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Abstract. Classical matrix theory for real, complex and hypercomplex numbers is a 

well-known concept. Is it possible to construct matrix theory over dual-generalized complex 

(DGC) matrices? The answer to this question is given in this paper. The paper is constructed 

as follows. Firstly, the fundamental concepts for DGC matrices are introduced and DGC 

special matrices are defined. Then, theoretical results related to eigenvalues/eigenvectors are 

obtained and universal similarity factorization equality (USFE) regarding to the dual 

fundamental matrix are presented. Also, spectral theorems for Hermitian and unitary 

matrices are introduced. Finally, due to the importance of unitary matrices, a method for 

finding a DGC unitary matrix is stated and examples for spectral theorem are given. 

Keywords: dual-generalized complex number; matrices over special rings; 

eigenvalues and eigenvectors; fundamental matrix. 

 

 

1. INTRODUCTION  

 

The set of complex numbers  with elements z a b  i  where ,a b  with complex 

unit 2 ( 1) i i  is a field and also associative and commutative algebra with unity (for details 

[1]). Over the years, complex unit lead to construct other two dimensional number systems, 

such as hyperbolic numbers [2-4] (double, split complex, perplex) and dual numbers [4-6]. 

Additionally, the set of generalized complex numbers is given in [7-8]: 

 

 2: : , , , ,  .      z a bJ a b J Jp p p  

 

The set p  is a vector space over . It is analogous to complex numbers  for 1 p , to 

hyperbolic numbers  for 1p  and to dual numbers  for 0p . Several researchers give a 

different perspective to these number systems. By this way, complex-hyperbolic numbers (or 

hyperbolic-complex numbers) are examined in [8-11]. The n -dimensional hyperbolic-

complex and bicomplex numbers are studied in [12-15]. Complex-dual numbers (or dual-

complex numbers) are investigated in [11,16-17]. The notion of dual-complex numbers and 

their holomorphic functions are discussed in [18]. Hyperbolic-dual (or dual-hyperbolic) 

numbers are investigated in [11], and some properties of hyperbolic-dual numbers and 

hyperbolic-complex numbers are examined in [19]. Also, as an extension of dual numbers, 

hyper-dual numbers are presented in [20-22]. 

Motivated by papers above and using the Cayley-Dickson doubling procedure for 

construction, the dual-generalized complex (DGC), hyperbolic-generalized complex and 
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complex-generalized complex numbers are investigated in [23]. The set of DGC  numbers is 

defined as [23]: 

 

 2

1 2 1 2   : : , , 0, 0,           a z z z zp p  

 

considering various properties and matrix representations. 

It is known that matrix theory is used in various disciplines of science and engineering 

such as applied mathematics, data analysis, scientific computing, graphic software, 

optimization, electronics networks, airplane and spacecraft, robotics and automation and 

many more. For detailed information related matrix theory we refer to the studies [24-25]. In 

addition, a comprehensive study about matrix theory is conducted by Zhang [26] taking into 

account quaternions which are identified with 0 1 1 2 2 3 3q q q e q e q e    , where 

0 1 2 3, , ,q q q q   and 
1 2 3, ,e e e  are quaternionic units [27]. Inspired by Zhang, many studies 

considering different types of quaternions are conducted over matrix theory in [28-30].  

Non-commutativity is a common property of quaternions, which leads to many 

difficulties in applications of quaternions. In this paper, we consider DGC numbers which are 

commutative. Our purpose is to give DGC matrix theory with the perspective mentioned 

above. The paper is organized as follows: Section 2 contains a short knowledge about DGC 

numbers and vectors. In Section 3, the basic theory of DGC matrices which are treated as real 

matrices with DGC entries is developed and the special cases are classified. Section 4 

establishes the fundamental properties, eigenvalues/eigenvectors of DGC matrices and 

universal similarity factorization equality (USFE) by using the dual fundamental matrix 

which gives several opportunities to analyze the concepts
3
. In the last section, a method to 

construct a DGC unitary matrix is introduced and examples for spectral theorem for DGC 

symmetric matrix are given. It can be concluded that our results generalize the classical 

matrix theory. 

 

 

2. FUNDAMENTAL CONCEPTS 

 

 

As for prerequisites, the reader is expected to be familiar with DGC numbers. Here 

and elsewhere, we consider 0p . Let 1 11 12 2 21 22, ,         a z z a z z p . Then, the 

algebraic operations on DGC numbers are given by:  

 

   

 

   

1 2 11 21 12 22

1 2 11 21 12 22

1 11 12

1 2 11 21 11 22 12 21

,

   

,

 ,

,

     .

  



  



   

    

 

  

a a z z z z

a a z z z z

a z z

a a z z z z z z

 

 

                                                 

 
3
 One main motivation to investigate DGC  matrices with respect to their dual fundamental matrices comes from 

dual matrices applicability to various areas of science and engineering like the kinematic analysis and synthesis 

of spatial mechanisms, and robot manipulators; see [31-35]. The linear algebra and matrix theory related to dual 

matrices have sparked increased and accompanied to science and engineering. 
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Additionally, the notation 
†k   1,2,3,4k  represents the different conjugates and 

these conjugates are defined by:  
1

1 2

†a z z   , 

2

1 2

†a z z   , 

3

1 2

†
a z z   , 

4

2 1

†a z z   . 

