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Abstract. The phenomenon of simultaneous left and right double truncation appears 

in a variety of fields, sush as in medical research. The problem of estimating the mode 

function for this type of data has not been addressed in the statistical literature. In this paper, 

we propose a new kernel estimator of the mode in the framework of randomly and doubly 

truncated model. We establish the strong consistency with a rate for the proposed estimate, 

and state its asymptotic normality. A simulation study is carried out to illustrate and evaluate 

the finite sample behavior of the proposed estimator. 

Keywords: asymptotic normality; kernel mode estimator; left and right truncation; 

rate of convergence. 
 

 

1. INTRODUCTION 
 

 

Randomly truncated data appear in a variety of fields, including astronomy, 

medicines, epidemiology and economics. A typical example of random right truncation is the 

analysis of AIDS data, when the information is restricted to those individuals developing 

AIDS before some specific date, in such a case, the induction time is said to be right-

truncated. In some applications, two-sided (rather than one-sided) random truncation appears. 

In [1], it is indicated that induction times in AIDS are actually doubly truncated since HIV 

was unknown prior to 1982 and therefore infected patients would have been incorrectly 

discarded when developing AIDS before that date. Furthermore, the study [2] investigated 

quasar luminosities which were doubly truncated by some detection limits. 

Nonparametric methods for one-sided (left or right) truncated data were introduced by 

many authors, see for example [3-5]. However, literature on random double truncation is 

much scarcer. A possible reason is the absence of closed form estimators, indeed, existing 

methods for doubly truncated data are iterative and computationally intensive, and these 

issues make difficult both the theoretical developments and the practical implementations. 

The authors of [2] are the first who introduced the NPMLE of the distribution function 

under double truncation. The literature also contains semiparametric approaches to estimate 

the distribution function under double truncation. The problem when the distribution of the 

truncation times is assumed to belong to a given parametric family is investigated by [6-7].  

The study [8] introduces two different estimators of kernel density, which are defined 

as a convolution between a kernel function and an estimator of the cumulative distribution 

function. Several bandwidth selection procedures for kernel density estimation of randomely 

double truncated data are introduced and compared; the autors [9] present five bandwidth 

selection procedures, and give a theoretical justification. 
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To our knowledge, the problem of estimating the mode function under doubly 

truncated data has not been addressed in the statistics literature. This is a central object of 

interest of this paper. In this work we propose a new mode function estimator and establish its 

almost sure uniform convergence and asymptotic normality. For that perpose, we consider the 

Vapnik-Cervonenkis (V-C) classes for which uniform exponential inequalities are available. 

Moreover, functional estimation is based on the kernel method. As an application of the 

asymptotic normality of our newly estimator, we introduce an asymptotic confidence interval 

for the mode. Our theoritical results coincide with those obtained in the complete data case. 

This paper is organized as follows: in section 2 we define some important and useful 

results in the random doubly truncation model, then we define the kernel mode estimator 

under random double truncation. Assumption and main results are given in section 3 with 

asymptotic normality of the suggested estimator. Section 4 provides a simulation of our 

estimator. The proofs of the main results are proposed to section 5, finally main conclusion 

and a final discussion are given in section 6.  
 

 

2. NOTATIONS AND DEFINITION OF THE ESTIMATOR 
 

 

We first present some results from the literature for doubly truncated data, and which 

will be used to define our estimator of the mode. Let    be the random variable of interest 

with distribution function  , and assume that it is doubly truncated by the random pair 
(     ) with joint distribution function  , where    and   (      )are the left and right 

truncation variables respectively. This means that the triplet (        ) is observed if and 

only if         . While no information is available when      or      . We 

assume that    is independent of (     ). 

Let (        )           denote the sampling information, these are i.i.d. data with 

the same distribution of (        ) given         . Introduce    (        ), 

the probability of no-truncation. It is clear that if   = 0, no data can be observed and therefore, 

we suppose throughout this paper that   > 0. For any distribution   denote respectively the 

left and right endpoints of its support by 

 

      {   ( )   }             {   ( )   }. 
 

