ORIGINAL PAPER

TOPOLOGY BASED ON NEW GENERALIZED CLOSED SETS

OCHANAN NETHAJI^{1,2}, PITCHAI JEYALAKSHMI^{3,4}

Manuscript received: 23.02.2023; Accepted paper: 24.08.2023; Published online: 30.09.2023.

Abstract. In this paper, we introduce a new classes of sets called \tilde{E} -closed sets and \tilde{E}_{α} -closed sets in topological spaces and we study some of its basic properties. This class lies between the class of closed sets and the class of g-closed sets. **Keywords:** Closed set; \tilde{E} -closed set; \tilde{E}_{α} -closed set.

1. INTRODUCTION

In 1963, Levine [1-2] was introduced by the notions of semi-open sets and g-closed sets are investigated its fundamental properties also. Since the advent of the notion of semi-open sets, many mathematicians worked on such sets and also introduced some other notions such as [3-15].

2. PRELIMINARIES

We recall the following definitions which are useful in the sequel.

Definition 2.1. A subset A of a space (X, τ) is called

- (i) semi-open set [8] if $A \subseteq cl(int(A))$;
- (ii) preopen set [11] if $A \subseteq int(cl(A))$;
- (iii) α -open set [12] if A \subseteq int(cl(int(A)));
- (iv) β -open set [1] (= semi-preopen set [2]) if A \subseteq cl(int(cl(A)));

(v) regular open set [14] if A = int(cl(A)).

The complements of the above mentioned open sets are called their respective closed sets.

Definition 2.2. A subset A of a space (X, τ) is called

(i) a generalized closed (briefly g-closed) set [9] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . The complement of g-closed set is called g-open set;

(ii) a semi-generalized closed (briefly sg-closed) set [4] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) . The complement of sg-closed set is called sg-open set;

¹ Kamaraj College, PG and Research Department of Mathematics, 628003 Thoothukudi, Tamilnadu, India.

² Manonmaniam Sundaranar University, Tirunelveli, Abishekapatti, Tamilnadu, India.

E-mail: jionetha@yahoo.com.

³ PMT College, Department of Mathematics, Usilampatti, 625532 Madurai, Tamilnadu, India.

⁴ Madurai Kamaraj University, Madurai, Tamilnadu, India. E-mail: jeyapitchai1@gamil.com.

(iii) a generalized semi-closed (briefly gs-closed) set [3] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . The complement of gs-closed set is called gs-open set;

(iv) an α -generalized closed (briefly α g-closed) set [10] if α cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ). The complement of α g-closed set is called α g-open set;

(v) a generalized semi-preclosed (briefly gsp-closed) set [6] if $spcl(A) \subset U$ whenever $A \subset U$ and U is open in (X, τ) . The complement of gsp-closed set is called gsp-open set;

(vi) a \hat{g} -closed set [7] if cl(A) \subset U whenever A \subset U and U is sg-open in (X, τ). The complement of $\hat{\hat{g}}$ --closed set is called $\hat{\hat{g}}$ -open set.

(vii) a \hat{g} -closed set [15] (= ω -closed set [13]) if cl(A) \subset U whenever A \subset U and U is semiopen. The complement of \hat{g} -closed set is called \hat{g} -open.

Definition 2.3. [5] Let (X, τ) be a topological space and $A \subseteq X$. We define the sg-closure of A (briefly, sg-cl(A)) to be the intersection of all sg-closed sets containing A.

3. ON *ẽ* -CLOSED SETS

We introduce the following definitions.

Definition 3.1.

(i) A subset A of a space (X, τ) is called a A-closed set if $cl(A) \subset U$ whenever $A \subset U$ and U is \hat{g} -open in (X, τ).

The complement of A-closed set is called A-open set.

(ii) A subset A of a space (X, τ) is called a B-closed set if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is A-open in (X, τ) .

The complement of B-closed set is called B-open set.

The collection of all A-closed (resp. B-closed) sets in X is denoted by AC(X) (resp. BC(X)).

Definition 3.2. A subset A of a space (X, τ) is called a \tilde{E} -closed set if $cl(A) \subset U$ whenever A \subset U and U is B-open in (X, τ).