 

Here 1z  and 2z  represent the usual conjugate of 1z , 2z  p . Different conjugates 

enable different norms. The norms
†k are identified by 

2 †

†| | k

k
a aa  for 1,2,3k  . The 

multiplications of the base elements are J J   and 2( ) 0J  . Every DGC number a  can 

be written as 1 2 1 2a z z a a J     where 
1 2,a a  are dual numbers. Based on this, it is clear 

that there is no difference between dual-generalized complex numbers and generalized 

complex-dual numbers, (see details in [23]). 

 Null (isotropic) DGC numbers are the numbers with zero norm and they identified by 

the following forms  

 

 0,c , dJ , and c dJ   with respect to 
†k , 

 a aJ p  with respect to 1†
 and 3†

 where 0p , 

 a aJ c cJ    p p  with respect to 1†
 and 3†

 where 0p  and 0a  , 

 

where  , , ,a b c d . 

 

Gathering all these facts, each non-null DGC number a  has an inverse
†k  1,2,3k  

where 
†

1

† 2

†| |

k

k

k

a
a

a

  . A chief motivation for our investigations over USFE for DGC numbers 

comes from the following basic USFE for complex number a b i : 
 

1 0 1
2 ,

1 0 1

a b a b

a b b a

        
       

           

i i i

i i i
 

 

where 
2 1 i . Tian’s result [36] is interesting as it provides a way to present a general 

method for establishing USFE. According to this, USFE for elliptic numbers [30] ( 0p ) is 

defined and it allows to expend USFE for DGC numbers. 

 

Theorem 2.1. Let 1 2a a a J   p  be given, where 1 2,a a  . Then, a  and 1†a  satisfy 

USFE 

1

1

†

21

2 1

0
( ).

0
   

   
   

a aa
a

a aa

p
P P  
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Here, 
1

1
1

12

J

J



 
 

 
 
 
 

P
p

p p

 and 
11

2

J

J

 
  

 
P

p
 have no relation with a . 

 

Corollary 2.1. Let 1 2a a a J   p  be given, where 1 2,a a  . By USFE over DGC 

numbers, the facts below follow easily: 

 

 The set of DGC numbers is algebraically isomorphic to 

 

 1 2

1 2 2

2 1

: : ,  
   

    
   

a a
a a

a a

p
D  

 

through the bijective map 
1 2

2 1

: , ( ) .
a a

a
a a

 
 

   
 

Dp

p
 

 Every a  has a dual matix representation 
1 2

2 1

( )
a a

a
a a


 

  
 

p
 over the dual number ring. 

For 
1

2

a
a

a

 
  
 

 and 1 2b b b J  , 
1 2 1

2 1 2

( )
a a b

ab ba a b
a a b


   

     
   

p
. Here ( )a  is called 

fundamental matrix of a , [23]. 

 

Theorem 2.2. For ,  a b p  and  , the following universal identities are satisfied:  

 

1) ( ) ( )a b a b    , 

2) ( ) ( ) ( )a b a b     , 

3) ( ) ( ) ( )ab a b   , 

4) ( ( ) ) ( ) ( )a b a b    , 

5) ( ) ( )a a   , 

6) 2(1) I  , 

7)   12 2 †

1 2det ( ) ,a a a aa   p  

8) 
1

1

†a
 exists   1( )a   exists, in which case, 

1†

1 1( ) ( )a a    

9)   1†tr ( )a a a   . 

 

Additionally, the set of DGC vectors is denoted by 
nV  and defined as: 

  1 2: , ,..., : ,  1,2..., .   n

n tV V a a a a t np  The set 
nV  is a module over p . The 

conjugate of 
nV V  is the conjugate of its components. Let us extend the familiar definitions 

of scalar product, norm and cross product to DGC versions. 

 

Definition 2.1. Let    1 2 1 2, ,..., ,  , ,...,   n

n nV a a a U b b b V  be given. Then the standard 

scalar product and Hermitian
†k  scalar product over the module 

nV  are defined respectively by 
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1

( , ) , ,


 

   

n n

n
T

r r

r

V V

V U V U a b V U

p

 

† †

†

1

( , ) , , 1,2,3. 


     k k

k

n
T

r r

r

V U V U a b V U k  

 

The standard norm and norm
†k  of DGC vector V  in nV  are defined as follows:

2
,V V V  and 

† †

2
, ,

k k

V V V  respectively, for 1,2,3k  . If the norm of a vector nV V  

equals 1, then it is called a unit vector. 

One can see the details easily through the analogy between  1 2, ,..., n

nV a a a V   and 

V J J    1 2 3 4V V V V  where 
niV , 1,2,3,4i  . A null (isotropic) DGC  vector in nV  

is a vector of  zero norm. For example,   3, ,J V p  is null for 0p  with respect to 1†
 and 

3†
. Moreover, if the components of a vector in 

nV  are multiple of the null DGC numbers, then 

the vector is also null. Hence  2 ,0,0J   and  , ,J    are null in 
3V . 

