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Abstract. In this paper, after a brief summary of one-parameter planar dual motion
[1], the higher-order accelerations and poles are analyzed under the one-parameter planar
dual motion and its inverse.
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1. INTRODUCTION

Similar to complex numbers and hyperbolic numbers (split-complex numbers), dual
numbers are extended the real numbers by adjoining one unreal elemente, where ¢ =0. So,
we can write the dual numbers set as below: D = {z =X+eyl X,yeR, € =0, e= 0} :

Although the algebra of dual numbers firstly considered by Clifford, W.K. [2], its first
application to kinematics and mechanics by Kotelnikov and Study [3]. The set of dual
numbers D, is two-dimensional, unit, commutative and associative ring over the real
numbers. Dual plane can be formed by composition of all the dual numbers. The dual inner
product and the modulus of a dual number z=X+e¢y are defined by Yuce and Akar [1] and

denoted as (,),, |z|, respectively. Then, if |z|, =0, special modulus |z|, =|y| of the dual

number z is defined. Also, every dual number z with nonzero modulus can be written as
z=r(cosgp+esingp) =re” and a dual rotation by e’ corresponds to multiplication by the

matrix [1]
10
oy 0

The higher-order accelerations and Poles were investigated under one-parameter
planar complex motion by Miiller [4] and one-parameter planar hyperbolic motion by Sahin
and Yuce [5]. We are going to analyze the higher-order accelerations and Poles under one-
parameter planar dual motion in a similar manner. In the paper [6], one-parameter motions on
the Galilean plane were defined. Some Holditch-Type Theorems for the polar moments of
inertia of the closed orbit curves presented during the 1-parameter closed homothetic motion
[7, 8].
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2. ONE-PARAMETER PLANAR DUAL MOTION

Let D and " be moving and fixed dual planes and{O,d,,d,}, {O’,d;,d,} be their

orthonormal coordinate systems, respectively. If the vector 00’ is represented by the dual
number U, then the motion can be defined by the transformation below:

Z' =u'+ze? (2)

This transformation is called a one-parameter planar dual motion and denoted by
/D', where ¢ is the rotation angle of the motion ID/I)’; that is, the dual angle between the

vectors d; and d; and the dual numbers z=x, +eX,, z' =X +eX, represent the point Z €D

with respect to the moving and the fixed perpendicular coordinate systems, respectively.
Besides, the rotation angle ¢ and z, z', U’ are continuously differentiable functions of a

time parameter t e [ — R and at a initial time t =0 the coordinate systems are coincident [1].
Let the dual number u=u, +eu, represent the origin of the fixed point system with

respect to the moving system. Then, if we take Z'=0’, we obtain z’=0 and z=u. Thus, we
can obtain u’ from the Eq. (2)
u'=-ue”’. (3)

If Z is a moving point of D, then the velocity of Z with respect to D is known as
the relative velocity of the motion D/D" and is denoted by V, . This vector can be written as

V, = (;—Z =27 . This vector can be expressed with respect to )’ by the equation below:

V/=V.e? =1ze”. (4)

If we differentiate the Eq. (2) with respect to t, we obtain the absolute velocity of the
motion /D" as follows:

V;:dd—zt:Z':u'+(z'+e¢z)e”", (5)

where
V! =U' +egze, (6)

is the sliding velocity of the motion ID/I)'. By differentiating the Eq. (3) with respect to t,
we also obtain the following equation:

U =—(U+eup)e”. (7
Hence, we can rewrite the sliding velocity as follows:

V/ =egpze”” —(U+eug)e”. (8)
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For a general one-parameter planar dual motions, there is a point that does not move,
which means that its coordinates are the same in both reference coordinate systems

{O;d,,d,} and {O';d;,d,}. This point is called the pole point or the instantaneous rotation
pole center. In this case, we obtain V/=0 and use the Eq. (8), then for the pole point
P = p, +€p, of the motion, we get

ep—eu+E 9
@

so, from the Egs. (8) and (9), we can rewrite the sliding velocity with the aid of the pole point
as below:

V) =ep(z—-p)e”. (10)

For more properties of one-parameter planar dual motion the reader can see the [1].

