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Abstract. In this paper, after a brief summary of one-parameter planar dual motion 

[1], the higher-order accelerations and poles are analyzed under the one-parameter planar 

dual motion and its inverse.  
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1. INTRODUCTION 

 

 

Similar to complex numbers and hyperbolic numbers (split-complex numbers), dual 

numbers are extended the real numbers by adjoining one unreal element , where 2 0 . So, 

we can write the dual numbers set as below:  2, , 0, 0z x y x y     ∣ . 

Although the algebra of dual numbers firstly considered by Clifford, W.K. [2], its first 

application to kinematics and mechanics by Kotelnikov  and Study [3]. The set of dual 

numbers , is two-dimensional, unit, commutative and associative ring over the real 

numbers. Dual plane can be formed by composition of all the dual numbers. The dual inner 

product and the modulus of a dual number z x y   are defined by Yüce and Akar [1] and 

denoted as ,
d

, 
d

z  respectively. Then, if 0
d

z  , special modulus z y

  of the dual 

number z  is defined. Also, every dual number z  with nonzero modulus can be written as 

( )z r cosg sing re      and a dual rotation by e   corresponds to multiplication by the 

matrix [1] 

1 0

1

 
 
 

 (1) 

 

The higher-order accelerations and Poles were investigated under one-parameter 

planar complex motion by Müller [4] and one-parameter planar hyperbolic motion by Şahin 

and Yüce [5]. We are going to analyze the higher-order accelerations and Poles under one-

parameter planar dual motion in a similar manner. In the paper [6], one-parameter motions on 

the Galilean plane were defined. Some Holditch-Type Theorems for the polar moments of 

inertia of the closed orbit curves presented during the 1-parameter closed homothetic motion 

[7, 8]. 
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2. ONE-PARAMETER PLANAR DUAL MOTION 

 

 

Let  and   be moving and fixed dual planes and{ , , }O 1 2d d , { , , }O  
1 2d d  be their 

orthonormal coordinate systems, respectively. If the vector OO  is represented by the dual 

number u , then the motion can be defined by the transformation below: 

 

e   z u z  (2) 

 

This transformation is called a one-parameter planar dual motion and denoted by 

/  , where   is the rotation angle of the motion /  ; that is, the dual angle between the 

vectors 
1d  and 

1d  and the dual numbers 1 2x x z , 1 2x x   z  represent the point Z  

with respect to the moving and the fixed perpendicular coordinate systems, respectively.  

Besides, the rotation angle   and z , z , u  are continuously differentiable functions of a 

time parameter t   and at a initial time 0t   the coordinate systems are coincident [1].  

Let the dual number 1 2u u u  represent the origin of the fixed point system with 

respect to the moving system. Then, if we take Z O  , we obtain  z 0  and z u . Thus, we 

can obtain u  from the Eq. (2)   

e   u u . (3) 

 

If Z  is a moving point of , then the velocity of Z  with respect to  is known as 

the relative velocity of the motion /   and is denoted by rV . This vector can be written as 

d

dt
 r

z
V z .  This vector can be expressed with respect to   by the equation below: 

 

e e   r rV V z . (4) 

 

If we differentiate the Eq. (2) with respect to t , we obtain the absolute velocity of the 

motion /   as follows: 

 

( )
d

e
dt




      a

z
V z u z z , (5) 

 

where  

e   fV u z , (6) 

 

is the sliding velocity of the motion  /  . By differentiating the Eq. (3) with respect to t , 

we also obtain the following equation: 

 

( )e    u u u . (7) 

 

Hence, we can rewrite the sliding velocity as follows: 

 

( )e e     fV z u u . (8) 
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For a general one-parameter planar dual motions, there is a point that does not move, 

which means that its coordinates are the same in both reference coordinate systems 

{ ; , }O 1 2d d  and { ; , }O  
1 2d d . This point is called the pole point or the instantaneous rotation 

pole center. In this case, we obtain  fV 0  and use the Eq. (8), then for the pole point 

1 2P p p   of the motion, we get 

 


 

u
p u  (9) 

 

so, from the Eqs. (8) and (9), we can rewrite the sliding velocity with the aid of the pole point 

as below:   

( )e   fV z p . (10) 

 

For more properties of one-parameter planar dual motion the reader can see the [1]. 

