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Abstract. This research article presents a new Pranav power series class of 

distributions which is obtained by compounding one parameter Pranav and power series 

distributions. Various special cases of the new model have been unfolded. Numerous 

statistical properties of the proposed model are investigated including closed-form 

expressions for the density function, cumulative distribution function, survival function, 

hazard rate function, the moments of order statistics and MLEs. Finally, the flexibility and 

potentiality of the PPS distribution has been demonstrated by means of two real life data sets. 

Keywords: power series distribution; order statistics; estimation; real life 

applications. 

 

 

1. INTRODUCTION  

 

 

The interval to the happening of event of interest is known as lifetime or survival time 

or failure time in reliability analysis. The event may be failure of a piece of equipment, expiry 

of a person, advancement (or remission) of symptoms of disease, health code destruction. In 

many, if not all, applied sciences such as medicine, engineering, insurance and finance, 

modeling and analyzing lifetime data are crucial. Recently, attempts have been made to define 

new families of probability distributions, which extend well-known families of distributions 

and at the same time provide great flexibility in modeling data in practice. One such class of 

distributions generated is by compounding well-known lifetime distributions such as 

exponential, Weibull, generalized exponential, exponentiated Weibull, etc., with some 

discrete distributions such as binomial, geometric, zero truncated Poisson, logarithmic, and 

the power series distributions in general. A lot of lifetime distributions have been proposed 

over the years for analyzing and modeling lifetime data. Some prominent compound 

distributions introduced recently are: exponential-logarithmic (EL) distribution by Tahmasbi 

and Rezaei [1], exponential-power series (EPS) distribution by Chahkandi and Ganjali [2], 

Weibull-power series (WPS) distribution by Morais and Barreto-Souza [3], complementary 

Weibull geometric distribution by Tojeiro et al. [4], Burr XII negative binomial distribution 

by Ramos et al. [5], compound class of extended Weibull-power series distributions by Silva 

et al. [6], compound class of linear failure rate-power series distributions by Mahmoudi and 

Jafari [7], exponentiated Weibull Poisson distribution by Mahmoudi and Sepahdar [8], 

generalized modified Weibull power series distribution by Bagheri et al. [9], exponentiated 

power Lindley geometric distribution by Alizadeh et al. [10], exponentiated Burr XII power 

Series distribution by Nasir et al. [11], Ailamujia power series class model by Rashid et al. 

[12], the odd log-logistic power series family of distributions by Goldoust et al. [13], Dagum 
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power series distribution by Makubate et al. [14], exponentiated power generalized Weibull 

power series family of distributions by Aldahlan et al. [15].  

The present paper is outlined as follows: In section (2), the PPS distribution is 

presented. Its density, survival, hazard rate, reverse hazard functions and some other 

important properties are derived in section (3). Moment generating function of proposed 

model is attained in section (4). Order statistics, their moments and parameter estimation are 

given correspondingly in section (5) and (6). Special cases that include new lifetime 

distributions have been given in section (7). Ultimately, the potency of the proposed model 

and conclusion about new results are respectively given in section (8) and (9). 

 

 

2. PRANAV POWER SERIES (PPS) CLASS OF DISTRIBUTIONS 

 

 

Suppose an independent and identically distributed (i.i.d) random variables 

vXXX ,...,, 21  follow one parameter lifetime distribution known as Pranav distribution whose 

density is given by 
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Here a sample size V is considered which is a discrete random variable and follows 

zero truncated power series distribution with probability mass function given by 
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distribution function of  X V   is given by 
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The marginal cdf of X defines the Pranav power series (PPS) family of distributions as 

 



Pranav-power series distribution … Nazima Akhtar and AjazAhmad Bhat 

ISSN: 1844 – 9581 Mathematics Section 

109 

 
 

 
1,0;

6

63
11,;

4

22

1




































 





 vxe
xxx

C

a
xF

v

x

v

v

v
PPS










  

 

 
 

 

  


































1 1

4

22

6

63
1

,;
v v

v

x

vv

v

PPS
C

e
xxx

a

C

a
xF















 

 

 

 

 










C

e
xxx

C

xF

x

PPS



























6

63
1

1,;

4

22

 

(2) 

 

A random variable X with cdf (2) shall be expressed by ),(~ PPSX . 