Let   ( )   (   ) and   ( )   (    ) the marginal distribution functions of 

   and    respectively. When     
       

and    
       

,   and   are both 

identifiable (see [5], for more details). Denote by  ( ) the probability density function of    

and assume that it has a unique mode defined by 

 

        
   

 ( )  

 

As proposed in [8], to define the nonparametric kernel estimator of the density  ( ), 

we first need to introduce the nonparametric maximum likelihood estimator (NPMLE) of the 

distribution function (df) of   (see [2]). Under the doubly truncated sampling scheme, the 

NPMLE estimator of the df of    is given by 

  ( )    ∫
  

 (  )

  ( )

 

  

 
 

where 
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   ( ∫   
  ( )  

 (  )

 

  

)

  

 

 

is an estimator of  , (See [7]).   
 ( )     ∑        

 
    is the ordinary empirical df of the 

    , and 

  ( )  ∫   (     )
{     }

 

 

is a nonparametric estimator of  ( )   (       ) which is the probability of sampling 

a life time     . Here   (   ) is the NPLME of the joint distribution   of the truncation 

times, see [8], for more details. Now, our nonparametric estimator of the mode   is defined as 

the random    maximizing the estimator of the density  ̂, that is  
 

 ̂ ( ̂ )     
       

 ̂ ( ) (1) 

where 

 ̂ ( )  ∫  (   )     = 
  

   
∑

 

  (  )
 (

    

  
) 

     (2) 

 

  is a probability density function (so-called kernel function) and    is a sequence of positive 

real numbers (so-called bandwidth) which goes to zero as   goes to infinity. 
 

Remark 2.1. Recal that, the estimator  ̂  is not necessarily unique and our results are valid 

for any chosen value satisfying (1). We point out that, our choice can be specified by taking  

 

 ̂     {                    ̂ ( )            
 ̂ ( )}. 

 

 

3. ASSUMPTIONS AND MAIN RESULTS  
 

 

Throughout this paper, we suppose that     
       

 and    
       

 and let 

  be a compact set such that      {         }. Consider now the following 

regularity assumptions: 

(A1) The kernel function   is a density function with 
 

∫   ( )     ∫    ( )     and  ( )  ∫  ( )     . 
 

(A2) The sequence    of bandwidth satisfies 
 

     and              and 
   

    
          . 

 

(A3) The kernel   is compactly supported,   -probability density, two times differentiable 

and such that    ( )     ( ) are integrable, furthermore  ,  ( ) are lipschitz continous.  
 

(A4) The functions  ( ) and      are twice continuously differentiable in  . 
 

(A5) The density  ( ) is differentiable up to order 3 and  ( )( )does not vanish. 
 

(A6) The mode   satisfies the following property: for any             there exists 
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              |   |            | ( )   ( )|   . 
 

(A7)    satisfies for    ,          
           

      
 

(A8) The sets   { (
   

 
)           { }} is a bounded V-C-class of measurable 

functions.  
 

 

3.1. CONSISTENCY 
 

 

In this section, we show strong consistency with a rate for our proposed estimate. 
 

Proposition 3.1. Under assumptions (A1) (A5) we have  
 

   
   

| ̂ ( )   ( )|   (   ((
    

   
)
   

   
 ))            . 

 

Theorem 3.1. Under the hypotheses of Proposition 3.1. Furthermore, if (A6) holds, for n 

large enough, we have 

 ̂     (   ((
    

   
)
   

   ))            . 

 

Remark 3.1. If we choose     ((
    

 
)
   

), which is the optimal choice with respect to 

the almost sure uniform convergence criterion in the density estimation (see [10]), we get 
 

 ̂     ((
    

 
)
   

)            , 

 

which is the optimal rate as that one obtained in the complete data case (see [11]). 
 

 

3.2. ASYMPTOTIC NORMALITY 
 

 

Now, suppose that the density function ( ) is unimodal at  . Under (A5) we have 
  

 ( )( )         ( )( )      
Similarly, we have  

 

 ̂ 
( )

( ̂ )         ̂ 
( )

( ̂ )   . 
 

Using a Taylor expansion in neighborhood of  , we get 
 

 ̂ 
( )

( ̂ )   ̂ 
( )( )  ( ̂   ) ̂ 

( )( ̅ )   , 

 

where  ̅  is between  ̂  and  , which gives  
 

 ̂     
 ̂ 

( )( )

 ̂ 
( )( ̅ )

  (3) 
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Now, to establish the asymptotic normality, we show that the numerator in (3), is 

asymptotically normally distributed and the denominator converges in probability to  ( )( ). 

The result is given in the following theorem. 

 

Theorem 3.2. We assume that hypothesis (A1) (A6) hold, then we have 
 

(
   

 ( ̂ 
( )

( ))
 

  
)

   

( ̂   )
 
→  (   )  

where 
 
→ means the convergence in distribution,  (   ) is the standard normal distribution 

and    (  ( )  ( )) ( ( ))  
 

Remark 3.2. In complete data case (i.e.,    ( )   ), we have     ( ) ( ( ))  that is 

what was obtained by [12]. 