The complement of *E*-closed set is called *E*-open set. The collection of all \tilde{E} closed set in X is denoted by $\tilde{E}C(X)$.

Remark 3.3.

Each closed set is A-closed but not conversely. (i)

- (ii) Each closed set is B-closed but not conversely.
- Each semi-open set is B-open but not conversely. (iii)

Example 3.4. Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, X\}$. Then

 $AC(X) = \{\phi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\};$

 $BC(X) = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$

 $SO(X) = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}.$

and

694

Then:

(i) {b} is A-closed but not closed.

(ii) {b} is B-closed but not closed.

Example 3.5. Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a, b\}, X\}$. Then

$$BO(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$$

and

 $SO(X) = \{\phi, \{a, b\}, X\}.$

We have $A = \{a\}$ is B-open but not semi-open.

Proposition 3.6. Each closed set is \tilde{E} -closed in X.

Proof: If A is any closed set in X and G is any B-open set containing A, then $G \supseteq A = cl(A)$. Hence A is \tilde{E} -closed.

The converse of Proposition 3.6 need not be true as seen from the following example.

Example 3.7. Let X and τ be as in Example 1.3.5. Then

 $\tilde{E} C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}.$

We have $A = \{a, c\}$ is \tilde{E} -closed set but not closed.

Definition 3.8. A subset A of a space (X, τ) is called a \tilde{E}_{α} -closed set if $\alpha \operatorname{cl}(A) \subseteq U$

whenever $A \subseteq U$ and U is B-open in (X, τ) .

The complement of \tilde{E}_{α} -closed set is called \tilde{E}_{α} -open set.

The collection of all \tilde{E}_{α} -closed (resp. \tilde{E}_{α} -open) sets in X is denoted by $\tilde{E}_{\alpha} C(X)$ (resp. $\tilde{E}_{\alpha} O(X)$).

Proposition 3.9. Each \tilde{E} -closed set is \tilde{E}_{a} -closed in X.

Proof: If A is a \tilde{E} -closed set in X and G is any B-open set containing A, then $G \supseteq cl(A) \supseteq \alpha cl(A)$. Hence A is \tilde{E}_{α} -closed.

The converse of Proposition 3.9 need not be true as seen from the following example.

Example 3.10. Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{b\}, X\}$. Then

$$\tilde{E} C(X) = \{\phi, \{a, c\}, X\}$$

and

$$\tilde{E}_{\alpha} C(X) = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}.$$

We have $A = \{a\}$ is \tilde{E}_{α} -closed set but not \tilde{E} -closed.

Proposition 3.11. Each E-closed set is sg-closed in X.

Proof: If A is a \tilde{E} -closed set in X and G is any semi-open set containing A, since every semi-open set is B-open and A is \tilde{E} -closed, we have $G \supseteq cl(A) \supseteq scl(A)$. Hence A is sg-closed.

The converse of Proposition 3.11 need not be true as seen from the following example. **Example 3.12.** Let X and τ be as in Example 3.4. Then

$$\tilde{E}C(X) = \{\phi, \{b, c\}, X\}$$

and

$$SGC(X) = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}.$$

We have $A = \{b\}$ is sg-closed set but not \tilde{E} -closed.

Proposition 3.13. Each *E*-closed set is g-closed in X.

Proof: If A is a \tilde{E} -closed set in (X, τ) and G is any open set containing A, since every open set is B-open, we have G \supseteq cl(A). Hence A is g-closed.

The converse of Proposition 3.13 need not be true as seen from the following example.

Example 3.14. Let X and τ be as in Example 3.4. Then

and

$$G C(X) = \{\phi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$$

$$\tilde{E}C(X) = \{\phi, \{b, c\}, X\}.$$

We have $A = \{a, b\}$ is g-closed set but not \tilde{E} -closed.

Proposition 3.15. Each \tilde{E} -closed set is α g-closed in X.

Proof: If A is a \tilde{E} -closed set in X and G is any open set containing A, since every open set is B-open, we have $G \supseteq cl(A) \supseteq \alpha cl(A)$. Hence A is α g-closed.