 

 

3. DENSITY, SURVIVAL, HAZARD AND REVERSE HAZARD FUNCTION 

 

 

The derivative of (2) gives the probability density function of PPS model as 
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(3) 

 

The survival function of PPS model is 
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The hazard function of the proposed PPS model is given by 
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Also, the reverse hazard function is given by 
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Now, some of the properties of the PPS distribution are analysed in the form of 

following propositions. 

 

Proposition 1. The Pranav distribution is a limiting case of the PPS distribution when 
 0 . 

 

Proof: The limit of the cumulative distribution function of PPS distribution can be obtained as  
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Using the L-Hospital’s rule, we have 
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Hence the result. 

 

Proposition 2. The pdf of the PPS distribution can be expressed as 
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where ),...,,min(),( 211 vXXXvxg   is the 1
st
 order statistics of Pranav distribution. 
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Using the above result in the density function obtained in (3), we have 
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statistics of Pranav distribution. 

 

 

4. MOMENT GENERATING FUNCTION (MGF) 

 

 

The moment generating function of PPS family of distributions can be attained from 

(4) as 
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and it follows that 
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Using (4), the ths  moment of PPS distribution about origin can be obtained as 
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5. ORDER STATISTICS AND THEIR MOMENTS 

 

 

Let nXXX ,...,, 21  be a random sample of size n  from PPS distribution with cdf (2) 

and pdf (3). Let nnnn XXX ::2:1 ,...,,  denote the corresponding order statistics. Then, the pdf of

...3,2,1;: iX ni  is given by 
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where F(x) and f(x) are the cdf and pdf of the PPS distribution respectively and equation (6) 

can be written as 
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Expression (8) can also be written as 
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The expression for the ths  moment of niX :  with cdf (8) can be determined by using 

the following result of Barakat et al. [16] as given 
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Where PPSS  is the survival function of PPS distribution. Thus, we have 
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Where, ,......2,1s and ni ,...2,1 . 

 

 

6. ESTIMATION OF THE MODEL PARAMETERS 

 

 

Let nXXX ,...,, 21  be a random sample with observed values nxxx ,..., 21 from PPS 

distribution with parameter vector  , . The logarithm likelihood function is given by 
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The maximum likelihood estimators of  ,  say  ˆ,ˆ  are obtained by setting the first 

partial derivatives of  ,xn  equal to zero. The first partial derivatives for logarithm 

likelihood function with respect to  ,  are 
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7. SUB-MODELS OF PPS DISTRIBUTION 

 

 

In this section, some particular cases of PPS distribution: Pranav Poisson (PP), Pranav 

Logarithmic (PL), Pranav Geometric (PG) and Pranav binomial (PB) distributions will be 

investigated and we plot their pdf and hrf plots for specific values of parameters. 

 

 

7.1. PRANAV- POISSON DISTRIBUTION 

 

 

The Pranav Poisson (PP) distribution is a particular case of PPS distribution for 
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For 0, x and ,0   respectively. 

 

  
Figure 1. PDF plots of PPS Model at different 

values  

Figure 2. PDF plots of PPS Model at different 

values 

  

  
Figure 3. Hazard Rate plots  Figure 4. Hazard Rate plots 

 

 

7.2. PRANAV LOGARITHMIC DISTRIBUTION 

 

 

  
Figure 5. PDF plots of PL Model at different values Figure 6. PDF plots of PL Model at different values 
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Figure 7. Hazard Rate plots Figure 8. Hazard Rate plots 

 

The Pranav logarithmic (PL) distribution is a particular case of the PPS distribution 

when 
v
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1
  and )1log()(  C . Therefore the associated cdf, pdf, survival, hazard and 

reverse hazard functions are  
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for 0, x  and 10   respectively. 