 

Definition 2.2. For 1,2,3k  , the standard cross and cross
†k  (vector) products of two vectors 

V  and U  in 3V  are defined respectively as follows: 
 

1 2 3

1 2 3

,

i j k

V U a a a

b b b

   (1) 

 

and 

1 2 3 1 2 3

1 2 3 1

†

† † †

†

† †

2 3

†

.

k

k k k

k

k k k

i j k i j k

V U a a a a a a

b b b b b b

    

 

Proposition 2.1. For any 3, , ,   V U W V  , the cross
†k  products ( 1,2,3k  ) satisfy the 

following properties: 

 

1) † †k k
V U U V    , 

2)  † 0
k

V V  , 

3) † †( ) ( ),
k k

V U V U     

4) †0 0
k
U  , 

5) † 0
k

V U V U    , 

6) † † †( ) ( ) ( )
k k k

V U W V U V W      . 

 

Proof: The symbolic determinant of cross
†k  product satisfies many of the familiar features of 

determinants, which can be checked easily for 1,2,3k  . 
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It is worthy of note that the properties in Proposition 2.1 can be given for the standard 

cross product given in equation (1). 
 

 

3. DGC MATRICES 
 

 

The matrix with DGC  number entries is called DGC  matrix. The DGC  matrix A  of 

the order m n  is of the form: 0 1 2 3 ,ij ij ij ij ijA a a a J a a J            where ija  p ,

1,2,...,i m  and 1,2,...,j n . The set of all m n  matrices with DGC  entries is denoted by: 

 

   : : ,  1,2,..., , 1,2,..., . 
      m n ij ijm n

A a a i m j np p  

 

A DGC  matrix with all of the entries are zero, is called a zero-matrix and denoted by 

0 . If m n , then A  is called DGC  square matrix. 

 

Lemma 3.1. Every DGC  matrix of the order m n  can be written as 

 

0 1 2 3 ,A A A J A A J      

 

where 0 1 2 3, , ,A A A A  are real matrices of the same order. 

 

Lemma 3.2. Every DGC  square matrix 0 1 2 3A A A J A A J      is also in the form: 

 

0 1 2 3 ,A A A J A A J      

where ,  .  n nJ JI I  

Standard elementary matrix operations establish the following operations on DGC  

matrices. Let ijA a    ,  ij m nB b 
    p ,  js n rC c 

    p  and c . A  and 

B  are equal if they have the same order and the corresponding entries are equal, in other 

words, for eachij ija b  1,2,...,i m  and 1,2,...,j n . The addition (and hence subtraction) 

A B  is defined as ijD d     with  

 

  ,ij ij ij ij ij m nA B a b a b d D 
                     p  

 

or        0 0 1 1 2 2 3 3A B A B A B J A B A B J          . The scalar multiplication of A  

by c , cA , is defined as:   ,ij m ncA ca 
    p  or 0 1 2 3 .cA cA cA J cA cA J      The 

product AC  is defined as: 

 

   
1

,
n

ij js is m r

j

AC a c e E 



 
    
 
 p  

or 
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    

 

0 0 1 1 0 1 1 0 0 2 2 0 1 3 3 1

0 3 1 2 2 1 3 0 .

AC A C AC A C AC J A C A C AC A C

A C AC A C A C J





       

   

p p
 

 

As natural consequence of matrix product to find the power of A , A  is multiplied by 

itself as many times as the exponent (nonnegative integer) indicates. The DGC square matrix 

A  of the order n  is said to be an invertible if nAB BA I   for DGC square matrix B  of the 

same order. 

With regard to the operations given above,  m n p  is an abelian group, is a non-

commutative ring and is a vector space over . It is also an algebra over  with matrix 

multiplication. Additionally,  n p  is a  n  module. The transpose of A  is denoted 

by TA  and defined as:  T

ji n mA a 
    p  or 0 1 2 3 .    T T T T TA A A J A A J The trace of 

square A , denoted by tr( )A , is defined to be the sum of elements on the main diagonal of A : 

0 1 2 3

1

tr( ) tr( ) tr( ) tr( ) tr( ) .
n

ii

i

A a A A J A A J 


      

 

Proposition 3.1. For  , m nA B  p ,  n rC  p  and c , the matrix transpose 

satisfies the followings: 

 

1)  
T

TA A , 

2)  
T

T TA B A B   , 

3)  
T

TcA cA , 

4)  
T

T TAC C A , 

5)    
1

1
T

TA A


  . 

 

Proposition 3.2. For  , nA B p  and c , the followings hold: 

 

1) tr( ) tr( ) tr( )A B A B   , 

2) tr( ) tr( )cA c A , 

3) tr( ) tr( )AB BA , 

4) tr( ) tr( )TA A . 

 

Based on the following conjugates, we will define some special DGC matrices and 

spectral theorems in the next sections. 

 

Definition 3.1. Let  0 1 2 3ij m nA a A A J A A J  
        p . Then the conjugations of 

A  are defined as follow: 

 



 Matrix theory over DGC numbers Nurten Gürses and Gülsüm Yeliz Şentürk 

 

www.josa.ro Mathematics Section 

216 

1

2

3

4

†

0 1 2 3 0 2 1 3

†

0 1 2 3 0 2 1 3

†

0 1 2 3 0 2 1 3

†

2 3 0 1 2 0 3 1

( ) ( ) ,

( ) ( ) ,

( ) ( ) ,

( ) ( ) .