The converse of Proposition 3.15 need not be true as seen from the following example.

Example 3.16. Let X and τ be as in Example 3.4. Then

$$\tilde{E}C(X) = \{\phi, \{b, c\}, X\}$$

and

$$\alpha G C(X) = \{\phi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$$

We have $A = \{a, c\}$ is αg -closed set but not \tilde{E} -closed.

Proposition 3.17. Each E-closed set is gs-closed in X.

Proof: If A is a \tilde{E} -closed set in X and G is any open set containing A, since every open set is B-open, we have $G \supseteq cl(A) \supseteq scl(A)$. Hence A is gs-closed.

The converse of Proposition 3.17 need not be true as seen from the following example.

Example 3.18. Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{b\}, \{a, b\}, X\}$. Then

$$\tilde{E}C(X) = \{\phi, \{c\}, \{a, c\}, X\}$$

and

 $GSC(X) = \{\phi, \{a\}, \{c\}, \{a, c\}, \{b, c\}, X\}.$

We have $A = \{a\}$ is gs-closed set but not \tilde{E} -closed.

Proposition 3.19. Each *E*-closed set is gsp-closed in X.

Proof: If A is a \tilde{E} -closed set in X and G is any open set containing A, every open set is B-open, we have $G \supseteq cl(A) \supseteq spcl(A)$. Hence A is gsp-closed.

The converse of Proposition 3.19 need not be true as seen from the following example.

Example 3.20. Let X and τ be as in Example 3.10. Then

and

 $GSPC(X) = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}.$

 $\tilde{E}C(X) = \{\phi, \{a, c\}, X\}$

We have $A = \{a\}$ is gsp-closed set but not \tilde{E} -closed.

Remark 3.21. The following examples show that \tilde{E} -closed sets are independent of α -closed sets and semi-closed sets.

Example 3.22. Let X and τ be as in Example 3.5. Then

and

$$\tilde{E}C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$$

$$\alpha C(X) = S C(X) = \{\phi, \{c\}, X\}.$$

We have $A = \{a, c\}$ is \tilde{E} -closed set but it is neither α -closed nor semi-closed.

Example 3.23. Let X and τ be as in Example 1.3.4. Then

and

$$\tilde{E}C(X) = \{\phi, \{b, c\}, X\}$$

 $\alpha C(X) = S C(X) = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}.$

We have $A = \{b\}$ is both α -closed set and semi-closed set but not \tilde{E} -closed.

4. MORE PROPERTIES

In this section, we discuss some basic properties of *E*-closed sets.

Definition 4.1. The intersection of all B-open subsets in (X, τ) containing A is called the B-kernel of A and denoted by B-ker(A).

Lemma 4.2. A subset A of (X, τ) is \tilde{E} -closed if and only if $cl(A) \subseteq B$ -ker(A).

Proof: Suppose that A is \tilde{E} -closed. Then $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is B-open. Let $x \in cl(A)$. If $x \notin B$ -ker(A), then there is an B-open set U containing A such that $x \notin U$. Since U is an B-open set containing A, we have $x \notin cl(A)$ and this is a contradiction.

Conversely, let $cl(A) \subseteq B$ -ker(A). If U is any B-open set containing A, then $cl(A) \subseteq B$ -ker(A) $\subseteq U$. Therefore, A is \tilde{E} -closed.

Proposition 4.3. If A and B are \tilde{E} -closed sets in (X, τ) then $A \cup B$ is \approx g-closed in (X, τ) .

Proof: If $A \cup B \subseteq G$ and G is B-open, then $A \subseteq G$ and $B \subseteq G$. Since A and B are \tilde{E} -closed, $G \supseteq cl(A)$ and $G \supseteq cl(B)$ and hence $G \supseteq cl(A) \cup cl(B) = cl(A \cup B)$. Thus $A \cup B$ is \tilde{E} -closed set in (X, τ) .

Proposition 4.4. If a set A is \tilde{E} -closed in (X, τ) then cl(A) - A contains no nonempty B-closed set in (X, τ) .