 

 

  



 Pranav-power series distribution … Nazima Akhtar and AjazAhmad Bhat 

 

www.josa.ro Mathematics Section 

118 

7.3. PRANAV-GEOMETRIC DISTRIBUTION 

 

 

The Pranav Geometric (PG) distribution is a particular case of SPS distribution when 

1a
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1)1()(  C  .Therefore the associated cdf, pdf, survival, hazard and reverse 

hazard functions are 
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For 0, x  and 10   respectively. 

 

  

Figure 9. PDF plots of PG Model at different values 
Figure 10. PDF plots of PG Model at different 

values 
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Figure 11. Hazard rate plots Figure 12. Hazard rate plots 

 

 

7.4. PRANAV BINOMIAL DISTRIBUTION 
 

 

The Pranav Binomial (PB) distribution is a particular case of PPS distribution for 
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8. REAL DATA APPLICATIONS 

 

 

This section demonstrates the practical applicability of some special models of PPS 

distribution to two real life data sets taken from the literature in order to illustrate its 

flexibility. The special models of the proposed distribution are compared with the base model 

i.e., Pranav distribution by using model selection tools such as Akaike information criterion 

(AIC), Schwarz information criterion (SIC). In general, the best distribution corresponds to 

smaller values of these model selection tools. 

 

Data set I. The data represents the survival times of 72 guinea pigs infected with virulent 

tubercle bacilli observed and reported by T. Bjerkedal [17]. The data set is given as: 

10, 33, 44, 56, 59, 72, 74, 77, 92, 93, 96, 100, 100, 102, 105, 107, 107, 108, 108, 108, 109, 

112, 113, 115, 116, 120, 121, 122, 122, 124, 130, 134, 136, 139, 144, 146, 153, 159, 160, 163, 

163, 168, 171, 172, 176, 183, 195, 196, 197, 202, 213, 215, 216, 222, 230, 231, 240, 245, 251, 

253, 254, 254, 278, 293, 327, 342, 347, 361, 402, 432, 458, 555. 

 
Table 1. ML Estimates and goodness-of-fit criteria for Survival time data. 

Model ML Estimates AIC BIC 

Pranav Poisson 798.1ˆ,018.0ˆ    856.12 859.17 

Pranav Geometric 707.0ˆ,015.0ˆ    855.47 858.52 

Pranav Logarithmic 812.0ˆ,017.0ˆ    855.88 858.93 

Pranav 023.0ˆ   856.52 858.80 

 

Data set II. The second data set previously analyzed by Ghitnay et al. [18] and Bhat et al. 

[19] comprises the waiting times (in minutes) of 100 bank costumers before service. The data 

are as follows:  

0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6, 4.0, 4.1, 4.2, 4.2, 4.3, 

4.3, 4.4, 4.4, 4.6, 4.7, 4.7, 4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9, 

7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8.0, 8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7, 

10.9, 11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13.0, 13.1, 13.3, 13.6, 13.7, 

13.9, 14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4, 21.9, 

23.0, 27.0, 31.6, 33.1, 38.5. 

 
Table 2. ML Estimates and goodness-of-fit criteria for Waiting time data. 

Model ML Estimates AIC BIC 

Pranav Poisson 474.1ˆ,342.0ˆ    663.54 666.59 

Pranav Geometric 787.0ˆ,275.0ˆ    657.09 660.14 

Pranav Logarithmic 992.0ˆ,218.0ˆ    643.52 646.58 

Pranav 404.0ˆ   667.91 670.52 
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Figure 13. TTT plots for the survival and waiting time data sets. 

 
Figure 14. The estimated density plots of the survival and waiting time data sets. 

 

 

9. CONCLUSION 

 

 

We have developed a new two parameter class of distributions called Pranav Power 

Series (PPS) distribution generated by compounding Pranav and Power series distribution and 

unfolded several statistical properties of the PPS distribution like survival function, moment 

generating function and order statistics. Moreover, the unknown parameters are estimated by 

maximum likelihood estimation procedure. We have also illustrated the application of PPS 

distribution to two real data sets used by researchers earlier and compare its sub-models with 

the base model. The results of the real data sets indicate that all the sub-models of PPS 

distribution performs excellently better and can be suggested for lifetime modelling 

encountered in engineering, medical science, biological science and other applied sciences. 
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