A A A J A A J A A A A J

A A A J A A J A A A A J

A A A J A A J A A A A J

A A A J A A J A A A A J

   

   

   

   

         


       


        


       

 

 

Proposition 3.3. For  , m nA B  p ,  n rC  p , the following assertions hold: 

 

1)  
†

† k
kA A , 1,2,3k  ,  

4
4

†
†A A  , 

2)    
†

†
,

k
k k

T
TA A A   1,2,3,4k  , 

3)  
†

† †k
k kA B A B   , 1,2,3,4k  , 

4)  
†

† †
,

k
k kAC A C  1,2,3k  , 

5)  1†

0 22A A A A    ,  2†

0 12A A A A J   ,  3†

0 32 .A A A A J    

 

Now, we also seek to identify special DGC matrices and their properties. 

 

Definition 3.2. Let  ij nA a    p . If 

 

 , , ,AV U V AU      then A  is said to be DGC symmetric, 

 , , ,AV U V AU      then A  is said to be DGC skew-symmetric, 

 † †, , ,
k k

AV U V AU      then A  is said to be DGC Hermitian
†k , 

 † †, , ,
k k

AV U V AU      then A  is said to be DGC skew-Hermitian
†k , 

 , , ,AV AU V U      then A  is said to be DGC orthogonal, 

 † †, , ,
k k

AV AU V U      then A  is said to be DGC unitary
†k , 

 

where V , 
nU V  and 1,2,3k  . 

 

The preceding definition allows us to construct the following general relations. 

 

Theorem 3.1. For any DGC  square matrix A  of the order n  and 1,2,3k  , the followings 

are given: 

 

1)  A  is symmetric (skew-symmetric) if and only if TA A  ( TA A  ), 

2)  A  is Hermitian
†k  (skew-Hermitian

†k ) if and only if 
†kTA A (

†kTA A  ), 

3) A  is orthogonal if and only if 
T T

nAA A A I  , 

4) A  is unitary
†k  if and only if k k

nAA A A I  . 
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Proof: Let  ij nA a    p , ,   nV U V . The proof here is essentially an elaboration on 

Definition 2.1 and Definition 3.2, Proposition 3.1 and Proposition 3.3. 

2) Considering equality † †, ,
k k

AV U V AU     , we obtain: 

 

   
†

† † † † †k
k k k k k

T
T T T T TAV U V AU V A U V A U A A     . 

 

4) Using equality 
† †, ,

k k
AV AU V U     , we have: 

 

   
†

† † † †k
k k k k k

T
T T T T

nAV AU V U V A A U V U AA I     . 

 

Lemma 3.3. For any DGC vector V  with dimension n , DGC orthogonal transformation 

, ,AV AV V V      with matrix A  preserves lengths of vectors and maps orthonormal DGC 

bases to orthonormal DGC bases. 

The preceding lemma gives rise to a geometric construction for DGC vectors. The 

rows of a DGC orthogonal matrix are mutually DGC orthogonal vectors with unit norm, so 

that the rows constitute an orthonormal DGC basis of 
nV . The columns of the matrix form 

another orthonormal DGC basis of 
nV . 

Example 3.1. The DGC matrix 

2 2 2

2 2 2

1

J J

J J
A

 

 

 

 
 
 
  
 
 
 

 
  

 is orthogonal for 4p . Its rows 

(columns) are DGC orthogonal vectors with unit norm. Consequently, the system of rows is 

an orthonormal DGC basis of 
3V . 

Lemma 3.3 can also be given for DGC unitary
†k  matrices for 1,2,3k  . 

 

Definition 3.3. The DGC matrix A  is said to be normal
†k  if kA  and A  commute, that is, if 

k kAA A A  for 1,2,3k  . 

 

The identity, diagonal, scalar, upper/lower triangular and triangular DGC matrices are 

defined by in a familiar way. For instance, the identity DGC matrix is denoted by nI  and all 

diagonal entries are equal to 1. 

In order to avoid distractions, several results involving additional properties of special 

DGC matrices are omitted
4
. In what follows, we now give the following simple fact 

concerning DGC square matrices. 

 

                                                 

 
4
 0 1 2 3A A A J A A J      is unitary 2†

 if and only if 0 0 1 1

T T

nA A A A I p , 0 1

TA A  is skew-

symmetric, 0 2 1 3

T TA A A A p  is symmetric, and 0 3 1 2

T TA A A A  is symmetric. The other special type of DGC  

matrices can be examined easily in same way. 
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Theorem 3.2. Every DGC square matrix can be uniquely expressed as the sum of a 

symmetric and skew-symmetric DGC matrices of the same order. 

 

For given any DGC square matrix [ ]ijA a  of the order n , the determinant of A  is 

defined as: 
1 21 2det( ) Sign( ) ... ,

n

i n

i n

S

A a a a  





   where the sum is over all permutations of n  

elements. This determinant exhibits the features of standard determinant. Namely, it act same 

as real matrices. 

