (16) is true for $n=k$ and prove that it is true for $n=k+1$. Hence, if we assume that

$$
\begin{align*}
& (\mathbf{k}) \tag{17}\\
& \mathbf{z}^{\prime}
\end{align*}=\stackrel{\left(\mathbf{k}^{\prime}\right)}{\mathbf{u}^{\prime}}+\epsilon{\stackrel{(k)}{\varphi}\left(\mathbf{z}^{\prime}-\mathbf{u}^{\prime}\right)}^{\left.()^{\prime}\right)}
$$

is true, we can obtain

$$
\begin{equation*}
\stackrel{(\mathbf{k}+1)}{\mathbf{z}^{\prime}}=\stackrel{(\mathbf{k}+1)}{\left.\mathbf{u}^{\prime}\right)}+\epsilon \stackrel{(k+1)}{\varphi}\left(\mathbf{z}^{\prime}-\mathbf{u}^{\prime}\right)+\epsilon \stackrel{(k)}{\varphi}\left(\mathbf{z}^{\prime}-\dot{\mathbf{u}}^{\prime}\right) \tag{18}
\end{equation*}
$$

by differentiation the latter expression. So, from the Eq. (11) and latter equation we have

$$
\begin{equation*}
\stackrel{(\mathbf{k}+1)}{\mathbf{z}^{\prime}}=\stackrel{(\mathbf{k}+1)}{\mathbf{u}^{\prime}}+\epsilon \stackrel{(k+1)}{\varphi}\left(\mathbf{z}^{\prime}-\mathbf{u}^{\prime}\right) . \tag{19}
\end{equation*}
$$

Consequently, we have been proved theorem (11) by the induction method.

3.2. HIGHER-ORDER POLES UNDER THE ONE-PARAMETER PLANAR DUAL MOTIONS

During the one-parameter planar dual motion $\mathbb{D} / \mathbb{D}^{\prime}$, if $Z \in \mathbb{D}$ is a fixed point, then from the Eq. (11), we can calculate the first-order pole point as follows:

$$
\begin{equation*}
\epsilon \mathbf{p}_{1}^{\prime}=\epsilon \mathbf{Z}^{\prime}=\epsilon \mathbf{u}^{\prime}-\frac{\dot{\mathbf{u}}^{\prime}}{\dot{\varphi}} . \tag{20}
\end{equation*}
$$

By using the Eq. (13), we obtain the second-order pole point as below:

$$
\begin{equation*}
\epsilon \mathbf{p}_{2}^{\prime}=\epsilon \mathbf{Z}^{\prime}=\epsilon \mathbf{u}^{\prime}-\frac{\ddot{\mathbf{u}}^{\prime}}{\ddot{\varphi}} \tag{21}
\end{equation*}
$$

In a similar way, from the Eq. (16), we can get the $(n-1)$ th-order acceleration pole as shown below

$$
\begin{equation*}
\epsilon \mathbf{P}_{n}^{\prime}=\epsilon \mathbf{Z}^{\prime}=\epsilon \mathbf{u}^{\prime}-\frac{(\mathbf{n})}{\left(\mathbf{\mathbf { u } ^ { \prime }}\right.} \underset{\underline{\varphi} \mathbf{(\mathbf { n })}}{ } . \tag{22}
\end{equation*}
$$

Also, from the Eq. (22) we have the following:

$$
\begin{equation*}
{\stackrel{(n)}{u^{\prime}}=\epsilon{\stackrel{(n)}{\varphi}\left(\mathbf{u}^{\prime}-\mathbf{p}_{n}^{\prime}\right) .}^{\text {. }} \text {. }}_{\text {. }} \tag{23}
\end{equation*}
$$

So, if we use the Eq. (16) and the latter equation, we can rewrite $\mathbf{z}^{(\mathbf{n})}$ in terms of \mathbf{p}_{n}^{\prime} as follows:

$$
\begin{equation*}
\stackrel{(\mathbf{n})}{\mathbf{z}^{\prime}}=\epsilon{\stackrel{(n)}{ }\left(\mathbf{z}^{\prime}-\mathbf{p}_{n}^{\prime}\right) .}^{\text {. }} \tag{24}
\end{equation*}
$$

We can give the following theorems via the Eq. (24):
Theorem 2. The absolute value of higher-order accelerations under the one-parameter planar dual motion is rational with distance between the point Z and corresponding pole point. Higher order accelerations take the same value over the circles centered the pole points.

