ORIGINAL PAPER

THE ADJOINT MAP AND DUAL MAP OF MULTILINEAR MAP

SALIM YUCE ${ }^{1}$

Manuscript received: 11.10.2022; Accepted paper: 26.01.2023;
Published online: 30.03.2023.

Abstract. Let V_{i} be the vector spaces and V_{i}^{*} be their dual spaces for $1 \leq i \leq r$. In this paper, $\left(V_{1} \times V_{2} \times \ldots \times V_{r}\right)^{*} \cong V_{1}^{*} \times V_{2}^{*} \times \ldots \times V_{r}^{*}$ is examined. Furthermore, the dual map F^{*} and the adjoint map F^{\prime} of the r-linear map $F: V_{1} \times V_{2} \times \ldots \times V_{r} \rightarrow W$ are defined and for their matrices, the equality $\left[F^{*}\right]=\left[F^{\prime}\right]=[\bar{F}]^{T}$ is found. Analog, the dual map F^{*} of the r-variable vector valued linear map $F: V_{1} \times V_{2} \times \ldots \times V_{r} \rightarrow W_{1} \times W_{2} \times \ldots \times W_{r}$ is defined and for their matrices, the equality $\left[F^{*}\right]=[\bar{F}]^{T}$ is true, for the vector spaces V_{i} and W_{i}.

Keywords: adjoint maps; dual space; multilinear maps; dual maps.

1. INTRODUCTION

Let V be a vector space over a field \mathfrak{F} and V^{*} be a dual space of V. Recall that a symmetric bilinear form $B: V \times V \rightarrow \mathfrak{F}$ is corresponding to a linear map $\varphi: V \rightarrow V^{*}$. Backward, a linear map $\varphi: V \rightarrow V^{*}$ is corresponding to a bilinear form $B: V \times V \rightarrow \mathfrak{F}$ such that

$$
\begin{aligned}
\varphi(x): V & \rightarrow \mathfrak{F} \\
y & \mapsto B(x, y)
\end{aligned}
$$

If two vector spaces V and W have non-degenerate bilinear forms, then $\varphi: V \rightarrow V^{*}$ and $\psi: W \rightarrow W^{*}$ are linear isomorphism, [3-4]. The dual map L^{*} of the linear map $L: V \rightarrow W$ is defined such that

$$
\begin{aligned}
L^{*}: W^{*} & \rightarrow V^{*} \\
\beta^{*} & \mapsto L^{*}\left(\beta^{*}\right): V \\
\alpha & \mapsto\left[L^{*}\left(\beta^{*}\right)\right](\alpha)=\beta^{*} \overline{(L(\alpha))}
\end{aligned}
$$

Also, we can write $L^{*} \circ \beta^{*}=\beta^{*} \circ \bar{L}$.
If $\left\{\alpha_{j}\right\}$ is a basis in finite-dimensional inner product space V and $\left\{\alpha_{j}^{*}\right\}$ is the dual basis in dual space V^{*} such that

$$
\left\langle\alpha_{i}^{*}, \alpha_{j}\right\rangle=\delta_{i j}, \quad 1 \leq i, j \leq n,
$$

and $\left\{\beta_{k}\right\}$ is a basis in finite-dimensional inner product space W and $\left\{\beta_{k}^{*}\right\}$ is the dual basis in dual space W^{*} such that

$$
\left\langle\beta_{l}^{*}, \beta_{k}\right\rangle=\delta_{l k}, \quad 1 \leq l, k \leq m
$$

[^0]then, we have
\[

$$
\begin{equation*}
L\left(\alpha_{j}\right)=\sum_{k=1}^{m} a_{k j} \beta_{k} \quad \text { and } \quad L^{*}\left(\beta_{k}^{*}\right)=\sum_{j=1}^{n} a_{j k}^{*} \alpha_{j}^{*} . \tag{1}
\end{equation*}
$$

\]

Hence, we obtain two matrices $A^{*}=\left[a_{j k}^{*}\right]_{n \times m}$ and $A=\left[a_{k j}\right]_{m \times n}$ such that $A^{*}=\bar{A}^{T}$.
Moreover, the linear map $L^{a d}=L^{\prime}=\varphi^{-1} \circ L^{*} \circ \psi: W \rightarrow V$ is called the adjoint map of L. The adjoint map L^{\prime} has $A^{\prime}=\left[a_{j k}\right]_{n \times m}$ such that $A^{\prime}=A^{*}=\bar{A}^{T}$.