 

 

3. HIGHER-ORDER ACCELERATIONS AND POLES UNDER ONE-PARAMETER 

PLANAR DUAL MOTION 

 

 

3.1. HIGHER-ORDER ACCELERATIONS UNDER THE ONE-PARAMETER PLANAR 

DUAL MOTIONS  

 

 

Let the motion /   be the one-parameter planar Dual motion and let Z  be a 

fixed point. Then, the absolute velocity and the sliding velocity are equal to each other and 

this velocity is given as below: 

 

( )         a fV V z u z u . (11) 

 

If we differentiate the Eq. (11) with respect to t , then we obtain the second-order 

velocity (absolute velocity or sliding velocity) as below: 

 

( ) ( )          z u z u z u . (12) 

 

or from the Eq. (11) and latter equation, we obtain the second-order velocity (or the first-order 

acceleration) as below: 

( )     z u z u . (13) 

 

Then, if we differentiate the Eq. (13) with respect to t, then we obtain the third-order 

velocity (or the second-order acceleration) as below: 

 

( ).     z u z u  (14) 

 

If we differentiate the Eq. (14) with respect to t , then we obtain the fourth-order 

velocity (or the third-order acceleration) as below: 
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( ) ( ) (4)

( )     
4 4

z u z u . (15) 

 

If we continue to subsequent differentiations, we can get higher-order velocities and 

accelerations. So, we can give the following theorem: 

 

Theorem 1. During the one-parameter planar dual motion /  , if Z  is a fixed point, 

then we get  
( ) ( ) ( )

( )
n

     
n n

z u z u  (16) 

 

for the velocities from n th order and the acceleration from  1n th order for each t . 

 

Proof: We are going to use the induction method. First of all we can see above that the Eq. 

(16) is true for 1n  , 2n  , 3n   and 4n  . Now we assume that the Eq. (16) is true for 

n k  and prove that it is true for 1n k  . Hence, if we assume that  

 
( ) ( ) ( )

( )
k

     
k k

z u z u  (17) 

 

is true, we can obtain  

 
( ) ( ) ( 1) ( )

( ) ( )
k k

 
  

         
k 1 k 1

z u z u z u  (18) 

 

by differentiation the latter expression. So, from the Eq. (11) and latter equation we have  

 
( ) ( ) ( 1)

( )
k


  

     
k 1 k 1

z u z u . (19) 

 

Consequently, we have been proved theorem (11) by the induction method. 

 

 

3.2. HIGHER-ORDER POLES UNDER THE ONE-PARAMETER PLANAR DUAL MOTIONS 

 

 

During the one-parameter planar dual motion /  , if Z  is a fixed point, then 

from the Eq. (11), we can calculate the first-order pole point as follows: 

 

1



    

u
p z u . (20) 

 

By using the Eq. (13), we obtain the second-order pole point as below: 

  

2



    

u
p z u . (21) 

 

In a similar way, from the Eq. (16), we can get the ( 1)n  th-order acceleration pole as 

shown below 
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( )

( )n


    

n

n

u
p z u

φ

. (22) 

 

Also, from the Eq. (22) we have the following: 

 
( ) ( )

( )
n n

nu    u p . (23) 

 

So, if we use the Eq. (16) and the latter equation, we can rewrite 
( )


n

z  in terms of n
p  as 

follows: 
( ) ( )

( )
n

n   
n

z z p . (24) 

 

We can give the following theorems via the Eq. (24): 

 

Theorem 2. The absolute value of higher-order accelerations under the one-parameter planar 

dual motion is rational with distance between the point Z  and corresponding pole point. 

Higher order accelerations take the same value over the circles centered the pole points.  

 

Theorem 3. The vectors 
( )


n

z  and  
nP Z  are perpendicular each other.    

 

Example 1. Let us consider the one-parameter planar dual motion with 

( ) , ( )t t tu t e e t e     . In this case, on the plane   we show the orbit curve of point 

1 2   by using Maple programming for [ 1,5]t  . 

 

 
Figure 1. The orbit curve of point 1 2  . 

