ON THE WEIGHTED PADOVAN AND PERRIN SUMS

ORHAN DİȘKAYA ${ }^{1}$, HAMZA MENKEN ${ }^{1}$

Manuscript received: 20.02.2023; Accepted paper: 16.10.2023; Published online: 30.12.2023.

Abstract

In this paper, we obtain various weighted sum formulas using several sum formulas of Padovan and Perrin numbers.

Keywords: Padovan numbers; Perrin numbers; sum formulas.

1. INTRODUCTION

There are many studies in the literature about special number sequences such as Fibonacci, Lucas, Pell, Jacobsthal, Tribonacci, Padovan, and Perrin; the most known of these are the Fibonacci and Lucas numbers [1, 2]. Fibonacci and Lucas numbers are defined, respectively, by

$$
F_{n+2}=F_{n+1}+F_{n} \text { in which } F_{0}=0, F_{1}=1
$$

and

$$
L_{n+2}=L_{n+1}+L_{n} \text { in which } L_{0}=2, L_{1}=1
$$

It is well known that the partial sums of the Fibonacci and Lucas numbers are

$$
\sum_{i=1}^{n} F_{i}=F_{n+2}-1
$$

and

$$
\sum_{i=1}^{n} L_{i}=L_{n+2}-3
$$

Also, the weighted sums of the Fibonacci and Lucas numbers are as follows:

$$
\sum_{i=1}^{n} i F_{i}=n F_{n+2}-F_{n+3}+2
$$

and

$$
\sum_{i=1}^{n} i L_{i}=n L_{n+2}-L_{n+3}+4
$$

The other important special numbers are the Padovan and Perrin numbers (for more information see [3]). Let's first consider the definitions of the Padovan and Perrin numbers.

[^0]In 1996, Ian Stewart wrote about the Padovan numbers in his Scientific American column Mathematical Recreations. The Perrin numbers $\left\{R_{n}\right\}$ was introduced by Lucas in 1876, and Stewart named it the Perrin sequence in honor of R. Perrin (see [4-6]).

The Padovan and Perrin sequences are defined, respectively, by

$$
P_{n+3}=P_{n+1}+P_{n} \text { in which } P_{0}=P_{1}=P_{2}=1
$$

and

$$
R_{n+3}=R_{n+1}+R_{n} \text { in which } R_{0}=3, R_{1}=0, R_{2}=2 .
$$

It is well known that the sum of the first n terms for the Padovan and Perrin sequences can be given as follows, respectively,

$$
\begin{equation*}
\sum_{k=1}^{n} P_{k}=P_{n+5}-3 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{n} R_{k}=R_{n+5}-5 \tag{2}
\end{equation*}
$$

Generalizations and some properties of the Padovan sequence can be found in [7-11]. It is the aim of this paper to explore some of the properties of the third-order sequences of thePadovan and Perrin numbers $\left\{P_{n}\right\}$ and $\left\{R_{n}\right\}$, respectively, and their weighted sums.

2. THE WEIGHTED PADOVAN AND PERRIN SUMS

There are a lot of studies related to weighted sums as follows: Gauthier examined Fibonacci sums of the type $\sum r^{m} F_{m}$ and derivation of a formula for $\sum r^{k} x^{r}$ in [12, 13]. Koshy obtained the weighted Fibonacci and Lucas sums in [14]. Brousseau showed a summation of the infinite Fibonacci series in [15]. Clarke investigated a formula for weighted Fibonacci sums in [16]. Ozeki studied weighted Fibonacci and Lucas sums using the differential operator method in [17]. Cerin et al. explored some formulas for several sums of generalized Fibonacci and generalized Lucas numbers in [18]. In this study we derive new identities in more general form for the Padovan and Perrin sequences.