If V and W are two inner product spaces, then it provides $\langle L(\alpha), \beta\rangle_{W}=\left\langle\alpha, L^{\prime}(\beta)\right\rangle_{V}$. Furthermore, there is only $x \in V$ such that linear functional $F: V \rightarrow \mathfrak{F}, F(v)=\langle v, x\rangle$. Then, the vector $x \in V$ is called the Reisz vector. Thus, there is a linear isomorphism

$$
\begin{align*}
\varphi: V & \rightarrow V^{*} \\
x & \mapsto \varphi(x): V \tag{2}\\
& \rightarrow \mathfrak{F} \\
v & \mapsto(\varphi(x))_{(v)}=\langle v, x\rangle
\end{align*}
$$

and it is called the isomorphism of inner product spaces. Thus, we can write the inner product such that

$$
\begin{equation*}
\left\langle\alpha^{*}, \beta^{*}\right\rangle_{V^{*}}=\left\langle\varphi^{-1}\left(\alpha^{*}\right), \varphi^{-1}\left(\beta^{*}\right)\right\rangle_{V} \tag{3}
\end{equation*}
$$

over dual vector space $V^{*},[3-4]$.

1.1. MULTILINEAR MAP

Let $V_{i}, 1 \leq i \leq r$ and W be vector spaces and $\left\{e_{i 1}, e_{i 2}, \ldots, e_{i k_{i}}\right\}$ and $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right\}$ be their bases, respectively. Recall that, $\operatorname{dim} W=m, \operatorname{dim} V_{i}=k_{i}$.

Then, the matrix A of linear map $L: V_{1} \times V_{2} \times \ldots \times V_{r} \rightarrow W$ corresponding to the basis $\left\{\left(e_{1 j_{1}}, e_{2 j_{2}}, \ldots, e_{r j_{r}}\right)\right\}, 1 \leq j_{1} \leq k_{1}, 1 \leq j_{2} \leq k_{2}, \ldots, 1 \leq j_{r} \leq k_{r}$ is

$$
A=\left[a_{s\left(j_{1} j_{2} \ldots j_{r}\right)}\right]_{m \times\left(k_{1} k_{2} \ldots k_{r}\right)}
$$

such that

$$
L\left(e_{1 j_{1}}, e_{2 j_{2}}, \ldots, e_{r j_{r}}\right)=\sum_{s=1}^{m} a_{s\left(j_{1} j_{2} \ldots j_{r}\right)} \beta_{s} .
$$

Also, for the r-linear maps $F: V \times V \times \ldots \times V \rightarrow W$ and $G: V^{\prime} \times V^{\prime} \times \ldots \times V^{\prime} \rightarrow W^{\prime}$, there exists a set of linear bijections $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{r}: V \rightarrow V^{\prime}$ and $\psi: W \rightarrow W^{\prime}$ and

$$
G\left(\varphi_{1}\left(v_{1}\right), \varphi_{2}\left(v_{2}\right), \ldots, \varphi_{r}\left(v_{r}\right)\right)=\psi\left(L\left(v_{1}, v_{2}, \ldots, v_{r}\right)\right)
$$

is provided. Then, the r-linear maps F and G are called equivalent and can be written $F=\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{r}\right)$ and $G=\left(\psi_{1}, \psi_{2}, \ldots, \psi_{t}\right),[1-2]$.

2. DUAL SPACE OF CARTESIAN PRODUCT SPACES

Theorem 1. Let $V_{i}, 1 \leq i \leq r$ be vector spaces. Then,

$$
\begin{equation*}
\left(V_{1} \times V_{2} \times \ldots \times V_{r}\right)^{*} \cong V_{1}^{*} \times V_{2}^{*} \times \ldots \times V_{r}^{*} \tag{4}
\end{equation*}
$$

Proof. We can write

$$
\left.\begin{array}{rl}
\varphi_{i}: V_{i} & \rightarrow V_{i}^{*} \\
\alpha_{i} & \mapsto \varphi\left(\alpha_{i}\right): V_{i}
\end{array}\right) \mathfrak{F} .
$$