Theorem 3. The vectors ${ }^{(\mathbf{n})} \mathbf{z}^{\prime}$ and $\mathbf{P}_{\mathbf{n}}^{\prime} \mathbf{Z}^{\prime}$ are perpendicular each other.
Example 1. Let us consider the one-parameter planar dual motion with $u(t)=e^{-t}+\epsilon e^{-t}, \varphi(t)=e^{-t}$. In this case, on the plane \mathbb{D}^{\prime} we show the orbit curve of point $1+2 \epsilon \in \mathbb{D}$ by using Maple programming for $t \in[-1,5]$.

Figure 1. The orbit curve of point $1+2 \epsilon \in \mathbb{D}$.
We calculate higher-order accelerations and poles under this motion

$$
\begin{aligned}
& (\mathbf{n}) \\
& \mathbf{z}^{\prime}=e^{-t}+2^{n} e^{-2 t} \epsilon \text {, if } n \text { is odd, } \\
& \left(\begin{array}{l}
(\mathbf{n}) \\
\mathbf{z}^{\prime}
\end{array}=-e^{-t}-2^{n} e^{-2 t} \epsilon, \text { if } n\right. \text { is even }
\end{aligned}
$$

and

$$
\epsilon \mathbf{p}_{n}^{\prime}=1+\left(1+\left(2^{n}-1\right) e^{-t}\right) \epsilon
$$

4. THE INVERSE MOTION OF THE ONE-PARAMETER PLANAR DUAL MOTION

In the inverse motion of the one-parameter planar dual motion \mathbb{D} and \mathbb{D}^{\prime} fixed and moving dual planes and $\left\{O, \mathbf{d}_{1}, \mathbf{d}_{2}\right\},\left\{O^{\prime}, \mathbf{d}_{1}{ }^{\prime}, \mathbf{d}_{2}{ }^{\prime}\right\}$ are their orthonormal coordinate systems, respectively. In this motion all of the velocities, accelerations and poles are analyzed in \mathbb{D}, instead of \mathbb{D}^{\prime}. This is the main difference from the one-parameter planar dual motion. So, from the Eq. (2), we can obtain the transformation of the inverse motion of the one-parameter planar dual motion as below:

$$
\mathbf{z}=\left(\mathbf{z}^{\prime}-\mathbf{u}^{\prime}\right) e^{-\epsilon \varphi}
$$

and the Eq. (3) can be written as follows:

$$
\begin{equation*}
\mathbf{z}=\mathbf{u}+\mathbf{z}^{\prime} e^{-\epsilon \varphi} . \tag{25}
\end{equation*}
$$

and denoted by $\mathbb{D}^{\prime} / \mathbb{D}$, also called one-parameter planar inverse dual motion, where $-\varphi$ is the rotation angle of the motion $\mathbb{D}^{\prime} / \mathbb{D}$. In analogy to the motion $\mathbb{D} / \mathbb{D}^{\prime}$, we can get the velocities, accelerations and poles, for the motion $\mathbb{D}^{\prime} / \mathbb{D}$. But we want to focus on higher-order accelerations and poles.