 

Corollary 3.1. Using a plug-in method by replacing   and   by their estimates, permits us to 

obtain a convergent estimate   
  of   . From Theorem 3.2, we get for each fixed   (   ), 

the following (   )  asymptotic confidence interval for  , namely, 
 

   ̂     (   
 ( ̂ 

( )
( ))

 

)
    

         

 

where        denotes the       quantile of the standard normal distribution  (   ). 

 

 

4. SIMULATION STUDIES 
 

 

In this section, we illustrate the finite sample behavior of our estimator  ̂  defined in 

(1) and examine its asymptotic normality. Here it is assumed that for double truncation, we 

consider the case   and    are mutually independent. Results in this section have been 

obtained with R-Software package DATDA (see, [13]). First, we present two simulated 

models which permitte to compute the estimator  ̂ . 
 

Model 1 (exponential decreasing case): The variable   is distributed as a normal  (    ), 

with density 

 ( )  
 

 √  
  

 

 
(
   

 
)
 

      

 

which admits a mode   equal to the mean µ.  
 

Model 2 (heavy tail case): The variable   is distributed as a three parameters Weibull(λ, β, γ) 

with density 

 ( )  (
 

 
) (

   

 
)
   

  (
   

 
)
 

 (   )  

 

where    , β > 0, λ > 0 are the location, shape and scale parameters respectively, of the 

distribution and which admits a mode   at the point    (  
 

 
)
   

. 
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           We take       ( ) and       ( )  where   and   are chosen in order to obtain the 

following percentages of truncation (PT):                     corresponding to 

(                       ) respectively. 

           Note that this choice of truncation percentages is standard in this type of study. It is 

clear that, lower values of   are of little practical interest, for     0, almost no data can be 

observed. Using this scheme,         independent samples of size   were generated for 

each Model. Sample sizes of                        were considered. The 

truncation occurs when          is violated. This means that, for each trial, the number 

of simulated data is much larger than  , actually     
 

 
 are needed on average, where recall 

that   stands for the proportion of no truncation. 

The small samples cases (with n often somewhere between 20 and 50) is based on the 

use of robust estimators, which is not the case of this study, and may be considered in our 

future work. 

For each sample, using plug-in estimate    we estimated the mode and we compute 

the bias, variance (Var) and root mean squared error (MSE) of the proposed estimator. Results 

are displayed in Tables 1 and 2. Recall that in nonparametric estimation, optimality (in the 

MSE sense) is not seriously swayed by the choice of the kernel K but is affected by the choice 

of the bandwidth   .  

In this study, the bandwidth    is chosen to satisfy the assumptions above, and the 

kernel K is Gaussian.The bandwidth that we used in estimating the mode is that used by [8], 

based on the minimization of the AMISE (  ) with respect to   , which leads to the 

asymptotically optimal bandwidth: 

 

     (
  ( ) ∫    

 (   )  
 ( )

)

   

      (
 

 
 ∫    )

   

        

 

          As one can see it in Tables 1 and 2, the quality of the estimator does not seem to be 

affected by the percentages of truncation, and the MSE decreases when the sample size 

increases. Moreover, to illustrate the behavior of the estimator, we plotted for different values 

of n, the histogram and the corresponding Q−Q-plot against the standard Normal distribution 

in figures 1 to 4 for model 1 and figures 5 to 8 for model 2. Furthermore, a significance level 

(p-value) of Shapiro-Wilk normality test is greater than 0.05 in all simulated scenarios. The 

normality assumption is therefore highly conserved. 
 

Table 1. Average estimated Bias, Variance and MSE, exponential decreasing case. 
PT N n Bias Var MSE 

70% 167 50 0.01469  0.11657 0.34174 

500 150 0.00097  0.06888 0.26246 

1000 300 0.02786  0.04511 0.21421 

50% 100 50 0.03414  0.11857 0.11974 

300 150 0.01619  0.07090 0.07116 

600 300 0.01491  0.04946 0.04968 

30% 72 50 -0.00580  0.10191  0.31928 

215 150 -0.00061  0.06139  0.24778 

429 300 -0.00509  0.04429  0.21053 

10% 56 50 -0.02383  0.10695  0.32790 

167 150 0.01403 0.06385 0.25307 

334 300 0.00483 0.04243 0.20605 
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Table 2. Average estimated Bias, Variance and MSE, heavy tail case. 