3. HIGHER-ORDER ACCELERATIONS AND POLES UNDER ONE-PARAMETER
PLANAR DUAL MOTION

3.1. HIGHER-ORDER ACCELERATIONS UNDER THE ONE-PARAMETER PLANAR
DUAL MOTIONS

Let the motion /D" be the one-parameter planar Dual motion and let Z €D be a
fixed point. Then, the absolute velocity and the sliding velocity are equal to each other and
this velocity is given as below:

Vi=V[{=2'=U+ep(z'-U"). (11)

If we differentiate the Eqg. (11) with respect to t, then we obtain the second-order
velocity (absolute velocity or sliding velocity) as below:

'=U0+ep(z'-U)+ep(z' -U"). (12)
or from the Eq. (11) and latter equation, we obtain the second-order velocity (or the first-order
acceleration) as below:

'=U0"+ep(z'-U"). (13)

Then, if we differentiate the Eq. (13) with respect to t, then we obtain the third-order
velocity (or the second-order acceleration) as below:

Z'=U'+ep(z' -U"). (14)

If we differentiate the Eq. (14) with respect to t, then we obtain the fourth-order
velocity (or the third-order acceleration) as below:
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@ @ @
' =U+ep(z -U). (15)

If we continue to subsequent differentiations, we can get higher-order velocities and
accelerations. So, we can give the following theorem:

Theorem 1. During the one-parameter planar dual motion /D', if Z D is a fixed point,

then we get
m o
Z'=U'+ep(z' -U) (16)

for the velocities from n th order and the acceleration from (n —1)th order for each t.

Proof: We are going to use the induction method. First of all we can see above that the Eq.
(16) is true forn=1, n=2, n=3 and n=4. Now we assume that the Eq. (16) is true for
n=Kk and prove that it is true for n=k +1. Hence, if we assume that

® 0 ®
Z=u+ep(z' U 17)

is true, we can obtain

(k+l)  (k+1)  (k+1)

0
Z = U +e @ (Z-U)+epE -U) (18)

by differentiation the latter expression. So, from the Eq. (11) and latter equation we have

(k+1)  (k+1)  (k+d)

Z = U +e g (Z-U). (19)

Consequently, we have been proved theorem (11) by the induction method.
3.2. HIGHER-ORDER POLES UNDER THE ONE-PARAMETER PLANAR DUAL MOTIONS

During the one-parameter planar dual motion /D', if ZeD is a fixed point, then
from the Eq. (11), we can calculate the first-order pole point as follows:

!

! ! ! u
ep; =€z’ =el' ——. (20)
@

By using the Eq. (13), we obtain the second-order pole point as below:

Y

! ! ’ u
€p, =€z’ =eU ——. (21)
®»

In a similar way, from the Eq. (16), we can get the (n—1)th-order acceleration pole as
shown below
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(n)

u’
ep, =€z’ =el' — . (22)
4

Also, from the Eq. (22) we have the following:

m
U =ep'-p.). (23)

n)
So, if we use the Eq. (16) and the latter equation, we can rewrite z' in terms of p/ as

follows:

(n) (n)
' =ep(Z-p.). (24)

We can give the following theorems via the Eq. (24):
Theorem 2. The absolute value of higher-order accelerations under the one-parameter planar

dual motion is rational with distance between the point Z and corresponding pole point.
Higher order accelerations take the same value over the circles centered the pole points.

(n)
Theorem 3. The vectors z" and P.Z" are perpendicular each other.
Example 1. Let wus consider the one-parameter planar dual motion with

ut)=e"'+ee',p(t)=e". In this case, on the plane I’ we show the orbit curve of point
1+2¢ € D by using Maple programming for t €[-1,5].

A5 4 41;,/ 05 1

F4

&

Figure 1. The orbit curve of point 1+2c €D .
We calculate higher-order accelerations and poles under this motion

(n)
Z'=e"'+2"e ¢, if nis odd,

(n)
2’ =—e"'-2"e?¢, ifniseven

and
epl, =1+ 1+ (2" -1)e)e.