Proof: Suppose that A is \tilde{E} -closed. Let F be a B-closed subset of cl(A) - A. Then $A \subseteq F^c$. Since A is \tilde{E} -closed, $cl(A) \subseteq F^c$. Consequently, $F \subseteq (cl(A))^c$. We already have $F \subseteq cl(A)$. Thus $F \subseteq cl(A) \cap (cl(A))^c$ and F is empty.

The converse of Proposition 4.4 need not be true as seen from the following example.

Example 4.5. Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, \{a, d\}, X\}$. Then

$$\approx GC(X) = \{\phi, \{b, c\}, \{a, b, c\}, \{b, c, d\}, X\}$$

and

 $BC(X) = \{\phi, \{a\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, X\}.$

If $A = \{b\}$ then $cl(A) - A = \{c\}$ does not contain any nonempty B-closed set. But A is not \tilde{E} -closed.

Theorem 4.6. If a set A is \tilde{E} -closed, then cl(A) - A contains no nonempty closed set.

Proof: Suppose that A is \tilde{E} -closed. Let S be a closed subset of cl(A) - A. Then $A \subseteq S^c$. Since A is \tilde{E} -closed, we have $cl(A) \subseteq S^c$. Consequently, $S \subseteq (cl(A))^c$. Hence, $S \subseteq cl(A) \cap (cl(A))^c = \phi$. Therefore S is empty.

Proposition 4.7. If A is \tilde{E} -closed set in (X, τ) and $A \subseteq B \subseteq cl(A)$, then B is \tilde{E} -closed set in (X, τ) .

Proof: Let $B \subseteq U$ where U is B-open set in (X, τ) . Since $A \subseteq B$, $A \subseteq U$. Since A is \tilde{E} -closed set, $cl(A) \subseteq U$. Since $B \subseteq cl(A)$, $cl(B) \subseteq cl(A) \subseteq U$. Therefore B is \tilde{E} -closed set in (X, τ) .

Proposition 4.8. Let $A \subseteq Y \subseteq X$ and suppose that A is \tilde{E} -closed in (X, τ) . Then A is \tilde{E} -closed relative to Y.

Proof: Let $A \subseteq Y \cap G$, where G is B-open in (X, τ) . Then $A \subseteq G$ and hence $cl(A) \subseteq G$. This implies that $Y \cap cl(A) \subseteq Y \cap G$. Thus A is \tilde{E} -closed relative to Y.

Proposition 4.9. If A is an B-open and \tilde{E} -closed in (X, τ) , then A is closed in (X, τ) .

Proof: Since A is B-open and \tilde{E} -closed, $cl(A) \subseteq A$ and hence A is closed in (X, τ) .

Theorem 4.10. Let A be a locally closed set of (X, τ) . Then A is closed if and only if A is \tilde{E} -closed.

Proof: It is fact that every closed set is E-closed.

Conversely, by Proposition 3.3 of Bourbaki [9], $A \cup (X - cl(A))$ is open in (X, τ) , since A is locally closed. Now $A \cup (X - cl(A))$ is B-open set of (X, τ) such that $A \subseteq A \cup (X - cl(A))$. Since A is \tilde{E} -closed, then $cl(A) \subseteq A \cup (X - cl(A))$. Thus, we have $cl(A) \subseteq A$ and hence A is a closed.

Proposition 4.11. For each $x \in X$, either $\{x\}$ is B-closed or $\{x\}^c$ is \tilde{E} -closed in (X, τ) .

Proof: Suppose that $\{x\}$ is not B-closed in (X, τ) . Then $\{x\}^c$ is not B-open and the only B-open set containing $\{x\}^c$ is the space X itself. Therefore $cl(\{x\}^c) \subseteq X$ and so $\{x\}^c$ is \tilde{E} -closed in (X, τ) .

Theorem 4.12. Let A be a \tilde{E} -closed set of a topological space (X, τ) . Then, (i) If A is regular open, then pint(A) and scl(A) are also \tilde{E} -closed. (ii) If A is regular closed, then pcl(A) is also \tilde{E} -closed.