PT N n Bias Var MSE 

70% 167 50 -0.00903  0.00818  0.09091 

500 150 0.00273  0.00476  0.06902 

1000 300 -0.00214  0.00456  0.06755 

50% 100 50 -0.01539  0.00820  0.09185 

300 150 -0.00770  0.00469 0.06889 

600 300 -0.00558 0.00331 0.05779 

30% 72 50 -0.01044  0.00839  0.09221 

215 150 -0.00252 0.00443  0.06663 

429 300 -0.00608 0.00348  0.05929 

10% 56 50 0.00480 0.00848 0.09223 

167 150 0.01018 0.00462 0.06874 

334 300 0.00837 0.00337 0.05865 

 

 
Figure 1. (Model 1): α = .30, B=500, n=50, 150 and 300 respectively. 

 
Figure 2. (Model 1): α = .50, B=500, n=50, 150 and 300 respectively. 
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Figure 3. (Model 1): α = .70, B=500, n=50, 150 and 300 respectively. 

 

 
Figure 4. (Model 1): α = .90, B=500, n=50, 150 and 300 respectively. 

 

 
Figure 5. (Model 2): α = .30, B=500, n=50, 150 and 300 respectively. 
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Figure 6. (Model 2): α = .50, B=500, n=50, 150 and 300 respectively. 

 

 
Figure 7. (Model 2): α = .70, B=500, n=50, 150 and 300 respectively. 

 

 
Figure 8. (Model 2): α = .90, B=500, n=50, 150 and 300 respectively. 
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5. AUXILIARY RESULTS AND PROOFS  

 

 

For technical reason we need to introduce the pseudo-estimator of the density  , 

denoted  ̃ , and analogously to (2) we define it by 

 

 ̃ ( )   
 

   
∑

 

 (  )
 (

    

  
)  

 

   

 

and its derivative is given by 

 ̃ 
( )

( )   
 

     
 
∑

 

 (  )
 ( ) (

    

  
)  

 

   

 

 

Lemma 5.1. Under assumptions (A1), (A3) and (A5) we have 

 

      | [ ̃ ( )]   ( )|   (  
 ). 

 

Proof: Using a change of variable and a Taylor expansion, under assumptions (A1), (A3) and 

(A5) we get 

 [ ̃ ( )]   ( )  
 

  
  [

 

   
∑

 

 (  )
  (

    

  
)

 

   

]   ( ) 

 
 

  
∫

 

 ( )
 (

   

  
)  ( )    ( ) 

 
 

  
∫ (

   

  
)  ( )    ( ) 

 ∫ ( ) [ ( )      ( )( )  
    

 
 ( )( )   (  

 )]     ( ) 

 ∫ ( )
   

   

 
 ( )( )  . 

 

Thus 

   | [ ̃ ( )]   ( )|   
  

 

 
   
   

| ( )( )|∫   ( )    (  
 ) 

 

 

the result holds. 

 

Lemma 5.2. Under assumptions (A2) and (A4), for   large enough, we have  

 

      | ̂ ( )   ̃ ( )|   ((   )    ). 

Proof: We have 

 ̂ ( )   ̃ ( )  
  

   
∑

 

  (  )
 (

    

  
)

 

   

 
 

   
∑

 

 (  )
  (

    

  
)

 

   

 

   | ̂ ( )   ̃ ( )|  
 

   
|

  

  ( )
 

 

 ( )
|∑ (

    

 
)

 

   

 

 
 

   
   
   

|
  

  ( )
 

 

 ( )
|. 
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As pointed in [8],    is √ -Consistent estimator of   . In fact, √ -Consistency of    is a 

consequence of that of    and   
  (see also, [14] for more details). Therefore, under regularity 

we get the result. 

 

Lemma 5.3. Under assumptions (A2),(A3),(A5) and (A8 ), we have  

 

      | ̃ ( )   [ ̃ ( )]|   (√
    

   
). 

Proof: Note that 

      
   

| ̃ ( )   [ ̃ ( )]|. 

Under (A3), (A8) the sequence 

 

   {  ( )  
 

   

 

 ( )
 (

   

  
)          }      

 

is a V-C classes of measurable functions abounded with respective envelope    
‖ ‖ 

    ( )
 . 