Let's consider the sums of the Padovan sequence as

$$
\alpha_{n}=\sum_{k=1}^{n} P_{k}
$$

and

$$
\beta_{n}=\sum_{k=1}^{n} k P_{k} .
$$

Then, we have

$$
\begin{aligned}
\beta_{n} & =P_{1}+2 P_{2}+3 P_{3}+\cdots+n P_{n} \\
& =\sum_{k=1}^{n} P_{k}+\sum_{k=2}^{n} P_{k}+\sum_{k=3}^{n} P_{k}+\cdots+\sum_{k=n}^{n} P_{k}
\end{aligned}
$$

$$
\begin{aligned}
& =\alpha_{n}+\left(\alpha_{n}-\alpha_{1}\right)+\left(\alpha_{n}-\alpha_{2}\right)+\cdots+\left(\alpha_{n}-\alpha_{n-1}\right) \\
& =\underbrace{\left(\alpha_{n}+\alpha_{n}+\cdots+\alpha_{n}\right)}_{n}-\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n-1}\right) \\
& =n \alpha_{n}-\sum_{k=1}^{n-1} \alpha_{k} \\
& =n\left(P_{n+5}-3\right)-\sum_{k=1}^{n-1}\left(P_{k+5}-3\right)
\end{aligned}
$$

Thus, we prove the first identity as

$$
\begin{equation*}
\beta_{n}=n P_{n+5}-P_{n+9}+9 \tag{3}
\end{equation*}
$$

For example,

$$
\begin{aligned}
\beta_{5} & =\sum_{k=1}^{5} k P_{k}=1 P_{1}+2 P_{2}+3 P_{3}+4 P_{4}+5 P_{5} \\
& =1.1+2.1+3.2+4.2+5.3=32 \\
& =5.12-37+9 \\
& =5 P_{10}-P_{14}+9
\end{aligned}
$$

Now let's consider the sums of the Perrin sequence as

$$
\gamma_{n}=\sum_{k=1}^{n} R_{k}
$$

and

$$
\delta_{n}=\sum_{k=1}^{n} k R_{k} .
$$

Similarly, we have

$$
\begin{equation*}
\delta_{n}=n R_{n+5}-R_{n+9}+12 \tag{4}
\end{equation*}
$$

For example,

$$
\begin{aligned}
\delta_{5} & =\sum_{k=1}^{5} k R_{k}=1 R_{1}+2 R_{2}+3 R_{3}+4 R_{4}+5 R_{5} \\
& =1.0+2.2+3.3+4.2+5.5=46 \\
& =5.17-51+12 \\
& =5 R_{10}-R_{14}+12
\end{aligned}
$$

Now let's find the sum

$$
\varepsilon_{n}=\sum_{k=1}^{n}(n-k+1) P_{k} .
$$

It is clearly that

$$
\begin{aligned}
\beta_{n}+\varepsilon_{n} & =\sum_{k=1}^{n} k P_{k}+\sum_{k=1}^{n}(n-k+1) P_{k} \\
& =\sum_{k=1}^{n}(n+1) P_{k} \\
& =(n+1)\left(P_{n+5}-3\right)
\end{aligned}
$$

So, we reach

$$
\begin{aligned}
\varepsilon_{n} & =(n+1)\left(P_{n+5}-3\right)-\beta_{n} \\
& =(n+1)\left(P_{n+5}-3\right)-\left(n P_{n+5}-P_{n+9}+9\right) \\
& =P_{n+9}+P_{n+5}-3 n-12
\end{aligned}
$$

For example,

$$
\begin{aligned}
\varepsilon_{3} & =\sum_{k=1}^{3}(3-k+1) P_{k}=3 P_{1}+2 P_{2}+P_{3} \\
& =3.1+2.1+2=7 \\
& =21+7-3.3-12 \\
& =P_{12}+P_{8}-3.3-12
\end{aligned}
$$

Similarly, we find

$$
\sum_{k=1}^{n}(n-k+1) R_{k}=R_{n+9}+R_{n+5}-5 n-17
$$

For example,

$$
\begin{aligned}
\sum_{k=1}^{3}(3-k+1) R_{k} & =3 R_{1}+2 R_{2}+R_{3} \\
& =3.0+2.2+3=7 \\
& =29+10-5.3-17 \\
& =R_{12}+R_{8}-5.3-17
\end{aligned}
$$