 

Corollary 3.1. Let det( )A  be a non-null DGC number. In this case, A  is invertible and its 

inverse can be obtained by the formula: 

 

1 1
adj(A),

det( )
A

A

   

where adj(A)  is the classical adjoint of a matrix. A  is not invertible when det( )A  is null 

DGC  number. In other respects, it is also possible to calculate 1A  considering conjugates 

denoting as 1

†k
A , where the notation †k

 represents det( )A  is non-null for conjugate
†k . 

 

Remark 3.1. It clear that, if any row or column of A  is a multiple of null DGC number, then 

A  is not invertible (because det( )A  is null DGC  number). For example 
3 1

2

J

J



 

 
 

 
 is not 

invertible. 

 

Remark 3.2. Even if any row or column of A  is a null DGC vector, determinant may not be 

null DGC number. For instance, considering 0p  and 1†
, the first column of 

1

2

J
A



 
  
  p

 

is null DGC vector, however, det( ) 2A J  p  is non-null DGC number. Hence, 

1
2 11

.
2

A
JJ






 

  
   pp

  

 

Remark 3.3. Taking 
2 2

1

J J
A





 
  
 

 and 2p , det( ) 2A J   is null DGC number 

for 1†
 but non-null number for 2†

. Thus, 
2

1

†

1 21

2 2

J
A

J J






 

  
   

. 

 

4. DGC  MATRICES CONSIDERING THE DUAL FUNDAMENTAL MATRIX 

 

 

 We frequently require the dual fundamental matrix in some of the theorems and 

therefore it plays a crucial role in our paper. Theorem 2.1 can be extended to DGC matrices as 

follows. 
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Theorem 4.1. Let  1 2 nA A A J   p  be given, where 
1A  and 2A  are dual matrices. 

Then, A  and 1†A  satisfy the following USFE  

 

 
1

1 21

†
2 1

 0
.

0  


   
    
  

A AA
P P A

A AA

p
 

Here, 1

1

1

1 12

n

n

I J

P

J I



 
 

 
 
 
 

p

p p

 and 
1

2

n

n

I J
P

J I

 
  

 p
 have no relation with A . 

 

Proof: By direct computation, one establishes USFE over DGC square matrices. 

 

Corollary 4.1. Let  1 2 nA A A J   p  be given, where 1A  and 2A  are dual matrices. 

By USFE over DGC square matrices, the facts below follow easily: 

 

 The set of DGC square matrices is isomorphic to the matrix set: 

 

   1 2*

1 2 2

2 1

: : ,   
 

   
    
   

n n

A A
D A A

A A

p
 

through the bijective map   1 2*

2 1

: , ( ) .n

A A
D A

A A
 

 
   

 
p

p
 

 Every A  has a dual matrix representation 
1 2

2 1

( )
 

.
 

A A
A

A A


 
  
 

p
 

One rewrite any DGC square matrix 
1

2

A
A

A

 
  
 

. Based on this, for A  and 

1 2 , B B B J  we have 
1 2 1

2 1 2

(
 

)
 

,
A A B

AB A B
A A B


   

    
   

p
 where ( )A  is called dual 

fundamental matrix of .A  

 

Theorem 4.2. For  , nA B p , the followings hold: 

 

1)   2 ,n nI I   

2)     ,A B A B     

3)       ,A B A B      

4)     ,cA c A c   , 

5)       ,AB A B    

6)       A B A B     
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7)       
1 1

1 ,A A A  
 

    if 
1A
 exists, 

8)    2†A A  . However    †kA A   in general  1,3k , 

9)    
T

TA A   in general, 

10)    k

T

A A   in general  1,2,3k , 

11)    1†tr A A A   , 

 

where the overline in part 8) indicates standard conjugate of a dual matrix. 

 

Proof: The parts from 1) to 4), 6) and 11) can be easily shown. For parts 8), 9) and 10), an 

example can be found
5
. 

5) Take  1 2 1 2, nA A A J B B B J     p . Then, the dual fundamental matrices of A  

and B  are    1 2 1 2

2 1 2 1

,
 

.
 

 

A A B B
A B

A A B B
 

   
    
   

p p
 Calculating AB  gives 

   1 1 2 2 1 2 2 1    AB A B A B A B A B J   p  and we can assert that 

 

 
 

   1 1 2 2 1 2 2 1

1 2 2 1 1 1 2 2

   

  
.

 

A B A B A B A B
AB A B

A B A B A B A B
  

  
  

  

p p

p
 

 

7) If A  is invertible DGC matrix,     
1

1A A 


   is clear from substituting 1B A  into 

part 5) and using part 1). 

 

Now we turn to important applications of the dual fundamental matrix. 

 

Theorem 4.3. For any DGC matrices of the same order A  and B , if nAB I  then nBA I . 

 

Proof: Let us write 1 2A A A J   and 
1 2B B B J  . Suppose nAB I . Then using part 1) and 

5) of Theorem 4.2, we have:    nAB I   and it follows     2nA B I   . A  and B  are 

dual matrices with order 2n , so we have     2nB A I   . Hence we obtain nBA I . 

 

Theorem 4.4. Let  nA p . Then,  A  is 

 

1) symmetric if and only if A  is symmetric for 1p . 

                                                 

 

5
 

1 J
A

J 

 
  
 

 is example for the parts 8), 9) and 10) of Theorem 4.2. 
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2) Hermitian if and only if A  is Hermitian 2†
 for 1p  and Hermitian 3†

 for 1 p . 

