ORIGINAL PAPER

HIGHER-ORDER ACCELERATIONS AND POLES UNDER THE ONE-PARAMETER PLANAR DUAL MOTIONS AND THEIR INVERSE MOTIONS

SERDAL ŞAHİN¹, MUTLU AKAR¹, SALİM YÜCE¹

Manuscript received: 02.04.2023; Accepted paper: 25.10.2023; Published online: 30.12.2023.

Abstract. In this paper, after a brief summary of one-parameter planar dual motion [1], the higher-order accelerations and poles are analyzed under the one-parameter planar dual motion and its inverse.

Keywords: Dual numbers; planar dual motion; kinematics.

1. INTRODUCTION

Similar to complex numbers and hyperbolic numbers (split-complex numbers), dual numbers are extended the real numbers by adjoining one unreal element ϵ , where $\epsilon^2 = 0$. So, we can write the dual numbers set as below: $\mathbb{D} = \{z = x + \epsilon y | x, y \in \mathbb{R}, \epsilon^2 = 0, \epsilon \neq 0\}$.

Although the algebra of dual numbers firstly considered by Clifford, W.K. [2], its first application to kinematics and mechanics by Kotelnikov and Study [3]. The set of dual numbers \mathbb{D} , is two-dimensional, unit, commutative and associative ring over the real numbers. Dual plane can be formed by composition of all the dual numbers. The dual inner product and the modulus of a dual number $z = x + \epsilon y$ are defined by Yüce and Akar [1] and denoted as \langle , \rangle_d , $||z||_d$ respectively. Then, if $||z||_d = 0$, special modulus $||z||_{\delta} = |y|$ of the dual number z is defined. Also, every dual number z with nonzero modulus can be written as $z = r(\cos g \varphi + \epsilon \sin g \varphi) = re^{\epsilon \varphi}$ and a dual rotation by $e^{\epsilon \varphi}$ corresponds to multiplication by the matrix [1]

$$\begin{bmatrix} 1 & 0 \\ \epsilon & 1 \end{bmatrix}$$
(1)

The higher-order accelerations and Poles were investigated under one-parameter planar complex motion by Müller [4] and one-parameter planar hyperbolic motion by Şahin and Yüce [5]. We are going to analyze the higher-order accelerations and Poles under one-parameter planar dual motion in a similar manner. In the paper [6], one-parameter motions on the Galilean plane were defined. Some Holditch-Type Theorems for the polar moments of inertia of the closed orbit curves presented during the 1-parameter closed homothetic motion [7, 8].

¹ Yildiz Technical University, College of Arts and Sciences, Department of Mathematics, 34210 Esenler, Istanbul, Turkey. E-mail: <u>sserdal433@gmail.com; makar@yildiz.edu.tr; sayuce@yildiz.edu.tr</u>.

2. ONE-PARAMETER PLANAR DUAL MOTION

Let \mathbb{D} and \mathbb{D}' be moving and fixed dual planes and $\{O, \mathbf{d}_1, \mathbf{d}_2\}$, $\{O', \mathbf{d}'_1, \mathbf{d}'_2\}$ be their orthonormal coordinate systems, respectively. If the vector $\overline{\mathbf{OO}'}$ is represented by the dual number \mathbf{u}' , then the motion can be defined by the transformation below:

$$\mathbf{z}' = \mathbf{u}' + \mathbf{z}e^{\epsilon\varphi} \tag{2}$$

This transformation is called a one-parameter planar dual motion and denoted by \mathbb{D}/\mathbb{D}' , where φ is the rotation angle of the motion \mathbb{D}/\mathbb{D}' ; that is, the dual angle between the vectors \mathbf{d}_1 and \mathbf{d}'_1 and the dual numbers $\mathbf{z} = x_1 + \epsilon x_2$, $\mathbf{z}' = x'_1 + \epsilon x'_2$ represent the point $Z \in \mathbb{D}$ with respect to the moving and the fixed perpendicular coordinate systems, respectively. Besides, the rotation angle φ and \mathbf{z} , \mathbf{z}' , \mathbf{u}' are continuously differentiable functions of a time parameter $t \in \mathbb{I} \subset \mathbb{R}$ and at a initial time t = 0 the coordinate systems are coincident [1].