By the above linear isomorphism, we can define linear isomorphisms

$$
\begin{align*}
M: V_{1} \times V_{2} \times \ldots \times V_{r} & \rightarrow V_{1}^{*} \times V_{2}^{*} \times \ldots \times V_{r}^{*} \\
\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right) & \mapsto M\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)=\left(\varphi_{1}\left(\alpha_{1}\right), \varphi_{2}\left(\alpha_{2}\right), \ldots, \varphi_{r}\left(\alpha_{r}\right)\right) \tag{5}
\end{align*}
$$

and
$\Phi: V_{1} \times V_{2} \times \ldots \times V_{r} \rightarrow\left(V_{1} \times V_{2} \times \ldots \times V_{r}\right)^{*}$

$$
\begin{align*}
\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right) & \mapsto \Phi\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right): V_{1} \times V_{2} \times \ldots \times V_{r} \rightarrow \mathfrak{F} \tag{6}\\
& \left(\beta_{1}, \beta_{2}, \ldots, \beta_{r}\right) \mapsto\left[\Phi\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)\right]\left(\beta_{1}, \beta_{2}, \ldots, \beta_{r}\right)=\prod_{i=1}^{r} B_{V_{i}}\left(\alpha_{i}, \beta_{i}\right)
\end{align*}
$$

Hence, we get a diagram as follows:

Thus, we can write

$$
L\left(\varphi_{1}\left(\alpha_{1}\right), \varphi_{2}\left(\alpha_{2}\right), \ldots, \varphi_{r}\left(\alpha_{r}\right)\right)=\Phi\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)
$$

and so $L \circ M=\Phi$. Therefore, $L=M^{-1} \circ \Phi$ is a linear isomorphism. This gives us

$$
\left(V_{1} \times V_{2} \times \ldots \times V_{r}\right)^{*} \cong V_{1}^{*} \times V_{2}^{*} \times \ldots \times V_{r}^{*} .
$$

Note 1. Since $L\left(\varphi_{1}\left(\alpha_{1}\right), \varphi_{2}\left(\alpha_{2}\right), \ldots, \varphi_{r}\left(\alpha_{r}\right)\right) \in\left(V_{1} \times V_{2} \times \ldots \times V_{r}\right)^{*}$ we have

$$
\begin{aligned}
& {\left[L\left(\varphi_{1}\left(\alpha_{1}\right), \varphi_{2}\left(\alpha_{2}\right), \ldots, \varphi_{r}\left(\alpha_{r}\right)\right)\right]\left(\beta_{1}, \beta_{2}, \ldots, \beta_{r}\right)} \\
& \quad=\left(\left(\varphi_{1}\left(\alpha_{1}\right)\right)\left(\beta_{1}\right),\left(\varphi_{2}\left(\alpha_{2}\right)\right)\left(\beta_{2}\right), \ldots,\left(\varphi_{r}\left(\alpha_{r}\right)\right)\left(\beta_{r}\right)\right)
\end{aligned}
$$

For $\forall\left(\alpha_{1}^{*}, \alpha_{2}^{*}, \ldots, \alpha_{r}^{*}\right) \in V_{1}^{*} \times V_{2}^{*} \times \ldots \times V_{r}^{*}$, we can write

$$
\begin{align*}
\left(\alpha_{1}^{*}, \alpha_{2}^{*}, \ldots, \alpha_{r}^{*}\right) & =\left(\varphi_{1}\left(\alpha_{1}\right), \varphi_{2}\left(\alpha_{2}\right), \ldots, \varphi_{r}\left(\alpha_{r}\right)\right) \tag{7}\\
& =\left(L^{-1} \circ \Phi\right)\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right) .
\end{align*}
$$

3. THE DUAL MAP AND ADJOINT MAP OF MULTILINEAR MAP

Let $V_{1}, V_{2}, \ldots, V_{r}, W$ be vector spaces over \mathfrak{F} and $F: V_{1} \times V_{2} \times \ldots \times V_{r} \rightarrow W$ be a r-linear map. Then with the following diagram

$$
\begin{array}{ccc}
V_{1} \times V_{2} \times \ldots \times V_{r} & \xrightarrow{\boldsymbol{F}} & \boldsymbol{W} \\
\downarrow \boldsymbol{\varphi}_{\boldsymbol{i}} & & \downarrow \boldsymbol{\psi} \\
V_{1}^{*} \times V_{2}^{*} \times \ldots \times V_{r}^{*} & \xrightarrow[\rightarrow]{\boldsymbol{G}} & \boldsymbol{W}^{*}
\end{array}
$$

we can write

$$
\begin{equation*}
G\left(\varphi_{1}\left(\alpha_{1}\right), \varphi_{2}\left(\alpha_{2}\right), \ldots, \varphi_{r}\left(\alpha_{r}\right)\right)=\psi\left(F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)\right) \tag{8}
\end{equation*}
$$