4.1. HIGHER-ORDER ACCELERATIONS UNDER THE ONE-PARAMETER PLANAR INVERSE DUAL MOTIONS

During the motion $\mathbb{D}^{\prime} / \mathbb{D}, Z^{\prime}$ be a fixed point of \mathbb{D}^{\prime} dual plane and denoted by $\mathbf{z}^{\prime} \in \mathbb{D}^{\prime}$. Under the motion $\mathbb{D}^{\prime} / \mathbb{D}$ with the $\mathbf{z}^{\prime} \in \mathbb{D}^{\prime}$ is a fixed point, the absolute velocity and the sliding velocity are equal to each other and this velocity is given as below:

$$
\dot{\mathbf{z}}=\dot{\mathbf{u}}-\epsilon \dot{\varphi} \mathbf{z}^{\prime} e^{-\epsilon \varphi}
$$

It is convenient to write the latter equation as follows:

$$
\begin{equation*}
\dot{\mathbf{z}}=\dot{\mathbf{u}}-\epsilon \dot{\varphi}(\mathbf{z}-\mathbf{u}) \tag{26}
\end{equation*}
$$

If we differentiate the Eq. (26) with respect to t, then we obtain the second-order velocity (absolute velocity or sliding velocity) as below:

$$
\ddot{\mathbf{z}}=\ddot{\mathbf{u}}-\epsilon \ddot{\varphi}(\mathbf{z}-\mathbf{u})-\epsilon \dot{\varphi}(\dot{\mathbf{z}}-\dot{\mathbf{u}})
$$

or from the Eq. (26) and latter equation, we obtain the second-order velocity (or the first-order acceleration) as below:

$$
\begin{equation*}
\ddot{\mathbf{z}}=\ddot{\mathbf{u}}-\epsilon \ddot{\varphi}(\mathbf{z}-\mathbf{u}) \tag{27}
\end{equation*}
$$

If we differentiate the Eq. (27) with respect to t, then we obtain the third-order velocity (or the second-order acceleration) such as,

$$
\begin{equation*}
\dddot{\mathbf{z}}=\dddot{\mathbf{u}}-\epsilon \dddot{\varphi}(\mathbf{z}-\mathbf{u}) . \tag{28}
\end{equation*}
$$

Similarly, if we differentiate the Eq. (28) with respect to t, then we obtain the fourthorder velocity (or the third-order acceleration) as below:

$$
\begin{align*}
& (4) \tag{29}\\
& \mathbf{z}=\mathbf{u}-\epsilon^{(4)} \boldsymbol{\varphi}(\mathbf{z}-\mathbf{u}) .
\end{align*}
$$

If we continue to subsequent differentiations, we can get higher-order velocities and accelerations. So, we can give the following theorem:

Theorem 4. During the inverse motion of the one-parameter planar dual motion $\mathbb{D}^{\prime} / \mathbb{D}$, if $Z^{\prime} \in \mathbb{D}^{\prime}$ is a fixed point then, we get

$$
\begin{array}{ll}
(\mathbf{n}) \tag{30}\\
\mathbf{Z} & =\mathbf{u}) \\
\mathbf{u}-\epsilon(\mathbf{Z}) \\
\boldsymbol{Z}-\mathbf{u})
\end{array}
$$

for the velocities from n th-order and the acceleration from $(n-1)$ th-order, for each t.
Proof: We are going to use the induction method. First of all we can see above that the Eq. (30) is true for $n=1, n=2, n=3$ and $n=4$. Now we assume that the Eq. (30) is true for $n=k$ and prove that it is true for $n=k+1$. Hence, if we assume that

$$
\stackrel{(\mathbf{k})}{\mathbf{z}=\stackrel{(\mathbf{k})}{\mathbf{u}}-\epsilon \stackrel{(\mathbf{k})}{\boldsymbol{\varphi}}(\mathbf{z}-\mathbf{u})}
$$

is true, we can obtain

$$
\begin{equation*}
\stackrel{(\mathbf{k}+1)}{\mathbf{z}}=\stackrel{(\mathbf{k}+1)}{\mathbf{u})}-\epsilon^{(\mathbf{k}+1)} \boldsymbol{\varphi}(\mathbf{z}-\mathbf{u})-\epsilon^{(\mathbf{k})} \mathbf{\varphi}_{\mathbf{z}}(\dot{\mathbf{z}}-\dot{\mathbf{u}}) \tag{31}
\end{equation*}
$$

by differentiation the latter expression. So, from the last equation and the Eq. (26) we have

$$
\stackrel{(\mathbf{k}+\mathbf{1})}{\mathbf{Z}}=\stackrel{(\mathbf{k}+\mathbf{1})}{\mathbf{u}}-\epsilon \stackrel{(\mathbf{k}+\mathbf{1})}{\boldsymbol{\varphi}}(\mathbf{z}-\mathbf{u})
$$

As a result, we have been proved theorem 4 by the induction method.

