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Abstract. In this study, we have employed the highly significant hyperbolic tangent 

(tanh) method to conduct an in-depth analysis of nonlinear coupled KdV systems of partial 

differential equations. In comparison to existing sophisticated approaches, this proposed 

method yields more comprehensive exact solutions for traveling waves without requiring 

excessive additional effort. We have successfully applied this method to two examples drawn 

from the literature of nonlinear partial differential equation systems. 
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1. INTRODUCTION 
 

 

The hyperbolic tangent (tanh) method stands as a robust technique for symbolically 

computing traveling wave solutions of nonlinear wave and evolution equations. It particularly 

excels in scenarios where dispersion, convection, and reaction-diffusion phenomena assume 

significance [1].Nonlinear coupled partial differential equations hold considerable importance 

across various scientific domains, notably in fluid mechanics, solid-state physics, plasma 

physics, plasma waves, capillary-gravity waves, and chemical physics. The nonlinear wave 

phenomena observed in these scientific realms are frequently described by bell-shaped sech, 

solutions and kink-shaped tanh solutions. The availability of these exact solutions, 

significantly aids in verifying the stability analysis of numerical solvers [2-3]. In this study, 

we delve into the realm of two coupled KdV equations.Various methods, such as the 

Adomian decomposition method [4], Backlund and Darboux transformation [5], inverse 

Scattering method [6], and Hirota’s bilinear method [7], are deployed to obtain both exact and 

numerical solutions. Within this investigation, we explore traveling wave solutions for the 

KdV equations in the form of u(x,t)=u(ξ), ξ=k(x – λt), where λ signifies the wave speed (see 

[8]). It's worth noting that this technique is primarily tailored for the pursuit of traveling 

waves. Therefore, our focus narrows down to one-dimensional shock waves (of the kink type) 

and solitary-wave solutions (of the pulse type) in a moving reference frame. Building upon 

the tanh method and its extensions, several symbolic software programs have been developed 

to facilitate the discovery of exact traveling wave solutions [9]. 
 

 

2. EXPLANATION OF THE TANH METHOD 
 

 

The Tanh method will be introduced as presentedby Malfliet [10] and by Wazwaz [11-

13]. The tanh method is based on a priori assumption that the travelingwave solutions can be 

expressed in terms of the tanh function to solve the coupled KdVequations. 
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The tanh method is developed by Malfliet [10].The method is applied to find out an 

exact solution of a nonlinear ordinary differential equation 

 

0.),.........,,,,( xxxxxtx uuuuuP  (2.1)  

 

where P is a polynomial of the variable u and its derivatives. If we consider

),(),( utxu  )( txk   , so that ),(),( Utxu  we can use the following 

changes: 
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and so on, then Eq. (2.1) becomes an ordinary differential equation 

 

0.),.........,,,( ////// UUUUQ  (2.2)  

 

with Q being another polynomial form of its argument, which will be called the reduced 

ordinary differentialequation of Eq. (2.2). Integrating Eq. (2.2) as long as all terms contain 

derivatives, the integrationconstants are considered to be zeros in view of the localized 

solutions. However, the nonzero constantscan be used and handled as well [13]. Now finding 

the traveling wave solutions to Eq. (2.1) is equivalentto obtaining the solution to the reduced 

ordinary differential equation (2.2). For the tanh method, we introduce the new independent 

variable [14]:  

)tanh(),( txY  (2.3)  

 

that leads to the change of variables: 
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(2.4)  

 

The next crucial step is that the solution we are looking for is expressed in the form 

 





m
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i

iYaUtxu
1

)(),(   (2.5)  

 

where the parameter m can be found by balancing the highest-order linear term with the 

nonlinear terms in Eq. (2.2), and maaak ,....,,,, 10 are to be determined. Substituting 

(2.5) into (2.2) will yield a set of algebraicequations for maaak ,....,,,, 10 because all 
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coefficients of 
iY have to vanish. From these relations, maaak ,....,,,, 10 can be obtained. 

Having determined these parameters, knowing that m is a positive integerin most cases, and 

using (2.5) we obtain an analytic solution ),( txu in a closed form [13]. The tanh 

methodseems to be powerful tool in dealing with coupled nonlinear physical models. For a 

coupled system of nonlineardifferential equations with two unknowns: 
 

0.),.........,,,,,,,(1 vvxxttxx vuvuvuvuP  

0.),.........,,,,,,,(2 vvxxttxx vuvuvuvuP  
(2.6)  

 

As for the traveling wave solutions to (2.6) concerned, we have to solve its 

corresponding reduced ordinarydifferential equations 
 

0.),.........,,,,,( //////

1 vuvuvuQ  

0.),.........,,,,,( //////

2 vuvuvuQ  
(2.7)  

 

In most cases, the exact solvability of (2.7) depends on a delicate explicit assumption 

between the twounknowns or their derivatives, for more details see [13]. 
 

 

3. NUMERICAL APPLICATIONS 
 

 

The tanh method is generalized on two examples including systems of coupled KdV 

equations.These systems were studied from Sayed Tauseef [15] by applying the variational 

iteration method.  
 