ISSN: 1844 — 9581 Mathematics Section



914 Higher-Order Accelerations and Poles... Serdal Sahin et al.

4. THE INVERSE MOTION OF THE ONE-PARAMETER PLANAR DUAL MOTION

In the inverse motion of the one-parameter planar dual motion I and )" fixed and

moving dual planes and {O,d,,d,}, {O',d,’,d,’} are their orthonormal coordinate systems,

respectively. In this motion all of the velocities, accelerations and poles are analyzed in D,
instead of ID’. This is the main difference from the one-parameter planar dual motion. So,
from the Eq. (2), we can obtain the transformation of the inverse motion of the one-parameter
planar dual motion as below:

z=(2'-ue
and the Eqg. (3) can be written as follows:
zZ=u+2z'e’’, (25)

and denoted by I)'/ID, also called one-parameter planar inverse dual motion, where —¢ is the

rotation angle of the motion D'/ D). In analogy to the motion D/ D', we can get the velocities,
accelerations and poles, for the motion I'/ID. But we want to focus on higher-order
accelerations and poles.

4.1. HIGHER-ORDER ACCELERATIONS UNDER THE ONE-PARAMETER PLANAR
INVERSE DUAL MOTIONS

During the motion I)'/ID, Z" be a fixed point of D" dual plane and denoted by z' €D’ .
Under the motion I)'/ID with the z' €D’ is a fixed point, the absolute velocity and the sliding
velocity are equal to each other and this velocity is given as below:
Z=U—e@z'e .
It is convenient to write the latter equation as follows:

Z=U-cep(z-u). (26)

If we differentiate the Eqg. (26) with respect to t, then we obtain the second-order
velocity (absolute velocity or sliding velocity) as below:

Z=U-€p(z—-u)—ep(z-u)
or from the Eq. (26) and latter equation, we obtain the second-order velocity (or the first-order
acceleration) as below:

Z=U-¢ep(z-u). (27)

If we differentiate the Eq. (27) with respect to t, then we obtain the third-order
velocity (or the second-order acceleration) such as,
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7 =li—ep(z—U). (28)

Similarly, if we differentiate the Eq. (28) with respect to t, then we obtain the fourth-
order velocity (or the third-order acceleration) as below:

4 @4 @
Z=U-€c@(z—u). (29)

If we continue to subsequent differentiations, we can get higher-order velocities and
accelerations. So, we can give the following theorem:

Theorem 4. During the inverse motion of the one-parameter planar dual motion I'/D, if
Z' el is a fixed point then, we get

m ()
Z=U-€c@(z—u). (30)

for the velocities from nth-order and the acceleration from (n—1) th-order, for each t.

Proof: We are going to use the induction method. First of all we can see above that the Eq.
(30) is true for n=1, n=2, n=3 andn=4. Now we assume that the Eq. (30) is true for
n=Kk and prove that it is true for n=k +1. Hence, if we assume that

& &) (k)
Z=U-cq@(z—u)
is true, we can obtain

(k+1)  (k+1)  (k+1)

Z =U-€g¢ (z—u)—e((T))(i—l'l) (31)

by differentiation the latter expression. So, from the last equation and the Eq. (26) we have

(k+1)  (k+1) (k+1)
Z =U-€ ¢ (z—u).

As a result, we have been proved theorem 4 by the induction method.

4.2. HIGHER-ORDER POLES UNDER THE INVERSE MOTION OF THE ONE-
PARAMETER PLANAR DUAL MOTIONS

During the inverse motion of the one-parameter planar dual motion I'/ID and in the
case of Z' €)' is a fixed point, from the Eq. (26) we can calculate the first order pole point as
below:

eql:eZ:eu+E.. (32)
®

Using the Eq. (13), we obtain the second order pole point as below:
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€q, =eZ:eu+g. (33)
»

In a similar way, from the Eq. (30), we can get the (n—1)th-order acceleration pole as

follows:
(n)

u
€q, =€ez=eU+4y. (34)

¢

Also, from the Eqg. (34), we can write the following equation:

(n) (n)
Uu=-o@(u-q,).

()
So, if we use the Eq. (30), and the latter equation, we can rewrite z in terms of ¢, as

follows:
(n) Q)
z=—cop(z—q,). (39)

The theorem 2 and the theorem 3 can be also obtained for inverse motion of the one-
parameter planar dual motions in similar way.

5. CONCLUSION

The higher-order accelerations and poles are obtained under the one-parameter planar
dual motion and its inverse. In addition, on the dual plane under this motion, the orbit curve of
a point is sketched by using Maple programming.
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