We know that

$$
\varphi_{n}=\sum_{k=1}^{n} P_{2 k-1}=P_{2 n+2}-1
$$

and

$$
\gamma_{n}=\sum_{k=1}^{n} P_{2 k}=P_{2 n+3}-2 .
$$

So, let's find the sums

$$
\eta_{n}=\sum_{k=1}^{n}(2 k-1) P_{2 k-1}
$$

and

$$
\kappa_{n}=\sum_{k=1}^{n} 2 k P_{2 k} .
$$

Therefore, we get

$$
\begin{aligned}
& \eta_{n}=P_{1}+3 P_{3}+5 P_{5}+\cdots+(2 n-1) P_{2 n-1} \\
&= \sum_{k=1}^{n} P_{2 k-1}+2 \sum_{k=2}^{n} P_{2 k-1}+2 \sum_{k=3}^{n} P_{2 k-1}+\cdots+2 \sum_{k=n}^{n} P_{2 k-1} \\
&= \varphi_{n}+2\left(\varphi_{n}-\varphi_{1}\right)+2\left(\varphi_{n}-\varphi_{2}\right)+\cdots+2\left(\varphi_{n}-\varphi_{n-1}\right) \\
&= \varphi_{n}+2(n-1) \varphi_{n}-2 \sum_{k=1}^{n-1} \varphi_{k} \\
&=(2 n-1)\left(P_{2 n+2}-1\right)-2 \sum_{k=1}^{n-1}\left(P_{2 k+2}-1\right) \\
& \quad=(2 n-1) P_{2 n+2}-2 P_{2 n+3}+5
\end{aligned}
$$

and

$$
\begin{aligned}
\kappa_{n} & =2 P_{2}+4 P_{4}+6 P_{6}+\cdots+2 n P_{2 n} \\
& =2 \sum_{k=1}^{n} P_{2 k}+2 \sum_{k=2}^{n} P_{2 k}+2 \sum_{k=3}^{n} P_{2 k}+\cdots+2 \sum_{k=n}^{n} P_{2 k} \\
& =2 \gamma_{n}+2\left(\gamma_{n}-\gamma_{1}\right)+2\left(\gamma_{n}-\gamma_{2}\right)+\cdots+2\left(\gamma_{n}-\gamma_{n-1}\right) \\
& =2 n \gamma_{n}-2 \sum_{k=1}^{n-1} \gamma_{k} \\
& =2 n\left(P_{2 n+3}-2\right)-2 \sum_{k=1}^{n-1}\left(P_{2 k+3}-2\right) \\
& =2 n P_{2 n+3}-2 P_{2 n+4}+4
\end{aligned}
$$

For example,

$$
\begin{aligned}
\eta_{3} & =\sum_{k=1}^{3}(2 k-1) P_{2 k-1}=P_{1}+3 P_{3}+5 P_{5} \\
& =1+3.2+5.3=22 \\
& =(2.3-1) 7-2.9+5 \\
& =(2.3-1) P_{8}-2 P_{9}+5
\end{aligned}
$$

and

$$
\begin{aligned}
\kappa_{3} & =\sum_{k=1}^{3} 2 k P_{2 k}=2 P_{2}+4 P_{4}+6 P_{6} \\
& =2.1+4.2+6.4=34 \\
& =2.3 .9-2.12+4 \\
& =2.3 P_{9}-2 P_{10}+4
\end{aligned}
$$

We know that

$$
\lambda_{n}=\sum_{k=1}^{n} R_{2 k-1}=R_{2 n+2}-2
$$

and

$$
\mu_{n}=\sum_{k=1}^{n} R_{2 k}=R_{2 n+3}-3 .
$$

Similarly, we write

$$
\sum_{k=1}^{n}(2 k-1) R_{2 k-1}=(2 n-1) R_{2 n+2}-2 R_{2 n+3}+8
$$

and

$$
\sum_{k=1}^{n} 2 k R_{2 k}=2 n R_{2 n+3}-2 R_{2 n+4}+4
$$

For example,

$$
\begin{aligned}
\sum_{k=1}^{3}(2 k-1) R_{2 k-1} & =R_{1}+3 R_{3}+5 R_{5} \\
& =0+3.3+5.5=34 \\
& =(2.3-1) 10-2.12+8 \\
& =(2.3-1) R_{2 n+2}-2 R_{2 n+3}+8
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{k=1}^{3} 2 k R_{2 k} & =2 R_{2}+4 R_{4}+6 R_{6} \\
& =2.2+4.2+6.5=42 \\
& =2.3 .12-2.17+4 \\
& =2.3 P_{9}-2 P_{10}+4
\end{aligned}
$$