3.1. THE DUAL MAP AND ITS MATRIX

The map

$$
\begin{align*}
F^{*}: W^{*} & \rightarrow V_{1}^{*} \times V_{2}^{*} \times \ldots \times V_{r}^{*} \\
\beta^{*} \mapsto F^{*}\left(\beta^{*}\right): V_{1} \times V_{2} \times \ldots \times V_{r} & \rightarrow \mathfrak{F} \tag{9}\\
\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right) & \mapsto\left[F^{*}\left(\beta^{*}\right)\right]\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)=\beta^{*}\left(\overline{F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)}\right)
\end{align*}
$$

is called the dual map of the map F.
Theorem 2. Let V and W be vector spaces over \mathfrak{F} and $L: V \times V \times \ldots \times V \rightarrow W$ be a r-linear map. If the matrix of the map L is A, and the matrix of the dual map L^{*} is A^{*}, then

$$
\begin{equation*}
A^{*}=\bar{A}^{T} \tag{10}
\end{equation*}
$$

is obtained.
Proof. Assume that the basis of the space V is $\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$, the basis of the space $V \times V \ldots \times V$ is $\left\{\left(e_{j_{1}}, e_{j_{2}}, \ldots, e_{j_{r}}\right)\right\}$, and the basis of the space W is $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{r}\right\}$. Then, we have

$$
L\left(e_{j_{1}}, e_{j_{2}}, \ldots, e_{j_{r}}\right)=\sum_{t=1}^{m} a_{t\left(j_{1} j_{2} \ldots j_{r}\right)} \beta_{t}, \quad 1 \leq j_{1}, j_{2}, \ldots, j_{r} \leq n .
$$

Also, let the basis of the $V^{*} \times V^{*} \times \ldots \times V^{*}$ space be $\left\{\left(e_{j_{1}}^{*}, e_{j_{2}}^{*}, \ldots, e_{j_{r}}^{*}\right)\right\}$. Thus, we get

$$
L^{*}\left(\beta_{s}^{*}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{n} a_{\left(i_{1} i_{2} \ldots i_{r}\right) s}^{*}\left(e_{i_{1},}^{*}, e_{i_{2}}^{*}, \ldots, e_{i_{r}}^{*}\right), \quad 1 \leq s \leq m .
$$

These give us

$$
A=\left[a_{t\left(j_{1} j_{2} \ldots j_{r}\right)}\right]_{m \times n^{r}} \quad \text { and } \quad A^{*}=\left[a_{\left(i_{1} i_{2} \ldots i_{r}\right) s}^{*}\right]_{n^{r} \times m} .
$$

Since,

$$
\left(L^{*}\left(\beta_{s}^{*}\right)\right)\left(e_{k_{1}}, e_{k_{2}}, \ldots, e_{k_{r}}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{n} a_{\left(i_{1} i_{2} \ldots i_{r}\right) s}^{*}\left(e_{i_{1}}^{*}, e_{i_{2}}^{*}, \ldots, e_{i_{r}}^{*}\right)\left(e_{k_{1}}, e_{k_{2}}, \ldots, e_{k_{r}}\right)
$$

we can write

$$
\beta_{s}^{*}\left(\overline{L\left(e_{k_{1}}, e_{k_{2}}, \ldots, e_{k_{r}}\right)}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{n} a_{\left(i_{1} i_{2} \ldots i_{r}\right) s}^{*} e_{i_{1}}^{*}\left(e_{k_{1}}\right) e_{i_{2}}^{*}\left(e_{k_{2}}\right) \ldots e_{i_{r}}^{*}\left(e_{k_{r}}\right)
$$

or

$$
\beta_{s}^{*}\left(\sum_{t=1}^{m} \bar{a}_{t\left(k_{1} k_{2} \ldots k_{r}\right)} \beta_{t}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{n} a_{\left(i_{1} i_{2} \ldots i_{r}\right) s}^{*} \delta_{i_{1} k_{1}} \delta_{i_{2} k_{2}} \ldots \delta_{i_{r} k_{r}} .
$$