Moreover, under (A5) 

 [  
 ( )]  

 

   
 

‖ ‖ 
 ‖ ‖ 

 ( )
 

‖ ‖ 

   
  ( )

   
  

 

with       for   large enough. Applying Talagrand’s inequality (see, Proposition 2.2 in 

[15]) with     √
    

   
 , for a positive constant   , we get  

 

 {    
      

|∑{  (  )   [  ( )]}

 

   

|     √
    

   
 
} 

       

{
 
 

 
 
  

  

  √
    

   
 

‖ ‖ 
     ( )    

[
 
 
 
 

  

  √
    

   
 

‖ ‖ 

    ( )

[√ 
√‖ ‖ 

 √   ( )
 

‖ ‖ 

    ( )
√   

   

  
]
 

]
 
 
 
 

}
 
 

 
 

 

 

Under (A2) and using    (   )   (        )  the last quantity is of order 

 

     

{
 

 

 
 

  

  √
    

   
 

‖ ‖ 
     ( )

  √
    

   
 

‖ ‖ 

    ( )

   
√‖ ‖ 

  √   ( )
  

 

}
 

 

 

       { 
 

  
 

  
     

   
 

 
‖ ‖ 

    
 

 ( )

}     
 

   
 

  
 

 ( )

‖ ‖ , 

 

which for   large enough and by an appropriate choice of   , can be made  (    ⁄ ). The 

latter being a general term of a summable series, then a direct application of Borel-Cantelli’s 

lemma and the result is 



 A nonparametric mode estimate under doubly truncted model Karima Zerfaoui et al. 

 

www.josa.ro Mathematics Section 

172 

    ((
    

   
 
)
   

)           

 

 

Proof of Proposition 3.1. Using the triangular inequality, we have 

 

   
   

| ̂ ( )   ( )|     
   

| ̂ ( )   ̃ ( )|     
   

| ̃ ( )    ̃ ( )|     
   

|  ̃ ( )   ( )|. 

 

Then lemmas 5.1, 5.2 and 5.3 give the result. 

 

Proof of Theorem 3.1. The uniform consistency of  ̂  follows from Proposition 3.1, 

assumption (A5) and the following results 

 

| ( ̂ )   ( )|  | ( ̂ )   ̂ ( ̂ )|  | ̂ ( ̂ )   ( )| 

                              
   

| ̂ ( )   ( )|  | ̂ ( ̂ )   ( )|       
   

| ̂ ( )   ( )|. (4) 

 

For the second part, a Taylor expansion of  ( ) in neighborhood of   gives  

 

 ( ̂ )   ( )  
 

 
( ̂   )    ( ̅) 

 

where  ̅ is between  ̂  and    Thus, (4) and assumptions (A4) and (A5) yield  

 
( ̂   ) |   ( ̅)|      

   
| ̂ ( )   ( )| 

Thus,  

| ̂    |   √
   | ̂ ( )  ( )|

|   ( ̅)|
. 

Using Proposition 3.1, the proof is complete. 
 

Proof of Theorem 3.2. From (3) we have the following decomposition  
 

√   
 ( ̂   )  √   

 
 ̂ 

( )( )   ̃ 
( )( )

 ̂   ( ̅ )
 √   

 
 ̃ 

( )( )   ( ̃ 
( )( ))

 ̂ 
( )( ̅ )

 

 

 √   
 
 ( ̃ 

( )( ))

 ̂ 
( )

( ̅ )
 

 

   
        

 ̂ 
( )

( ̅ )
. 

 

To prove the results, we establish that    and    are negligible and    is asymptotically normal 

and  ̂ 
( )

( ̅ )   ( )( ). For the first term   , we have 
 

    ̂ 
( )( )   ̃ 

( )( )  
  

   
 ∑

 

  (  )
 ( ) (

    

  
)  

 

   
 

 
   ∑

 

 (  )
 ( ) (

    

  
) 

   . 
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Recall that  

    |
  

  ( )
  

 

 ( )
|   ((   ) 

 

 ), 

 

(see the proof of lemma 5.2.) and since 
 

 

   
 
∑ ( ) (

    

  
)

 

   

 (  
 )( )( )  (  )( )( )  

 

here, (  )( )( ) denotes the first derivative of the density function   ( ) of the observed data, 

which is not necessarily equal to zero at the point  , which permit us to conclude that   is 

negligible. Now, we state the following results for     
 

 [ ̃ 
( )( )]  

 

   
 
∫

 ( ) (
   

  
)

 ( )
 ( )   

 

  
 
∫ ( ) (

   

  
)  ( )   

 
 

  
∫ ( )( ) (     )  . 