Proof:

(i) Since A is regular open in X, A = int(cl(A)). Then $scl(A) = A \cup int(cl(A)) = A$. Thus, scl(A) is \tilde{E} -closed in (X, τ) . Since $pint(A) = A \cap int(cl(A)) = A$, pint(A) is \tilde{E} -closed.

(ii) Since A is regular closed in X, A = cl(int(A)). Then $pcl(A) = A \cup cl(int(A)) = A$. Thus, pcl(A) is \tilde{E} -closed in (X, τ). The converses of the statements in the Theorem 4.12 are not true as we can see in the following examples.

Example 4.13. Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{a, b\}, X\}$. Then

 $\tilde{E}C(X) = \{\phi, \{c\}, \{b, c\}, X\}.$

Then the set $A = \{c\}$ is not regular open. However A is \tilde{E} -closed; scl(A) = $\{c\}$ and pint(A) = ϕ are also \tilde{E} -closed.

Example 4.14. In Example 4.13, the set $A = \{c\}$ is not regular closed. However A and pcl(A) = $\{c\}$ are \tilde{E} -closed.

Lemma 4.15. Let F be a closed set of (X, τ) . Then the following properties hold:

if A is B-closed in (X, τ), then A \cap F is B-closed in (X, τ).

Corollary 4.16. If A is \tilde{E} -closed set and F is a closed set, then $A \cap F$ is \tilde{E} -closed set.

Proof: Let U be a B-open set of (X, τ) such that $A \cap F \subseteq U$. By Lemma 4.15, it shows that $A \subseteq U \cup (X/F)$ and $U \cup (X/F)$ is B-open in (X, τ) . Since A is \tilde{E} -closed in (X, τ) , we have cl(A)

 $\subseteq U \cup (X \setminus F)$ and so $cl(A \cap F) \subseteq cl(A) \cap cl(F) = cl(A) \cap F \subseteq (U \cup (X \setminus F)) \cap F = U \cap F \subseteq U$. Therefore $A \cap F$ is \tilde{E} -closed in (X, τ) .

5. CONCLUSION

In this article, we present two brand-new kinds of sets called \tilde{E} -closed sets and \tilde{E}_{α} -closed closed sets in topological spaces, and we investigated some of their fundamental characterizations are arrived. This class is intermediate between the classes of closed sets and g-closed sets. And we can learn in various areas oftopological spaces with associated applications.

REFERENCES

- [1] Levine, N., American Mathematical Monthly, **70**(1), 36, 1963.
- [2] Levine N., Rendiconti del Circolo Matematico di Palermo, 19, 89, 1970.
- [3] Abd El-Monsef, M.E., El-Deeb, S.N., Mahmoud, R.A., *Bulletin Faculty Science, Assiut University*, **12**, 77, 1983.
- [4] Andrijevic, D., Semi-preopen sets, *Matematicki Vesnik*, 38(93), 24, 1986.
- [5] Arya, S.P., Nour, T.M., Indian Journal Pure Applied Mathematics, 21(8), 717, 1990.
- [6] Bhattacharrya, P., Lahiri, B.K., Indian Journal Mathematics, 29(3), 375, 1987.
- [7] Caldas, M.C., *Portugaliae Mathematica*, **52**(**4**), 339, 1995.
- [8] Dontchev, J., Kochi Journal of Mathematics, 16, 35, 1995.
- [9] Garg, M., Agarwal, S., Goal, C.K., Acta Ciencia Indica, XXXIII(4), 1643, 2007.
- [10] Maki, H., Devi, R., Balachandran, K., Kochi Journal Mathematics, 15, 51, 1994.
- [11] Mashhour, A.S., Abd El-Monsef, M.E., El-Deeb, S.N., *Proceedings Mathematical Physical Society Egypt*, **53**, 47, 1982.
- [12] Njastad, O., Pacific Journal Mathematics, 15, 961, 1965.
- [13] Sheik John, M., Ph.D Thesis A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Bharathiar University, Coimbatore, September 2002.
- [14] Stone, M.H., Transactions American Mathematical Society, 41(3), 374, 1937.
- [15] Veera Kumar M.K.R.S., Bulletin Allahabad Mathematical Society, 18, 99, 2003.