Thus, we see that

$$
\sum_{t=1}^{m} \bar{a}_{t\left(k_{1} k_{2} \ldots k_{r}\right)} \delta_{s t}=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{n} a_{\left(i_{1} i_{2} \ldots i_{r}\right) s}^{*} \delta_{i_{1} k_{1}} \delta_{i_{2} k_{2}} \ldots \delta_{i_{r} k_{r}}
$$

If we take $s=t$ and $i_{1}=k_{1}, i_{2}=k_{2}, \ldots i_{r}=k_{r}$ then we obtain

$$
\bar{a}_{s\left(k_{1} k_{2} \ldots k_{r}\right)}=a_{\left(k_{1} k_{2} \ldots k_{r}\right) s}^{*}
$$

that is

$$
A^{*}=\bar{A}^{T} .
$$

3.2. THE ADJOINT MAP AND ITS MATRIX

The adjoint of the r-linear map $F: V_{1} \times V_{2} \times \ldots \times V_{r} \rightarrow W$, denoted by F^{\prime}, is the r-linear map and defined as

$$
\begin{equation*}
F^{\prime}: M^{-1} \circ F^{*} \circ \psi: W \rightarrow V_{1} \times V_{2} \times \ldots \times V_{r} \tag{11}
\end{equation*}
$$

with the help of the r-linear map

$$
\begin{aligned}
M & : V_{1} \times V_{2} \times \ldots \times V_{r} \rightarrow V_{1}^{*} \times V_{2}^{*} \times \ldots \times V_{r}^{*} \\
\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right) & \mapsto M\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)=\left(\varphi_{1}\left(\alpha_{1}\right), \varphi_{2}\left(\alpha_{2}\right), \ldots, \varphi_{r}\left(\alpha_{r}\right)\right)
\end{aligned}
$$

and the diagram

$$
\begin{array}{rcc}
\boldsymbol{W}^{*} & \boldsymbol{F}^{*} & V_{1}^{*} \times V_{2}^{*} \times \ldots \times V_{r}^{*} \\
\boldsymbol{\psi} \uparrow & \uparrow \boldsymbol{\varphi}_{\boldsymbol{i}} \\
\boldsymbol{W} & \xrightarrow{\boldsymbol{F}^{\prime}} & V_{1} \times V_{2} \times \ldots \times V_{r}
\end{array}
$$

where $M^{-1}=\left(\varphi_{1}^{-1}, \varphi_{2}^{-1}, \ldots, \varphi_{r}^{-1}\right)$ and $M=\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{r}\right)$.

Theorem 3. Let A, A^{*} and A^{\prime} be the matrices of the maps F, F^{*} and F^{\prime}, respectively. Then

$$
\begin{equation*}
A^{*}=A^{\prime}=\bar{A}^{T} . \tag{12}
\end{equation*}
$$

Proof. Since the bases of spaces V and W are $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ and $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right\}$, respectively; $\left\{\left(e_{j_{1}}, e_{j_{2}}, \ldots, e_{j_{r}}\right)\right\}$ is the basis of space $V_{1} \times V_{2} \times \ldots \times V_{r}$, we can write

$$
F\left(e_{j_{1}}, e_{j_{2}}, \ldots, e_{j_{r}}\right)=\sum_{t=1}^{m} a_{t\left(j_{1} j_{2} \ldots j_{r}\right)} \beta_{t}, \quad 1 \leq j_{1}, j_{2}, \ldots, j_{r} \leq n
$$

Similarly,

$$
F^{*}\left(\beta_{s}^{*}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{n} a_{\left(i_{1} i_{2} \ldots i_{r}\right) s}^{*}\left(e_{i_{1}}^{*}, e_{i_{2}}^{*}, \ldots, e_{i_{r}}^{*}\right)
$$