3) skew-Hermitian if and only if A  is skew- Hermitian 2†
 for 1p  and skew-Hermitian 3†

 

for 1 p . 

4) orthogonal if and only if A  is orthogonal for 1p . 

5) unitary if and only if A  is unitary 2†
 for 1p  and unitary 3†

 for 1 p , 

6) normal if and only if A  is normal 2†
 for 1p  and normal 3†

 for 1 p . 

Proof: 2) If  A  is Hermitian then 
1 21 2

2 1 2 1

 

 
.

T T

T T

A A A A

A A A A

  
  
    

p

p
 For 1p  we have 11

T

A A  

and 22

T

A A . Then 2
1 2 1 2

T T

A A J A A JA A      gives A  is Hermitian 2†
. It is clear that for 

1 p , 3
1 2 1 2

T T

A A J A A JA A      gives A  is Hermitian 3†
. 

5) If  A  is unitary then    
1 21 2

2

2 1 2 1
 

.

T T
T

n T T

A A A A
I A A

A A A A

 
  
    
    

p

p
 By taking into 

account 1p , we have 1 21 2 
T T

nA A A A I   and 2 11 2  0
T T

nA A A A  . Thus 2

nAA I  and A  is 

unitary 2† . Additionally for 1 p , we have 3

nAA I  and A  is unitary 3†
. 

 

Definition 4.1. Let  nA p  and 
nV V  be a non-null vector. If AV V  for some 

 p , then   is called an eigenvalue of A  and V  is called an eigenvector of A  

associated with  . The set of all eigenvalues of A  is denoted by ( )A  and referred to as the 

spectrum of A . Those eigenvalues are said to be the standard eigenvalues of A . 

 

Lemma 4.1. If   is an eigenvalue of the DGC matrix A  corresponding to the eigenvector 

,V  then c  is an eigenvalue of cA  corresponding to the same eigenvector V , where c  is a 

non-zero real scalar. 

 

Theorem 4.5. Every DGC square matrix A  of the order n  has at most 2n  distinct dual 

eigenvalues. 

 

Proof: Let  p  be an eigenvalue of  1 2 nA A A J   p . Then, for non-pure dual 

column vectors 1V  and 2V , there exists a non-null DGC vector 
1 2

nV V V J V    such that

 1 2 1 2 1 2( )( ) .A A J V V J V V J     Hence, 

 

1 1 2 2 1 1 2 2 1 2and  .AV A V V AV A V V    p  

 

So we have: 
1 2 1 1

2 1 2 2

.
 

A A V V

A A V V


     
     

     

p
 Due to the fact that a dual matrix has at most 

2n  distinct dual eigenvalues, A  has at most 2n  distinct dual eigenvalues. 
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Corollary 4.2. 
1 2J     p  is an eigenvalue of the DGC square matrix 1 2A A A J   

of the order n  if and only if  

 

  11 1 2 2

22 2 1 1 

0
.

0

n n

n n

VA I A I

VA I A I

 

 

      
     

     

p
 

 

Corollary 4.3. For every  nA p ,  

 

 ( ) ( ) ,A A     

 

where  ( )A   is the spectrum of the dual fundamental matrix ( )A . 

Let us give an alternative version of our results in the setting of dual fundamental 

matrix and eigenvalues. 

 

Theorem 4.6. For any DGC square matrix A , the followings are equivalent: 

 

1) A  is invertible. 

2) 0AV   has a unique solution zero. 

3)   det  A  is not pure dual number or zero, i.e.,  A  is invertible. 

4) A  has no zero eigenvalue. More precisely, if AV V  for some   and some non-null 

vector V , then   is non-zero number in p . 

 

Proof: 1)   2) This part is obvious. 

2)   3) Take  1 2 nA A A J   p , 
1 2

nV V V J V    where 1A , 2A  are dual matrices 

and 1 2,  V V  are dual column vectors. Then, 

 

1 2 1 2 1 1 2 2 1 2 2 1( )( ) ( ) ( ) .      AV A A J V V J AV A V AV A V Jp   

 

Writing 0AV   gives:
1 1 2 2

1 2 2 1

0

 0










AV A V

AV A V

p
. 

So we have: 0AV  if and only if 
1 2 1

2 1 2 
0.

A A V

A A V

   
   

   

p
 In other words, 

  1 2( , ) 0TA V V  . Since 0AV   has a unique solution,   1 2( , 0) TA V V  has a unique 

solution and  A  is invertible. 

3)   1) If  A  is invertible, then for  1 2 nA A A J   p  there exists a unique dual 

matrix that satisfy: 
1 2 1 2

2

3 4 2 1 
.n

B B A A
I

B B A A

   
   

  

p
 Thus we get: 

1 1 2 2

1 2 2 1

 

0

 




 

n

n

B A B A I

B A B Ap
. Using these, 
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we see that 
1 1 2 2 1 2 2 1( ( ) ) nB A B A B A B A J I   p or ,nBA I  where 

1 2 . B B B J This gives 

A  is invertible. 