Now let's find the sums

$$
\pi_{n}=\sum_{k=1}^{n}(2 n-2 k+1) P_{2 k-1}
$$

and

$$
\rho_{n}=\sum_{k=1}^{n}(2 n-2 k) P_{2 k} .
$$

Then, we have

$$
\begin{aligned}
\eta_{n}+\pi_{n} & =\sum_{k=1}^{n}(2 k-1) P_{2 k-1}+\sum_{k=1}^{n}(2 n-2 k+1) P_{2 k-1} \\
& =\sum_{k=1}^{n} 2 n P_{2 k-1}=2 n\left(P_{2 n+2}-1\right)
\end{aligned}
$$

So, we obtain

$$
\begin{aligned}
\pi_{n} & =2 n\left(P_{2 n+2}-1\right)-\eta_{n} \\
& =2 n P_{2 n+2}-2 n-2 n P_{2 n+2}+P_{2 n+2}+2 P_{2 n+3}-5 \\
& =2 P_{2 n+3}+P_{2 n+2}-2 n-5
\end{aligned}
$$

For example,

$$
\begin{aligned}
\pi_{3} & =\sum_{k=1}^{3}(6-2 k+1) P_{2 k-1}=5 P_{1}+3 P_{3}+P_{5} \\
& =5.1+3.2+3=14 \\
& =2.9+7-2.3-5 \\
& =2 P_{9}+P_{8}-2.3-5
\end{aligned}
$$

Moreover, we write

$$
\begin{aligned}
\kappa_{n}+\rho_{n} & =\sum_{k=1}^{n} 2 k P_{2 k}+\sum_{k=1}^{n}(2 n-2 k) P_{2 k} \\
& =\sum_{k=1}^{n} 2 n P_{2 k}=2 n\left(P_{2 n+3}-2\right)
\end{aligned}
$$

So, we reach

$$
\begin{aligned}
\rho_{n} & =2 n P_{2 n+3}-4 n-\kappa_{n} \\
& =2 n P_{2 n+3}-4 n-2 n P_{2 n+3}+2 P_{2 n+4}-4 . \\
& =2 P_{2 n+4}-4 n-4
\end{aligned}
$$

For example,

$$
\begin{aligned}
\rho_{3}=\sum_{k=1}^{3} & (6-2 k) P_{2 k}=4 P_{2}+2 P_{4}+0 P_{6} \\
& =4.1+2.2+0.4=8 \\
& =2.12-4.3-4 \\
& =2 P_{10}-4.3-4
\end{aligned}
$$

Similarly, we can find

$$
\sum_{k=1}^{n}(2 n-2 k+1) R_{2 k-1}=2 R_{2 n+3}+R_{2 n+2}-4 n-8
$$

and

$$
\sum_{k=1}^{n}(2 n-2 k) R_{2 k}=2 R_{2 n+4}-6 n-4
$$

For example,

$$
\begin{aligned}
& \sum_{k=1}^{3}(6-2 k+1) R_{2 k-1}=5 R_{1}+3 R_{3}+R_{5} \\
& =5.0+3.3+5=14 \\
& =2.12+10-4.3-8 \\
& =2 R_{9}+R_{8}-4.3-8
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{k=1}^{3}(6-2 k) R_{2 k}=4 R_{2}+2 R_{4}+0 R_{6} \\
& =4.2+2.2+0.4=12 \\
& =2.17-6.3-4 \\
& =2 R_{10}-4.3-4
\end{aligned}
$$