 

We calculate higher-order accelerations and poles under this motion 

 
( )

22t n te e   
n

z , if n is odd, 

 
( )

22t n te e    
n

z , if n is even 

and 

1 (1 (2 1) )n t

n e    p . 
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4. THE INVERSE MOTION OF THE ONE-PARAMETER PLANAR DUAL MOTION 

 

 

In the inverse motion of the one-parameter planar dual motion  and   fixed and 

moving dual planes and { , , }O 1 2d d , { , , }O  
1 2d d  are their orthonormal coordinate systems, 

respectively. In this motion all of the velocities, accelerations and poles are analyzed in , 

instead of  . This is the main difference from the one-parameter planar dual motion. So, 

from the Eq. (2), we can obtain the transformation of the inverse motion of the one-parameter 

planar dual motion as below:  

 

( )e   z z u  

 

and the Eq. (3) can be written as follows: 

 

e  z u z . (25) 

 

and denoted by / , also called one-parameter planar inverse dual motion, where   is the 

rotation angle of the motion / . In analogy to the motion /  , we can get the velocities, 

accelerations and poles, for the motion / . But we want to focus on higher-order 

accelerations and poles.  

 

 

4.1. HIGHER-ORDER ACCELERATIONS UNDER THE ONE-PARAMETER PLANAR 

INVERSE DUAL MOTIONS 

 

 

During the motion / , Z   be a fixed point of   dual plane and denoted by  z . 

Under the motion /  with the  z  is a fixed point, the absolute velocity and the sliding 

velocity are equal to each other and this velocity is given as below: 

 

e   z u z . 

 

It is convenient to write the latter equation as follows: 

 

( )  z u z u . (26) 

 

If we differentiate the Eq. (26) with respect to t , then we obtain the second-order 

velocity (absolute velocity or sliding velocity) as below: 

 

( ) ( )     z u z u z u  

 

or from the Eq. (26) and latter equation, we obtain the second-order velocity (or the first-order 

acceleration) as below:   

( )  z u z u . (27) 

 

If we differentiate the Eq. (27) with respect to t , then we obtain the third-order 

velocity (or the second-order acceleration) such as, 
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( )  z u z u . (28) 

 

Similarly, if we differentiate the Eq. (28) with respect to t , then we obtain the fourth-

order velocity (or the third-order acceleration) as below: 

 
( ) ( ) ( )

( )  
4 4 4

z u φ z u . (29) 

 

If we continue to subsequent differentiations, we can get higher-order velocities and 

accelerations. So, we can give the following theorem: 

 

Theorem 4. During the inverse motion of the one-parameter planar dual motion / , if 

Z   is a fixed point then, we get  

 
( ) ( ) ( )

( )  
n n n

z u φ z u . (30) 

 

for the velocities from n th-order and the acceleration from ( 1)n  th-order, for each t . 

 

Proof: We are going to use the induction method. First of all we can see above that the Eq. 

(30) is true for 1n  , 2n  , 3n   and 4n  . Now we assume that the Eq. (30) is true for 

n k  and prove that it is true for 1n k  . Hence, if we assume that  

 
( ) ( ) ( )

( )  
k k k

z u φ z u  

is true, we can obtain  

 
( ) ( ) ( ) ( )

( ) ( )
  

    
k 1 k 1 k 1 k

z u φ z u φ z u  (31) 

 

by differentiation the latter expression. So, from the last equation and the Eq. (26) we have  

 
( ) ( ) ( )

( )
  

  
k 1 k 1 k 1

z u φ z u . 

 

As a result, we have been proved theorem 4 by the induction method. 

 

 

4.2. HIGHER-ORDER POLES UNDER THE INVERSE MOTION OF THE ONE-

PARAMETER PLANAR DUAL MOTIONS 

 

 

During the inverse motion of the one-parameter planar dual motion /  and in the 

case of Z   is a fixed point, from the Eq. (26) we can calculate the first order pole point as 

below:  

1


  
u

q z u . (32) 

 

Using the Eq. (13), we obtain the second order pole point as below:  
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2


  
u

q z u . (33) 

 

In a similar way, from the Eq. (30), we can get the ( 1)n  th-order acceleration pole as 

follows: 
( )

( )n   

n

n

u
q z u

φ

. (34) 

 

Also, from the Eq. (34), we can write the following equation:  

 
( ) ( )

( )n  
n n

u φ u q . 

 

So, if we use the Eq. (30), and the latter equation, we can rewrite 
( )n

z  in terms of nq  as 

follows: 
( ) ( )

( )n  
n n

z φ z q . (35) 

 

The theorem 2 and the theorem 3 can be also obtained for inverse motion of the one-

parameter planar dual motions in similar way. 

 

 

5. CONCLUSION 

 

 

The higher-order accelerations and poles are obtained under the one-parameter planar 

dual motion and its inverse. In addition, on the dual plane under this motion, the orbit curve of 

a point is sketched by using Maple programming. 
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