Example 1. Considerthe following (1+1) - dimensional nonlinear Boussinesq equations [14]:  
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Using the traveling wave transformations 
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where 

)( txk    (3.4)  

 

The nonlinear system of partial differential equations (3.1) is carried to a system of 

ordinary differentialequations 
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we postulate the following tanh series in Eq. (3.2), Eq. (3.3), Eq. (2.3) and the transformation 

given in (2.4), the first equation in (3.5) reduces to 
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the second equation in (3.5) reduces to 
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Now, to determine the parameters m and n, we balance the linear term of highest-order 

with the highestordernonlinear terms. So, in Eq. (3.6) we balance 
/V with 

/UU , to obtain 

 

2 + n – 1   = 2 + m + m – 1, then n = 2m. 

 

While in Eq. (3.7) we balance 
///U with 

/UV , to obtain 

 

6 + m – 3 = 2 + m + n – 1   then n = 2,  m = 1. 

 

The tanh method admits the use of the finite expansion for both: 

 

YaaYUtxu 10)(),(  ,      01 a  (3.8)  

and 
2

210)(),( YbYbbYVtxv  ,    02 b  (3.9)  

 

Substituting 
////// ,,, UUUU and

/,VV from Eq. (3.8) and Eq. (3.9) respectively 

into Eq. (3.6), then equating the coefficient of
iY , i= 0, 1, 2, 3 leads to the following 

nonlinear system of algebraic equations 
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Substituting 
////// ,,, UUUU and

/,VV from Eq. (3.8) and Eq. (3.9) respectively 

into Eq. (3.7), then equating the coefficient of
iY ,i= 0, 1, 2, 3 leads to the following nonlinear 

system of algebraic equations 
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(3.11)  

Solving the nonlinear systems of equations (3.12) and (3.13) with help of Mathematica 

we can get: 

0a  , ka 21  ,  
2

0 2kb    ,  01 b   , 
2

2 2kb 
 

Then: 

λt))x2k tanh(k(λt)u(x,   (3.12)  

and 

λt))(k(xsech k 2t)v(x, 22   (3.13)  

 

The solitary wave and behavior of the solutions ),( txu and ),( txv are shown in 

Figs. 3.1 and 3.2 respectively for some fixed values of the parameters ( 5.0 , 5.0k  ) 
 

  
Figure 3.1. The solitary wave u(x,t)  Figure 3.2. The solitary wave v(x,t)  

 

Example 2. Considerthe following (1+1)- dimensional new coupled modified KdV nonlinear 

equations [14]:  
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Using the traveling wave transformations 
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)( txk    (3.17)  

 

The nonlinear system of partial differential equations (3.14) is carried to a system of 

ordinary differentialequations 
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We postulate the following tanh series in Eq. (3.2), Eq. (3.3), Eq. (2.3) and the 

transformation given in (2.4), the first equation in (3.18) reduces to 
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the second equation in (3.18) reduces to 
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(3.20)  

Now, to determine the parameters m and n, we balance the linear term of highest-order 

with the highestordernonlinear terms. So, in Eq. (3.19) we balance 
///U with 

/UV , to obtain 

 

6 + m – 3 = 2 + m + n – 1, then n = 2. 
 

while in Eq. (3.20) we balance 
///V with 

/UV , to obtain 
 

6 + n – 3 = 4 + n – 1 + m – 1, then m = 1. 
 

The tanh method admits the use of the finite expansion for both 
 

YaaYUtxu 10)(),(   (3.21)  

and 
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2

210)(),( YbYbbYVtxv   (3.22)  

 

Substituting
////// ,,, UUUU and

////// ,,, VVVV from Eq. (3.21) and Eq. (3.22) 

respectively into Eq. (3.19), then equating the coefficient of
iY ,i= 0, 1, 2, 3 leads to the 

following nonlinear system of algebraic equations 
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Substituting
////// ,,, UUUU and

////// ,,, VVVV from Eq. (3.21) and Eq. (3.22) 

respectively into Eq. (3.20), then equating the coefficient of
iY ,i= 0, 1, 2, 3 leads to the 

following nonlinear system of algebraic equations 
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Solving the nonlinear systems of equations (3.23) and (3.24) with help of Mathematica 

we can get: 
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The solitary wave and behavior of the solutions ),( txu and ),( txv are shown in 

Figs. 3.3 and 3.4 for some fixed values of the parameters (α = 1.0, k = 1.0). 
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Figure 3.3. The solitary wave of u(x,t) Fig. 3.4. The solitary wave of v(x,t)  

 

 

4. CONCLUSION  

 

 

We harnessed the formidable tanh method for the analytical treatment of nonlinear 

coupled partial differential equations. Utilizing transformation formulas, we derived solutions 

for traveling waves and kinks. Notably, our solutions for coupled KdV systems of PDEs (3.1) 

and (3.14) are in concordance with the findings of Sayed Tauseef [15], who employed the 

variational iteration method. This alignment underscores the reliability and effectiveness of 

the tanh method in our study. 
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