The identity whose first term a and common difference d can be obtained as follows:

$$
\begin{aligned}
S_{n} & =\sum_{k=1}^{n}[a+(k-1) d] P_{k} \\
& =a \sum_{k=1}^{n} P_{k}+d \sum_{k=1}^{n} k P_{k}-d \sum_{k=1}^{n} P_{k} \\
& =a\left(P_{n+5}-3\right)+d\left(n P_{n+5}-P_{n+9}+9\right)-d\left(P_{n+5}-3\right) \\
& =(a+n d-d) P_{n+5}-d P_{n+9}+12 d-3 a
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
T_{n} & =\sum_{k=1}^{n}[a+(k-1) d] R_{k} \\
& =(a+n d-d) R_{n+5}-d R_{n+9}+7 d-5 a
\end{aligned}
$$

Using formulas (1) and (3), we can derive a formula for $\sum_{k=1}^{n} k^{2} P_{k}$. It can be shown that

$$
\begin{aligned}
\sum_{k=1}^{n} k^{2} P_{k} & =P_{1}+4 P_{2}+9 P_{3}+\cdots+n^{2} P_{n} \\
& =\sum_{k=1}^{n} P_{k}+3 \sum_{k=2}^{n} P_{k}+5 \sum_{k=3}^{n} P_{k}+\cdots+(2 n-1) \sum_{k=n}^{n} P_{k} \\
& =\alpha_{n}+3\left(\alpha_{n}-\alpha_{1}\right)+5\left(\alpha_{n}-\alpha_{2}\right)+\cdots+(2 n-1)\left(\alpha_{n}-\alpha_{n-1}\right) \\
& =n^{2} \alpha_{n}-\sum_{k=1}^{n-1}(2 k+1) \alpha_{k} \\
& =n^{2}\left(P_{n+5}-3\right)-\sum_{k=1}^{n-1}(2 k+1)\left(P_{k+5}-3\right) \\
& =n^{2}\left(P_{n+5}-3\right)-\sum_{k=6}^{n+4}(2 k-9)\left(P_{k}-3\right) \\
& =n^{2} P_{n+5}-3 n^{2}-2 \sum_{k=6}^{n+4} k P_{k}+9 \sum_{k=6}^{n+4} P_{k}+6 \sum_{k=6}^{n+4} k-\sum_{k=6}^{n+4} 27 \\
& =n^{2} P_{n+5}-3 n^{2}-2 n P_{n+9}-2 P_{n+6}-4 P_{n+4}+46+9 P_{n+9} \\
& -108+3 n^{2}+27 n-30-27(n-1) \\
& =n^{2} P_{n+5}+(9-2 n) P_{n+9}-2 P_{n+6}-4 P_{n+4}-65
\end{aligned}
$$

Similarly, using formulas (2) and (4), we obtain

$$
\sum_{k=1}^{n} k^{2} R_{k}=n^{2} R_{n+5}+(9-2 n) R_{n+9}-2 R_{n+6}-4 R_{n+4}-90
$$

Now, we reach the general form of the weighted Padovan and Perrin sum formulas as follows:

Theorem 1. The formula for Padovan sums weighted by k^{m} is

$$
\sum_{k=1}^{n} k^{m} P_{k}=n^{m} P_{n+3}+(n+1)^{m} P_{n+2}-1-2 \sum_{i=0}^{\left[\frac{m-1}{2}\right]}\binom{m}{2 i+1} \sum_{k=1}^{n} k^{m-2 i-1} P_{k+2}
$$

where $m=1,2,3, \ldots$.
Proof: Using the recursive of the Padovan sequence, we have

$$
\begin{aligned}
\sum_{k=1}^{n} k^{m} P_{k} & =\sum_{k=1}^{n} k^{m}\left(P_{k+3}-P_{k+1}\right) \\
& =\sum_{k=2}^{n+1}(k-1)^{m} P_{k+2}-\sum_{k=0}^{n-1}(k+1)^{m} P_{k+2} \\
& =n^{m} P_{n+3}+(n+1)^{m} P_{n+2}-1+\sum_{k=1}^{n}\left((k-1)^{m}-(k+1)^{m}\right) P_{k+2} \\
& =n^{m} P_{n+3}+(n+1)^{m} P_{n+2}-1+\sum_{k=1}^{n}\left(\sum_{j=0}^{m}\binom{m}{j}\left((-1)^{j}-1\right) k^{m-j}\right) P_{k+2} \\
& =n^{m} P_{n+3}+(n+1)^{m} P_{n+2}-1+\sum_{k=1}^{n}\left(\left[\begin{array}{c}
{\left[\frac{m-1}{2}\right]} \\
i=0 \\
m \\
2 i+1
\end{array}\right)(-2) k^{m-2 i-1}\right) P_{k+2} \\
& =n^{m} P_{n+3}+(n+1)^{m} P_{n+2}-1-2 \sum_{i=0}^{\left[\frac{m-1}{2}\right]}\binom{m}{2 i+1} \sum_{k=1}^{n} k^{m-2 i-1} P_{k+2}
\end{aligned}
$$