can be written. Thus, we obtain

$$
\begin{aligned}
F^{\prime}\left(\beta_{s}^{*}\right) & =\left(M^{-1} \circ F^{*} \circ \psi\right)\left(\beta_{s}\right) \\
& =\left(M^{-1} \circ F^{*}\right)\left(\psi\left(\beta_{s}\right)\right) \\
& =M^{-1}\left(F^{*}\left(\beta_{s}^{*}\right)\right) \\
& =M^{-1}\left(\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{n} a_{\left(i_{1} i_{2} \ldots . . i_{r}\right) s}^{*}\left(e_{i_{1}}^{*}, e_{i_{2}}^{*}, \ldots, e_{i_{r}}^{*}\right)\right) \\
& =\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{n} a_{\left(i_{1} i_{2} \ldots i_{r}\right) s}^{*} M^{-1}\left(e_{i_{1}}^{*}, e_{i_{2}}^{*}, \ldots, e_{i_{r}}^{*}\right) \\
& =\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{n} a_{\left(i_{1} i_{2}, \ldots i_{r}\right) s}^{*}\left(\varphi_{1}^{-1}\left(e_{i_{1}}^{*}\right), \varphi_{2}^{-1}\left(e_{i_{2}}^{*}\right), \ldots, \varphi_{r}^{-1}\left(e_{i_{r}}^{*}\right)\right) \\
& =\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{n} a_{\left(i_{1} i_{2} \ldots i_{r}\right) s}^{*}\left(e_{\left.i_{1}, e_{i_{2}}, \ldots, e_{i_{r}}\right) .}\right.
\end{aligned}
$$

So this gives us

$$
A^{\prime}=A^{*}=\bar{A}^{T} .
$$

4. MULTIVARIABLE VECTOR VALUED MAPS

Let V_{i} and $W_{i}, 1 \leq i \leq r$ be vector spaces over \mathfrak{F} and V_{i}^{*} and $W_{i}^{*}, 1 \leq i \leq r$ be dual spaces, respectively. We can define linear isomorphisms as

$$
\varphi_{i}: V_{i} \rightarrow V_{i}^{*}, \quad \psi_{i}: W_{i} \rightarrow W_{i}^{*}
$$

Also, we can describe linear isomorphisms as

$$
\Phi: V_{1} \times V_{2} \times \ldots \times V_{r} \rightarrow\left(V_{1} \times V_{2} \times \ldots \times V_{r}\right)^{*}
$$

and

$$
\Psi: W_{1} \times W_{2} \times \ldots \times W_{r} \rightarrow\left(W_{1} \times W_{2} \times \ldots \times W_{r}\right)^{*}
$$

Let

$$
F: V_{1} \times V_{2} \times \ldots \times V_{r} \rightarrow W_{1} \times W_{2} \times \ldots \times W_{r}
$$

be a r-linear map. We thus obtain the diagram as follows:

$$
V_{1}^{*} \times V_{2}^{*} \times \ldots \times V_{r}^{*} \quad \xrightarrow{G} \quad W_{1}^{*} \times W_{2}^{*} \times \ldots \times W_{r}^{*}
$$

Considering this, we can write

$$
\begin{aligned}
G\left(\varphi_{1}\left(\alpha_{1}\right), \varphi_{2}\left(\alpha_{2}\right), \ldots,\right. & \left.\varphi_{r}\left(\alpha_{r}\right)\right)=\left(\psi_{1}, \psi_{2}, \ldots, \psi_{r}\right)\left(F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)\right) \\
& =\left(\psi_{1}\left(F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)\right), \ldots, \psi_{r}\left(F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)\right)\right)
\end{aligned}
$$

where

$$
M=\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{r}\right): V_{1} \times V_{2} \times \ldots \times V_{r} \rightarrow V_{1}^{*} \times V_{2}^{*} \times \ldots \times V_{r}^{*}
$$

and

$$
N=\left(\psi_{1}, \psi_{2}, \ldots, \psi_{r}\right): W_{1} \times W_{2} \times \ldots \times W_{r} \rightarrow W_{1}^{*} \times W_{2}^{*} \times \ldots \times W_{r}^{*}
$$

are linear maps. Therefore, we have

$$
(L \circ M)\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)=L\left(\varphi_{1}\left(\alpha_{1}\right), \varphi_{2}\left(\alpha_{2}\right), \ldots, \varphi_{r}\left(\alpha_{r}\right)\right)=\Phi\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)
$$

and

$$
(K \circ N)\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{r}\right)=K\left(\psi_{1}\left(\gamma_{1}\right), \psi_{2}\left(\gamma_{2}\right), \ldots, \psi_{r}\left(\gamma_{r}\right)\right)=\Psi\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{r}\right) .
$$