Let the dual number $\mathbf{u} = u_1 + \epsilon u_2$ represent the origin of the fixed point system with respect to the moving system. Then, if we take Z' = O', we obtain $\mathbf{z}' = \mathbf{0}$ and $\mathbf{z} = \mathbf{u}$. Thus, we can obtain \mathbf{u}' from the Eq. (2)

$$\mathbf{u}' = -\mathbf{u}e^{\epsilon\varphi}.\tag{3}$$

If Z is a moving point of \mathbb{D} , then the velocity of Z with respect to \mathbb{D} is known as the relative velocity of the motion \mathbb{D}/\mathbb{D}' and is denoted by V_r . This vector can be written as $\mathbf{V_r} = \frac{d\mathbf{z}}{dt} = \dot{\mathbf{z}}$. This vector can be expressed with respect to \mathbb{D}' by the equation below:

$$\mathbf{V}_{\mathbf{r}}' = \mathbf{V}_{\mathbf{r}} e^{\epsilon \varphi} = \dot{\mathbf{z}} e^{\epsilon \varphi} . \tag{4}$$

If we differentiate the Eq. (2) with respect to t, we obtain the absolute velocity of the motion \mathbb{D}/\mathbb{D}' as follows:

$$\mathbf{V}'_{\mathbf{a}} = \frac{d\mathbf{z}'}{dt} = \dot{\mathbf{z}}' = \dot{\mathbf{u}}' + (\dot{\mathbf{z}} + \epsilon \dot{\varphi} \mathbf{z})e^{\epsilon \varphi},$$
(5)

where

$$\mathbf{V}_{\mathbf{f}}' = \dot{\mathbf{u}}' + \epsilon \dot{\boldsymbol{\varphi}} \mathbf{z} e^{\epsilon \varphi}, \tag{6}$$

is the sliding velocity of the motion \mathbb{D}/\mathbb{D}' . By differentiating the Eq. (3) with respect to *t*, we also obtain the following equation:

$$\dot{\mathbf{u}}' = -(\dot{\mathbf{u}} + \epsilon \mathbf{u}\dot{\phi})e^{\epsilon\phi}.$$
(7)

Hence, we can rewrite the sliding velocity as follows:

$$\mathbf{V}_{\mathbf{f}}' = \epsilon \dot{\varphi} \mathbf{z} e^{\epsilon \varphi} - (\dot{\mathbf{u}} + \epsilon \mathbf{u} \dot{\varphi}) e^{\epsilon \varphi}.$$
(8)

 $\{O; \mathbf{d}_1, \mathbf{d}_2\}$ and $\{O'; \mathbf{d}'_1, \mathbf{d}'_2\}$. This point is called the pole point or the instantaneous rotation pole center. In this case, we obtain $\mathbf{V}'_f = \mathbf{0}$ and use the Eq. (8), then for the pole point $P = p_1 + \epsilon p_2$ of the motion, we get

$$\epsilon \mathbf{p} = \epsilon \mathbf{u} + \frac{\dot{\mathbf{u}}}{\dot{\phi}} \tag{9}$$

so, from the Eqs. (8) and (9), we can rewrite the sliding velocity with the aid of the pole point as below:

$$\mathbf{V}_{\mathbf{f}}' = \epsilon \,\dot{\boldsymbol{\varphi}}(\mathbf{z} - \mathbf{p}) e^{\epsilon \boldsymbol{\varphi}} \,. \tag{10}$$

For more properties of one-parameter planar dual motion the reader can see the [1].

3. HIGHER-ORDER ACCELERATIONS AND POLES UNDER ONE-PARAMETER PLANAR DUAL MOTION

3.1. HIGHER-ORDER ACCELERATIONS UNDER THE ONE-PARAMETER PLANAR DUAL MOTIONS

Let the motion \mathbb{D}/\mathbb{D}' be the one-parameter planar Dual motion and let $Z \in \mathbb{D}$ be a fixed point. Then, the absolute velocity and the sliding velocity are equal to each other and this velocity is given as below:

$$\mathbf{V}'_{\mathbf{a}} = \mathbf{V}'_{\mathbf{f}} = \dot{\mathbf{z}}' = \dot{\mathbf{u}}' + \epsilon \dot{\boldsymbol{\varphi}}(\mathbf{z}' - \mathbf{u}'). \tag{11}$$

If we differentiate the Eq. (11) with respect to t, then we obtain the second-order velocity (absolute velocity or sliding velocity) as below:

$$\ddot{\mathbf{z}}' = \ddot{\mathbf{u}}' + \epsilon \ddot{\varphi} (\mathbf{z}' - \mathbf{u}') + \epsilon \dot{\varphi} (\dot{\mathbf{z}}' - \dot{\mathbf{u}}') .$$
(12)

or from the Eq. (11) and latter equation, we obtain the second-order velocity (or the first-order acceleration) as below:

$$\ddot{\mathbf{z}}' = \ddot{\mathbf{u}}' + \epsilon \ddot{\varphi} (\mathbf{z}' - \mathbf{u}'). \tag{13}$$