4.2. HIGHER-ORDER POLES UNDER THE INVERSE MOTION OF THE ONEPARAMETER PLANAR DUAL MOTIONS

During the inverse motion of the one-parameter planar dual motion $\mathbb{D}^{\prime} / \mathbb{D}$ and in the case of $Z^{\prime} \in \mathbb{D}^{\prime}$ is a fixed point, from the Eq. (26) we can calculate the first order pole point as below:

$$
\begin{equation*}
\epsilon \mathbf{q}_{1}=\epsilon \mathbf{Z}=\epsilon \mathbf{u}+\frac{\dot{\mathbf{u}}}{\dot{\varphi}} \tag{32}
\end{equation*}
$$

Using the Eq. (13), we obtain the second order pole point as below:

$$
\begin{equation*}
\epsilon \mathbf{q}_{2}=\epsilon \mathbf{Z}=\epsilon \mathbf{u}+\frac{\ddot{\mathbf{u}}}{\ddot{\varphi}} . \tag{33}
\end{equation*}
$$

In a similar way, from the Eq. (30), we can get the $(n-1)$ th-order acceleration pole as follows:

$$
\begin{equation*}
\epsilon \mathbf{q}_{n}=\epsilon \mathbf{Z}=\epsilon \mathbf{u}+\frac{(\mathbf{n})}{(\mathbf{u})} \underset{\boldsymbol{\varphi})}{(\mathbf{n})} . \tag{34}
\end{equation*}
$$

Also, from the Eq. (34), we can write the following equation:

$$
\stackrel{(\mathbf{n})}{\mathbf{u}}=-\epsilon-{\stackrel{(\mathbf{n})}{\boldsymbol{\varphi}}\left(\mathbf{u}-\mathbf{q}_{n}\right) .}^{(0)}
$$

So, if we use the Eq. (30), and the latter equation, we can rewrite ${ }^{(\mathbf{n})}$ in terms of \mathbf{q}_{n} as follows:

$$
\begin{equation*}
\stackrel{(\mathbf{n})}{\mathbf{z}}=-\epsilon \stackrel{(\mathbf{n})}{\boldsymbol{\varphi}}\left(\mathbf{z}-\mathbf{q}_{n}\right) . \tag{35}
\end{equation*}
$$

The theorem 2 and the theorem 3 can be also obtained for inverse motion of the oneparameter planar dual motions in similar way.

5. CONCLUSION

The higher-order accelerations and poles are obtained under the one-parameter planar dual motion and its inverse. In addition, on the dual plane under this motion, the orbit curve of a point is sketched by using Maple programming.

REFERENCES

[1] Yüce S., Akar, M., Chiang Mai Journal Science, 41(2), 463, 2014.
[2] Clifford, W.K., Proceedings London Mathematical Society, 4(64), 381, 1873.
[3] Study, E., Geometrie der Dynamen, Verlag Teubner, Leipzig, 1903.
[4] Blaschke, W., Müller, H.R., Ebene Kinematik, Verlag Oldenbourg, Munchen, 1956.
[5] Şahin, S., Yüce, S., Mathematical Problems Engineering, 2014, 1, 2014.
[6] Akar, M., Yüce, S., Kuruoğlu, N., International Electronic Journal Geometry, 6(1), 79, 2013.
[7] Akar, M., Yüce, S., Journal Science Arts, 2(55), 329, 2021.
[8] Akar, M., Yüce, S., Proceedings Dynamic Systems Applications, 6, 14, 2012.

[^0]: ${ }^{1}$ Yildiz Technical University, College of Arts and Sciences, Department of Mathematics, 34210 Esenler, Istanbul, Turkey. E-mail: sserdal433@gmail.com; makar@yildiz.edu.tr; sayuce@yildiz.edu.tr.