2)   4) Let 0AV   has a unique solution zero for A , i.e., V  is 0 . However, assuming that 

A  has zero eigenvalue, AV V  is satisfied for non-null vector V . This is a contradiction. It 

means that 0AV   has a unique solution zero, then A  has no zero eigenvalue. Now assume 

that A  has no zero eigenvalue. In this case, 0AV V   and by our assumption V  is 0 . 

Hence 0AV   has a unique solution zero for A . 

 

Remark 4.1. If any row or column of the dual fundamental matrix  A  is multiple of pure 

dual number, then the DGC square matrix A  is not invertible. 

 

Now we turn to define determinant of the dual fundamental matrix of A . 

 

Definition 4.2. Let  nA p  and  A  be the dual fundamental matrix of A . The J 

determinant is defined by   | | detJA A . Here,   det A  is the usual determinant of 

 A . 

The general linear and special linear group of DGC matrices are: 

 

   

   

: { :  | | 0},

: { :  | | 1},

  

  

n n J

n n J

GL A A

SL A A

p p

p p

 

respectively. According to above equalities, the J  determinant has an essential role in the 

concept of general linear and special linear groups to DGC matrices. 

 

Theorem 4.7. For any DGC square matrices of the same order A  and B , the followings 

hold: 

 

1)  A  is invertible   | |JA  is not pure dual number or 0. 

2) | | | | | |J J JAB A B , naturally 
1 1| | | |J JA A   if 1A  exists. 

 

Proposition 4.1. For any DGC square matrix 1 2A A A J  , if 1A  and 2A  are commutative, 

then 1†| | det( )det( ).JA A A  

 

Proof: As 1A  and 2A  are commutative, we have:  

  1 1† 2

1 2

† 2det( )det( ) det( ) det( ) det | | .     JA A AA A A A Ap   
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Example 4.1. Consider the DGC  matrix 
1

0 1

J J
A

J

 
  

 
. According to

 

1 0

0 1 0

1 1 0

0 1 0 1

A






 
 
 
 
 
 

p p

p
 and   det | | 1JA A   p , we can assert that A  is invertible DGC 

matrix if 1p . As det( ) 1A J J    p  and 1†det( ) 1A J J    p , we verify that 

1†| | det( )det( ).JA A A  

Symmetric, Hermitian
†k , orthogonal and unitary

†k  matrices have many special 

properties, the most important of which are expressed in the following theorems. One can 

establish Theorem 4.8 to characterize DGC symmetric, and Theorem 4.9 and Theorem 4.10 to 

characterize DGC orthogonal matrices. 

 

Theorem 4.8. [Spectral theorem for DGC  Hermitian
†k  matrices]  

For any DGC Hermitian
†k  matrix A  ( 1,2,3k  ): 

 

1) the eigenvalues are of the form a c  for 1†
, a bJ  for 2†

 and a dJ  for 3†
 where 

, , ,a b c d . 

2) the eigenvectors corresponding to distinct eigenvalues are orthogonal
†k . 

 

Proof: 1) Let   be an arbitrary eigenvalue of the Hermitian
†k  matrix A  and 

nV V  be an 

eigenvector corresponding to the eigenvalue  . So by using Definition 3.2 and AV V , we 

have: 

† †

† †

†

† †

, ,

, ,

, , .

 

 

   

    

 



  

k k

k k

k

k k

AV V V AV

V V V V

V V V V

 

 

 

Hence,   is of the form a c  for 1†
, a bJ  for 2†

 and a dJ  for 3†
 where 

, , ,a b c d . 

2) Consider 1V  and 2V  be two eigenvectors corresponding to the distinct eigenvalues 1  and 

2.  Since 1 1 1AV V , 2 2 2AV V , we have the following: 

 

1 1 2 1 1 2 1 2

†

1† † † 2 2 1 †2†, , , , , .               k

k k k k k
V V V V AV V V AV V V  

 

As 1 2  , we conclude that 
1 2 †, 0

k
V V   . 

 

Theorem 4.9 [Spectral theorem for DGC unitary
†k  matrices]  

For any a DGC unitary
†k  matrix A  ( 1,2,3k  ), 

1) if   is an eigenvalue then †

2| | 1
k

  . 

2) the eigenvectors corresponding to distinct eigenvalues are orthogonal
†k . 
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Proof: 1) Let   be eigenvalue of A  corresponding to the eigenvector V . Then using 

Definition 3.2, we have: †

† † †, , , .k

k k k
AV AV V V V V         Hence we state that 

2†

†| | 1k

k
   . 

2) Take 
1V  and 

2V  be two eigenvectors corresponding to the distinct eigenvalues 
1  and 

2 . 

So, we have: 1 2 1 2 1 2 1

†

†2† †, , , .k

k k k
AV AV V V V V          From part 1), we get 

2 2

†1 k   . Since 

1  and 2  are distinct eigenvalues, it follows that 1

1 2 1    and 
1 2 †, 0.

k
V V    

 

Theorem 4.10. For any DGC unitary
†k  matrix A , 

†

2| det( ) | 1
k

A  , (for 1,2,3k  ). 

 

Proof: For DGC unitary
†k  matrix A , we have det( ) det( )k

nAA I . It follows 

det( )det( ) 1kA A   and †
det( )(det( )) 1.kA A   Therefore †

2| det( ) | 1
k

A  . 