Then, if we differentiate the Eq. (13) with respect to t, then we obtain the third-order velocity (or the second-order acceleration) as below:

$$\ddot{\mathbf{z}}' = \ddot{\mathbf{u}}' + \epsilon \, \ddot{\varphi} (\mathbf{z}' - \mathbf{u}'). \tag{14}$$

If we differentiate the Eq. (14) with respect to t, then we obtain the fourth-order velocity (or the third-order acceleration) as below:

Serdal Şahin et al.

$$\mathbf{z}' = \mathbf{u}' + \epsilon \, \boldsymbol{\varphi}(\mathbf{z}' - \mathbf{u}'). \tag{15}$$

If we continue to subsequent differentiations, we can get higher-order velocities and accelerations. So, we can give the following theorem:

Theorem 1. During the one-parameter planar dual motion \mathbb{D}/\mathbb{D}' , if $Z \in \mathbb{D}$ is a fixed point, then we get

$$\mathbf{z}' = \mathbf{u}' + \epsilon \, \boldsymbol{\varphi}(\mathbf{z}' - \mathbf{u}') \tag{16}$$

for the velocities from *n* th order and the acceleration from (n-1)th order for each *t*.

Proof: We are going to use the induction method. First of all we can see above that the Eq. (16) is true for n=1, n=2, n=3 and n=4. Now we assume that the Eq. (16) is true for n=k and prove that it is true for n=k+1. Hence, if we assume that

$$\mathbf{z}' = \mathbf{u}' + \epsilon \, \boldsymbol{\varphi}(\mathbf{z}' - \mathbf{u}') \tag{17}$$

is true, we can obtain

$$\mathbf{z}' = \mathbf{u}' + \epsilon \, \boldsymbol{\varphi} \, (\mathbf{z}' - \mathbf{u}') + \epsilon \, \boldsymbol{\varphi} \, (\dot{\mathbf{z}}' - \dot{\mathbf{u}}')$$
(18)

by differentiation the latter expression. So, from the Eq. (11) and latter equation we have

$$\mathbf{z}'^{(\mathbf{k}+1)} = \mathbf{u}'^{(\mathbf{k}+1)} + \epsilon \, \varphi^{(k+1)} (\mathbf{z}' - \mathbf{u}') \,. \tag{19}$$

Consequently, we have been proved theorem (11) by the induction method.

3.2. HIGHER-ORDER POLES UNDER THE ONE-PARAMETER PLANAR DUAL MOTIONS

During the one-parameter planar dual motion \mathbb{D}/\mathbb{D}' , if $Z \in \mathbb{D}$ is a fixed point, then from the Eq. (11), we can calculate the first-order pole point as follows:

$$\epsilon \mathbf{p}_1' = \epsilon \mathbf{z}' = \epsilon \mathbf{u}' - \frac{\dot{\mathbf{u}}'}{\dot{\phi}}.$$
(20)

By using the Eq. (13), we obtain the second-order pole point as below:

$$\epsilon \mathbf{p}_2' = \epsilon \mathbf{z}' = \epsilon \mathbf{u}' - \frac{\ddot{\mathbf{u}}'}{\ddot{\varphi}}.$$
(21)

In a similar way, from the Eq. (16), we can get the (n-1) th-order acceleration pole as shown below

$$\epsilon \mathbf{p}'_n = \epsilon \mathbf{z}' = \epsilon \mathbf{u}' - \frac{\mathbf{u}'}{\mathbf{u}'}.$$
(22)

Also, from the Eq. (22) we have the following:

$$\boldsymbol{u}^{(n)} = \boldsymbol{\epsilon} \, \boldsymbol{\varphi}^{(n)} (\mathbf{u}' - \mathbf{p}'_n) \,. \tag{23}$$

So, if we use the Eq. (16) and the latter equation, we can rewrite \mathbf{z}' in terms of \mathbf{p}'_n as follows:

$$\overset{(\mathbf{n})}{\mathbf{z}'} = \epsilon \overset{(n)}{\varphi} (\mathbf{z}' - \mathbf{p}'_n) \,. \tag{24}$$

We can give the following theorems via the Eq. (24):

Theorem 2. The absolute value of higher-order accelerations under the one-parameter planar dual motion is rational with distance between the point Z and corresponding pole point. Higher order accelerations take the same value over the circles centered the pole points.

Theorem 3. The vectors $\overset{(n)}{z'}$ and $P'_n Z'$ are perpendicular each other.