4.1. THE DUAL MAP AND ITS MATRIX

The dual map of the r-linear map $F: V_{1} \times V_{2} \times \ldots \times V_{r} \rightarrow W_{1} \times W_{2} \times \ldots \times W_{r}$ is defined by

$$
\begin{gather*}
F^{*}: W_{1}^{*} \times W_{2}^{*} \times \ldots \times W_{r}^{*} \rightarrow V_{1}^{*} \times V_{2}^{*} \times \ldots \times V_{r}^{*} \\
\left(\gamma_{1}^{*}, \gamma_{2}^{*}, \ldots, \gamma_{r}^{*}\right) \mapsto F^{*}\left(\gamma_{1}^{*}, \gamma_{2}^{*}, \ldots, \gamma_{r}^{*}\right): V_{1} \times V_{2} \times \ldots \times V_{r} \rightarrow \mathfrak{F} \tag{13}\\
\left(F^{*}\left(\gamma_{1}^{*}, \gamma_{2}^{*}, \ldots, \gamma_{r}^{*}\right)\right)\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)=\left(\gamma_{1}^{*}, \gamma_{2}^{*}, \ldots, \gamma_{r}^{*}\right) \overline{\left(F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)\right)}
\end{gather*}
$$

Theorem 4. Let A and A^{*} be the matrices of the r-variable vector valued r-linear map $F: V \times V \times \ldots \times V \rightarrow W \times W \times \ldots W$ and its dual map F^{*}, respectively. Then, we have

$$
A^{*}=\overline{A^{T}} .
$$

Proof: Since the bases of the vector spaces V, V^{*}, W, W^{*} are $\left\{v_{i}\right\},\left\{v_{i}^{*}\right\},\left\{\omega_{k}\right\},\left\{\omega_{k}^{*}\right\}$ where $1 \leq i \leq n, 1 \leq k \leq m$ respectively. We can write

$$
\begin{gathered}
F\left(v_{j_{1}}, v_{j_{2}}, \ldots, v_{j_{r}}\right) \\
=\sum_{k_{1}, k_{2}, \ldots, k_{r}=1}^{m} a_{\left(k_{1} k_{2} \ldots k_{r}\right)\left(j_{1} j_{2} \ldots j_{r}\right)}\left(\omega_{k_{1}}, \omega_{k_{2}}, \ldots, \omega_{k_{r}}\right) \\
1 \leq j_{1}, j_{2}, \ldots, j_{r} \leq n
\end{gathered}
$$

Thus, we get the following matrix

$$
A=\left[a_{\left(k_{1} k_{2} \ldots k_{r}\right)\left(j_{1} j_{2} \ldots j_{r}\right)}\right]_{m^{2} \times n^{2}} .
$$

Similarly, considering

$$
F^{*}\left(\omega_{k_{1}}^{*}, \omega_{k_{2}}^{*}, \ldots, \omega_{k_{r}}^{*}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{n} a_{\left(i_{1} i_{2} \ldots i_{r}\right)\left(j_{1} j_{2} \ldots j_{r}\right)}^{*}\left(v_{i_{1}}^{*}, v_{i_{2}}^{*}, \ldots, v_{i_{r}}^{*}\right)
$$

we have the matrix

$$
A^{*}=\left[a_{\left(i_{1} i_{2} \ldots i_{r}\right)\left(k_{1} k_{2} \ldots k_{r}\right)}\right]_{n^{2} \times m^{2}} .
$$

Then, we can write

$$
\begin{gathered}
{\left[F^{*}\left(\omega_{k_{1}}^{*}, \omega_{k_{2}}^{*}, \ldots, \omega_{k_{r}}^{*}\right)\right]\left(v_{j_{1}}, v_{j_{2}}, \ldots, v_{j_{r}}\right)} \\
=\left(\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{n} a_{\left(i_{1} i_{2}, \ldots i_{r}\right)\left(k_{1} k_{2}, \ldots k_{r}\right)}^{*}\left(v_{i_{1}}^{*}, v_{i_{2}}^{*}, \ldots, v_{i_{r}}^{*}\right)\right)\left(v_{j_{1}}, v_{j_{2}}, \ldots, v_{j_{r}}\right)
\end{gathered}
$$

or

$$
\left(\omega_{k_{1}}^{*}, \omega_{k_{2}}^{*}, \ldots, \omega_{k_{r}}^{*}\right)\left(\overline{F\left(v_{J_{1}}, v_{J_{2}}, \ldots, v_{J_{r}}\right)}\right)
$$

$$
=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{n} a_{\left(i_{1} i_{2} \ldots i_{r}\right)\left(k_{1} k_{2} \ldots k_{r}\right)}^{*}\left(v_{i_{1}}^{*}\left(v_{j_{1}}\right), v_{i_{2}}^{*}\left(v_{j_{2}}\right), \ldots, v_{i_{r}}^{*}\left(v_{j_{r}}\right)\right) .
$$