Example 4.2. 
1 3

1 2

J J
A

J J

  

  

   
  

  
 is a unitary 1†

 matrix. Also, det 1A J   and 

†

2| det( ) | 1.
k

A  

 

 

5. COMPUTATIONAL RESULTS 

 

 

We now want to give a method for finding unitary matrices, which has significant 

importance in quantum mechanics because they preserve norms, and thus, probability 

amplitudes. 

The calculating steps to find DGC unitary
†k  matrix  1,2,3k : 

 Take an arbitrary unit vector 3

1V V . 

 Calculate a unit vector 3

2V V  such that 
1 2 †, 0

k
V V   . 

 Compute another unit vector 3

3V V  such that 
3 1 2†k

V V V  . 

 Write the DGC unitary
†k  matrix 1 2 3[ , , ]V V V . 

Furthermore, these steps can be applied to find DGC orthogonal matrices. In the following, 

we will provide a computational example of finding DGC unitary
†k  matrix. 

 

Example 5.1. For 1k   and 0p , take the unit DGC vector 
1

1
( , , )V J J 

p
 in 

3V . We 

can calculate the unknowns ,  ,  ,  a b c d  for the DGC vector ( , , )U J a bJ c dJ       

where 
1†1, 0.V U aJ b     p  Hence, we have 0,  0,  ,    a b c d  and we can choose 

0,  1  c d . Additionally, the norm of 
1†

U  p . So, we can write the desired unit 

vector as follows: 
2

1
( , , )V J J  

p
. Then, calculate the vector 3V  such that 

1†3 1 2

1
( , , 1).   

 

       




i j k

V V V J J

J J
p
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Finally, 

1

J J

J J
U

 

 

 

 
 

  
 
 

  
   

  
 
 

p p p

p p p
 is a DGC unitary 1†

 matrix. 

 

Let give an example for the spectral theorem for DGC symmetric matrix. 

 

Example 5.2. Consider 
1 0

0
A

J 

 
  

 
 for 0p . The dual fundamental matrix of A :

 

1 0 0 0

0 0
.

0 0 1 0

0 1 0

A






 
 
 
 
 
 

p
The eigenvalues of  A  are calculated as 1 2 1   , 3   p , 

4  p . One can easily obtain the following eigenvectors corresponding to these 

eigenvalues as:  1 0 0 1 0 
T

,  2 1 0 0 0 
T

, 
3 0 0 1   

 

T

p , 

4 0 0 1  
 

T

p , respectively. 

 

Corollary 4.2 and Corollary 4.3 allow us to move from the eigenvectors of  A  to 

the eigenvectors of A , so we have: 1 ( ,0)V J , 2 (1,0)V  , 3 (0, )V J  p  and 

4 (0, )V J  p . 

As an application of Spectral Theorem for DGC symmetric matrices (see Theorem 

4.8), one can assert that the eigenvectors corresponding to distinct eigenvalues are orthogonal 

with respect to standard scalar product. Notice that two eigenvectors corresponding to the 

same eigenvector are not orthogonal. 

Let P  be the matrix whose columns are formed from the eigenvectors of  A  and 

D  be the diagonal matrix whose has eigenvalues of  A  along its main diagonal. Thus, we 

have for   1A PDP  : 

 

0 0 1 0

1 0 0 00 1 0 0 1 0 0 0

0 1 0 0 1 10 0
0 0 .

220 0 01 0 0 0

1 10 0 1 1 0 0 0 0 0
22






 
   
   
               
         
  

A
p p

pp

p

p
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Example 5.3. Consider 
1 0

A
J J

 
  

 
 for 9p . Then  

1 0 0 0

0 9 9
.

0 0 1 0

1 1 0

A






 
 
 
 
 
 

The 

eigenvalues of  A  are calculated as 3,3  and 1. Let P  be a matrix whose columns are 

constructed by the eigenvectors of  A . Thus we have   1diag{ 3,3,1,1}A P P   , where  

 

8 9
0 0

1 1

9 9
3 3 .

1 1

0 0 0 1

1 1 1 0

 



 



 

 
   

 
 

  
 
 
  

P  

 

 

6. CONCLUSIONS 
 

 

Consequently, we prove that classical results in matrix theory hold for DGC matrices 

as well. The main advantage in carrying out this construction is that DGC numbers are 

commutative. This theory is examined by proving several characteristic theorems. In this 

paper, the central focus is the dual fundamental matrix of any DGC square matrix. It is a 

known fact that matrices with dual number components make possible a concise 

representation of link proportions and joint parameters; together with the orthogonality 

properties of the matrices in kinematics. They are also used in closed-form solutions for the 

joint displacements of robot manipulators with special geometry in literature. For a more in-

depth and application of dual-number matrices to the formulation of displacement equations 

of robot manipulators, see [32]. It is worth pointing out that this classical matrix theory can be 

established for dual-complex numbers for 1 p  and dual-hyperbolic numbers for 1p . We 

expect that the results obtained related to DGC matrices will become an important tool in 

many areas of science and provide a meaningful alternative to existing studies. Additionally, 

for future work, we intend to extend our work on similarity relations, exponential map, many 

different DGC matrix decompositions and investigate the solutions of linear equation systems. 
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