Example 1. Let us consider the one-parameter planar dual motion with $u(t) = e^{-t} + \epsilon e^{-t}$, $\varphi(t) = e^{-t}$. In this case, on the plane \mathbb{D}' we show the orbit curve of point $1+2\epsilon \in \mathbb{D}$ by using Maple programming for $t \in [-1,5]$.

Figure 1. The orbit curve of point $1+2\epsilon\in\mathbb{D}$.

We calculate higher-order accelerations and poles under this motion

 $\mathbf{z}' = e^{-t} + 2^n e^{-2t} \epsilon, \text{ if } n \text{ is odd,}$ $\mathbf{z}' = -e^{-t} - 2^n e^{-2t} \epsilon, \text{ if } n \text{ is even}$ $\epsilon \mathbf{p}'_n = 1 + (1 + (2^n - 1)e^{-t})\epsilon.$

and

4. THE INVERSE MOTION OF THE ONE-PARAMETER PLANAR DUAL MOTION

In the inverse motion of the one-parameter planar dual motion \mathbb{D} and \mathbb{D}' fixed and moving dual planes and $\{O, \mathbf{d}_1, \mathbf{d}_2\}$, $\{O', \mathbf{d}'_1, \mathbf{d}'_2\}$ are their orthonormal coordinate systems, respectively. In this motion all of the velocities, accelerations and poles are analyzed in \mathbb{D} , instead of \mathbb{D}' . This is the main difference from the one-parameter planar dual motion. So, from the Eq. (2), we can obtain the transformation of the inverse motion of the one-parameter planar dual motion as below:

$$\mathbf{z} = (\mathbf{z}' - \mathbf{u}')e^{-\epsilon\varphi}$$

and the Eq. (3) can be written as follows:

$$\mathbf{z} = \mathbf{u} + \mathbf{z}' e^{-\epsilon \varphi} \,. \tag{25}$$

and denoted by \mathbb{D}'/\mathbb{D} , also called one-parameter planar inverse dual motion, where $-\varphi$ is the rotation angle of the motion \mathbb{D}'/\mathbb{D} . In analogy to the motion \mathbb{D}/\mathbb{D}' , we can get the velocities, accelerations and poles, for the motion \mathbb{D}'/\mathbb{D} . But we want to focus on higher-order accelerations and poles.

4.1. HIGHER-ORDER ACCELERATIONS UNDER THE ONE-PARAMETER PLANAR INVERSE DUAL MOTIONS

During the motion \mathbb{D}'/\mathbb{D} , Z' be a fixed point of \mathbb{D}' dual plane and denoted by $\mathbf{z}' \in \mathbb{D}'$. Under the motion \mathbb{D}'/\mathbb{D} with the $\mathbf{z}' \in \mathbb{D}'$ is a fixed point, the absolute velocity and the sliding velocity are equal to each other and this velocity is given as below:

$$\dot{\mathbf{z}} = \dot{\mathbf{u}} - \epsilon \dot{\varphi} \mathbf{z}' e^{-\epsilon \varphi}$$

It is convenient to write the latter equation as follows:

$$\dot{\mathbf{z}} = \dot{\mathbf{u}} - \epsilon \dot{\phi} (\mathbf{z} - \mathbf{u}). \tag{26}$$

If we differentiate the Eq. (26) with respect to t, then we obtain the second-order velocity (absolute velocity or sliding velocity) as below:

$$\ddot{\mathbf{z}} = \ddot{\mathbf{u}} - \epsilon \ddot{\varphi} (\mathbf{z} - \mathbf{u}) - \epsilon \dot{\varphi} (\dot{\mathbf{z}} - \dot{\mathbf{u}})$$

or from the Eq. (26) and latter equation, we obtain the second-order velocity (or the first-order acceleration) as below:

$$\ddot{\mathbf{z}} = \ddot{\mathbf{u}} - \epsilon \ddot{\varphi} (\mathbf{z} - \mathbf{u}). \tag{27}$$

If we differentiate the Eq. (27) with respect to t, then we obtain the third-order velocity (or the second-order acceleration) such as,

Similarly, if we differentiate the Eq. (28) with respect to t, then we obtain the fourthorder velocity (or the third-order acceleration) as below:

$$\mathbf{z}^{(4)} = \mathbf{u} - \epsilon \,\boldsymbol{\varphi}(\mathbf{z} - \mathbf{u}) \,. \tag{29}$$

If we continue to subsequent differentiations, we can get higher-order velocities and accelerations. So, we can give the following theorem:

Theorem 4. During the inverse motion of the one-parameter planar dual motion \mathbb{D}'/\mathbb{D} , if $Z' \in \mathbb{D}'$ is a fixed point then, we get

$$\mathbf{z}^{(n)} = \mathbf{u} - \epsilon \overset{(n)}{\boldsymbol{\varphi}} (\mathbf{z} - \mathbf{u}).$$
(30)

for the velocities from *n* th-order and the acceleration from (n-1) th-order, for each *t*.