Thus, we obtain

$$
\begin{gathered}
\left(\omega_{k_{1}}^{*}, \omega_{k_{2}}^{*}, \ldots, \omega_{k_{r}}^{*}\right)\left(\sum_{m_{1}, m_{2}, \ldots, m_{r}=1}^{m} \bar{a}_{\left(m_{1} m_{2} \ldots m_{r}\right)\left(j_{1} j_{2} \ldots j_{r}\right)}\left(\omega_{m_{1}}, \omega_{m_{2}}, \ldots, \omega_{m_{r}}\right)\right) \\
=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{n} a_{\left(i_{1} i_{2} \ldots i_{r}\right)\left(k_{1} k_{2} \ldots k_{r}\right)}^{*}\left(v_{i_{1}}^{*}\left(v_{j_{1}}\right), v_{i_{2}}^{*}\left(v_{j_{2}}\right), \ldots, v_{i_{r}}^{*}\left(v_{j_{r}}\right)\right)
\end{gathered}
$$

or

$$
\begin{gathered}
\sum_{m_{1}, m_{2}, \ldots, m_{r}=1}^{m} \bar{a}_{\left(m_{1} m_{2} \ldots m_{r}\right)\left(j_{1} j_{2} \ldots j_{r}\right)} \underbrace{\omega_{k_{1}}^{*}\left(\omega_{m_{1}}\right)}_{\delta_{k_{1} m_{1}}} \underbrace{\omega_{k_{2}}^{*}\left(\omega_{m_{2}}\right)}_{\delta_{k_{2} m_{2}}} \ldots \underbrace{\omega_{k_{r}}^{*}\left(\omega_{m_{r}}\right)}_{\delta_{k_{r} m_{r}}} \\
=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{n} a_{\left(i_{1} i_{2} \ldots i_{r}\right)\left(k_{1} k_{2} \ldots k_{r}\right)}^{*} \delta_{i_{1} j_{1}} \delta_{i_{2} j_{2}} \ldots \delta_{i_{r} j_{r}} .
\end{gathered}
$$

Then, we have

$$
\begin{gathered}
k_{1}=m_{1}, \\
k_{2}=m_{2}, \\
\ldots \\
k_{r}=m_{r}, \\
i_{1}=j_{1}, \\
i_{2}=j_{2}, \\
\ldots \\
i_{r}=j_{r}, \\
\bar{a}_{\left(k_{1} k_{2} \ldots k_{r}\right)\left(j_{1} j_{2} \ldots j_{r}\right)}=a_{\left(j_{1} j_{2} \ldots j_{r}\right)\left(k_{1} k_{2} \ldots k_{r}\right)}^{*} \\
A^{*}=\overline{A^{T}} .
\end{gathered}
$$

or

5. CONCLUSION

In this study, the dual space of the cartesian product of vector spaces $V_{1}, V_{2}, \ldots, V_{r}$ was defined, and thus the adjiont map and the dual map of the r-linear maps are defined. In addition, the adjoint map and the dual map of the vector valued r-linear maps are considered. In both cases, the corresponding matrices of the dual and the adjoint maps were compared (associated) by using the r-linear maps.

REFERENCES

[1] Belitskii, G. R. and Futorny, V. and Muzychuk, M. and Sergeichuk, V. V., Linear Algebra and its Applications, 609, 317, 2021.
[2] Belitskii, Genrich R and Sergeichuk, Vladimir V., Linear Algebra and its Applications, 418, 751, 2006.
[3] Loehr, N., Advanced Linear Algebra, CRC Press, 2014.
[4] Roman, S., Advanced Linear Algebra, Springer, 2008.

[^0]: ${ }^{1}$ Yildiz Technical University, Department of Mathematics, 34220, Istanbul, Turkey. E-mail: sayuce@yildiz.edu.tr