 

Integrating by part, we have  
 

 [ ̃ 
( )( )]  ∫ ( ) ( )(      )  . 

 

By Taylor expansion of  ( )( ) around  , (A1), (A5) and the definition of the mode, we get 

√   
  [ ̃ 

( )( )]  √   
 ∫    ( ) ( )( ̅)  , 

 

where  ̅ is between   and      , by (A2), (A5) and (A7), the negligity of    follows.  

Finally, to state theasymptotic normality of   , we have to prove that 

 

         
  ( )

 ( )
∫[ ( )( )]

 
        . 

 

Note that 

           
    [

 

  
 

 

 ( )
 ( ) (

   

  
)] 

 

    
  [

 

  
 

 

 ( )
 ( ) (

   

  
)]

 

    
 { [

 

  
 

 

 ( )
 ( ) (

   

  
)]}

 

 

 

        

 

On the one hand, the negligity of    gives as            .On the other hand, 

using a change of variable we can write 

 

   ∫
 

 ( )
[ ( )( )]

 
 (     )   . 

Since  ( ) is continous, we have under (A1), (A3), and (A5) 

 

   
  ( )

 ( )
∫[ ( )( )]

 
    ( )       , 

which gives a result.  
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Now, for any      let us consider the following centered i.i.d random variables 

 

  ( )  
 

   
 
∑

 

 (  )

 

   

 ( ) (
    

  
)   [

 

   
 
∑

 

 (  )

 

   

 ( ) (
    

  
)]         

 

Then, a simple algebraic calculation gives us 

 

∑  ( )  √   
 ( ̃ 

( )( )   [ ̃ 
( )( )])

 

   

     

Hence, 

   (∑  

 

   

)     
     ̃ ( )  

  ( )

 ( )
∫[ ( )( )]

 
    

 

(5) 

We have, 
 

  
  

   

   

 

  (  )
( ( ) (

    

  
))

 

 
   

   
  [

 

 (  )
 ( ) (

    

  
)]. 

 

(6) 

 

Note that, the negligity of    implies that the second term in the right hand of equation 

(6) goes to zero as n goes to infinity. By (5) there exists      , such that       , we have 
 

   (∑   
 
   ( ))  

  ( )

  ( )
∫[ ( )( )]

 
  . (7) 

 

Now denote by 
 

 (  )  
 

  (  )
( ( ) (

    

  
))

 

   [
 

 (  )
 ( ) (

    

  
)]. 

 

From (6), we have  
 

  
 ( )  

    (  )

   
. 

 

Using (7), for       we have 
 

{  
 ( )       (∑   

 
   ( ))}  {  

 ( )    
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        . 
 

By (6), for n large enough     is empty in the same way, since   is lower bounded and 

 ( ) bounded, by (A7), we have for   large enough that     is empty. Therfore, we get 

{  
       (∑   

 
   ( ))}    . We conclude from the Lindeberg’s theorem, that    is 

normally distributed. Now, to complete the proof of Theorem 3.2, it suffices to prove that 
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Observe that one can write the following 
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By Taylor’s expansion, integration by part and assumptions (A1), (A2), (A6) and (A7) we 

have 
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Then by Proposition 3.1, |  |   [   (
    

   
   

 )].  

On the other hand, under assumptions (A3), (A5) and integrating by part twice, we have 
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Using a Taylor expansion, we have 
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where    is between       and  . Finally, we have for   large enough  
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which ends the proof. 
 

 
 

  



 A nonparametric mode estimate under doubly truncted model Karima Zerfaoui et al. 

 

www.josa.ro Mathematics Section 

176 

6. CONCLUSION 
 

 

The main objective of this paper was to propose a new estimator of the mode function, 

which is observed under random double truncation. We have presented two simulated models 

(exponential decreasing case and heavy tail case) and have studied the finite sample behavior 

of our newly estimator of the mode. It has been shown that, in general the asymptotic 

normality is highly conserved since the selection of an appropriate bandwidth, which is 

known to be an important but delicate issue. This paper does not treat the bandwidth selection 

procedures. It remains a likely topic for future investigations. Also, the small samples cases 

(with n often somewhere between 20 and 50) is based on the use of robust estimators, which 

is not the case of this study, and may be considered in our future work. The literature also 

contains semi-parametric approaches to estimate the density function under double truncation, 

see for example [2,8]. Thus, in our further research we will study the mode estimation 

problem when the distribution is assumed to belong to a given parametric family. Finally, the 

conditional mode estimation function is a natural extension of the present work. 
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