Proof: We are going to use the induction method. First of all we can see above that the Eq. (30) is true for n=1, n=2, n=3 and n=4. Now we assume that the Eq. (30) is true for n=k and prove that it is true for n=k+1. Hence, if we assume that

$$\overset{(k)}{\mathbf{z}} = \overset{(k)}{\mathbf{u}} - \epsilon \overset{(k)}{\boldsymbol{\varphi}} (\mathbf{z} - \mathbf{u})$$

is true, we can obtain

$$\mathbf{z}^{(\mathbf{k}+1)} = \mathbf{u}^{(\mathbf{k}+1)} - \epsilon \mathbf{\phi}^{(\mathbf{k}+1)} (\mathbf{z}-\mathbf{u}) - \epsilon \mathbf{\phi}^{(\mathbf{k})} (\dot{\mathbf{z}}-\dot{\mathbf{u}})$$
(31)

by differentiation the latter expression. So, from the last equation and the Eq. (26) we have

$$\overset{\scriptscriptstyle (k+1)}{z} = \overset{\scriptscriptstyle (k+1)}{u} - \varepsilon \overset{\scriptscriptstyle (k+1)}{\phi} (z-u) \, .$$

As a result, we have been proved theorem 4 by the induction method.

4.2. HIGHER-ORDER POLES UNDER THE INVERSE MOTION OF THE ONE-PARAMETER PLANAR DUAL MOTIONS

During the inverse motion of the one-parameter planar dual motion \mathbb{D}'/\mathbb{D} and in the case of $Z' \in \mathbb{D}'$ is a fixed point, from the Eq. (26) we can calculate the first order pole point as below:

$$\epsilon \mathbf{q}_1 = \epsilon \mathbf{z} = \epsilon \mathbf{u} + \frac{\dot{\mathbf{u}}}{\dot{\phi}}.$$
(32)

Using the Eq. (13), we obtain the second order pole point as below:

Serdal Şahin et al.

$$\epsilon \mathbf{q}_2 = \epsilon \mathbf{z} = \epsilon \mathbf{u} + \frac{\ddot{\mathbf{u}}}{\ddot{\varphi}}.$$
(33)

In a similar way, from the Eq. (30), we can get the (n-1) th-order acceleration pole as follows:

$$\epsilon \mathbf{q}_n = \epsilon \mathbf{z} = \epsilon \mathbf{u} + \frac{\mathbf{u}_{(n)}}{\mathbf{\omega}}.$$
(34)

Also, from the Eq. (34), we can write the following equation:

$$\overset{(\mathbf{n})}{\mathbf{u}} = -\epsilon \overset{(\mathbf{n})}{\boldsymbol{\varphi}} (\mathbf{u} - \mathbf{q}_n).$$

So, if we use the Eq. (30), and the latter equation, we can rewrite $\stackrel{(n)}{z}$ in terms of \mathbf{q}_n as follows:

$$\mathbf{z}^{(n)} = -\epsilon \, \mathbf{\phi}^{(n)} (\mathbf{z} - \mathbf{q}_n) \,. \tag{35}$$

The theorem 2 and the theorem 3 can be also obtained for inverse motion of the oneparameter planar dual motions in similar way.

5. CONCLUSION

The higher-order accelerations and poles are obtained under the one-parameter planar dual motion and its inverse. In addition, on the dual plane under this motion, the orbit curve of a point is sketched by using Maple programming.

REFERENCES

- [1] Yüce S., Akar, M., *Chiang Mai Journal Science*, **41**(2), 463, 2014.
- [2] Clifford, W.K., Proceedings London Mathematical Society, 4(64), 381, 1873.
- [3] Study, E., Geometrie der Dynamen, Verlag Teubner, Leipzig, 1903.
- [4] Blaschke, W., Müller, H.R., *Ebene Kinematik*, Verlag Oldenbourg, Munchen, 1956.
- [5] Şahin, S., Yüce, S., *Mathematical Problems Engineering*, **2014**, 1, 2014.
- [6] Akar, M., Yüce, S., Kuruoğlu, N., *International Electronic Journal Geometry*, **6**(1), 79, 2013.
- [7] Akar, M., Yüce, S., Journal Science Arts, 2(55), 329, 2021.
- [8] Akar, M., Yüce, S., Proceedings Dynamic Systems Applications, 6, 14, 2012.