Similarly, we can find

$$
T_{m}(n)=\sum_{k=1}^{n} k^{m} R_{k}=n^{m} R_{n+3}+(n+1)^{m} R_{n+2}-2-2 \sum_{i=0}^{\left[\frac{m-1}{2}\right]}\binom{m}{2 i+1} \sum_{k=1}^{n} k^{m-2 i-1} R_{k+2} .
$$

3. CONCLUSIONS

In this paper, we obtain weighted sum formulas $\sum_{k=1}^{n} k P_{k}$ and $\sum_{k=1}^{n} k R_{k}$ using sum formulas $\sum_{k=1}^{n} P_{k}$ and $\sum_{k=1}^{n} R_{k}$ of Padovan and Perrin numbers. Moreover, we show that the identities involve $\sum_{k=1}^{n} k P_{k}$ and $\sum_{k=1}^{n} k R_{k}$ can be extended to any weighted Padovan and Perrin sum formulas, where weights form an arbitrary arithmetic sequence with first term a and
common difference d: $\sum_{k=1}^{n}[a+(k-1) d] P_{k}$ and $\sum_{k=1}^{n}[a+(k-1) d] R_{k}$. Then, we prove that it is possible to develop formulas for Padovan and Perrin sums which are weighted by k^{m}.

REFERENCES

[1] Koshy, T., Fibonacci and Lucas Numbers with Applications, Vol. 1, John Wiley \& Sons, New Jersey, 2018.
[2] Koshy, T., Fibonacci and Lucas numbers with applications, Vol. 2, John Wiley \& Sons, New Jersey, 2019.
[3] Soykan, Y, On Generalized Padovan Numbers, Preprints 2021, 2021100101. https://doi.org/10.20944/preprints202110.0101.v1.
[4] Lucas, E., Sur la recherche'de grands nombres premiers, A. F. Congre`sduClermentFerrand, 1876.
[5] Stewart, I., Scientific American, 274, 92, 1996.
[6] Perrin, R., L'Interme' diaire des Math, 6, 76, 1899.
[7] Ddamulira, M. Boletín de la Sociedad Matemática Mexicana, 26, 247, 2020.
[8] Deveci, O., Karaduman, E., Hacettepe Journal of Mathematics and Statistics, 46, 579, 2017.
[9] dos Santos Mangueira, M. C., Vieira, R. P. M., Alves, F. R. V., Catarino, P. M. M. C. In Annales Mathematicae Silesianae, 34, 256, 2020.
[10] Tasci, D. Journal of Science and Arts, 18, 125, 2018.
[11] İşbilir, Z., Gürses, N., Mathematical Methods in the Applied Sciences, 45, 12060, 2022.
[12] Gauthier, N., The Mathematical Gazette, 79, 364, 1995.
[13] Gauthier, N., Fibonacci Quarterly, 27, 1989.
[14] Koshy, T., The Mathematical Gazette, 85, 93, 2001.
[15] Brousseau, B.A., The Fibonacci Quarterly, 7, 143, 1969.
[16] Clarke, R.J., The Mathematical Gazette, 87, 279, 2003.
[17] Ozeki, K., Fibonacci Quarterly, 43, 104, 2005.
[18] Cerin, Z., Bitim, B.D., Keskin, R., Honam Mathematical Journal, 40, 199, 2018.

[^0]: ${ }^{1}$ Mersin University, Department of Mathematics, Mersin, Turkey. E-mail: orhandiskaya@mersin.edu.tr; hmenken@mersin.edu.tr.

