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Abstract. In the present work we give an extension of (p,q)- analysis. As an extension 

of (p,q)-analysis, the (r,p,q)-analysis is introduced. We define some elementary concepts of 

this analysis such as (r,p,q)-numbers, (r,p,q)-derivative, (r,p,q)-exponential functions, (r,p,q)-

antiderivative and (r,p,q)-integral. We obtain some properties of the polynomial (x – a)
n
 

(r,p,q)-Taylor formula, (r,p,q)-binomial coefficients, divided differences and some relations 

between (r,p,q)-derivative, (r,p,q)-exponential functions, (r,p,q)-integral and finally, the 

fundamental theorem of (r,p,q)-analysis are examined in details. 

Keywords: (p,q) analysis; (p,q)-derivative; (p,q)-integral; extension of (p,q) analysis. 

 

 

1. INTRODUCTION  

 

 

To understand the quantum analysis or q-analysis, it is necessary to know the classical 

analysis well. Although classical analysis and q-analysis are not exactly the same; they are not 

disconnected from each other. Recently, there has been increased interest q-analysis due to the 

high interest in the mathematics of quantum computing models. 

The q-analysis has emerged as a link between mathematics and physics. Number 

theory, combinatorics, orthogonal polynomials, fundamental hyper-geometric functions, and 

other sciences have numerous applications in different fields of mathematics and physics, 

such as quantum theory, quantum mechanics, and relativity theory [1-3]. 

The q-analysis was first described by Euler. Euler proved the pentagonal number 

theorem  

        

 

   

  
       

   
       

          

 

   

         

 

the first example of q-analysis, in 1750, and this is also the first example of the theta-function 

[2]. In 1866, 11 years after Euler's death, Gauss proved the equality  

 

        
  

 

   

  
     

       

 

   

       

 

which is another example of q-analysis [2] 

In addition, Euler defined the q -derivative operator and the first form of the q -

binomial theorem, which would be defined more than a century later [2]. The q-derivative 
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was first described by Euler, then Heine [4], and then by F. H. Jackson [5] in 1908 [see 1, 6]. 

Jackson was the first to systematically develop  -analysis [2]. 

In 1869, Edward Heine's student Thomae [7, 8] defined the q-integral on [0,1] by 

  

        

 

 

              

 

   

       

  

and in 1910, Jackson [9] defined the general q-integral on [a, b] by 

 

        

 

 

         

 

 

         

 

 

 

  

After Jackson's definitions of  -derivative and  -integral, studies have continued. 

With the addition of the p parameter to the  -analysis, a step was taken to the      -analysis. 

     -analysis was first and independently handled by Chakrabarti and Jagannathan [10], 

Brodimas et al. [11], Wachs and White [12], and Arik et al. [13]. 

Chakrabarti and Jagannathan described the      -analysis to generalize or combine 

various forms of  -oscillator algebras well known in the physics literature related to the 

symbol theory of single-parameter quantum algebras [10]. Brodimas et al. defined the      -

number to derive the Bose representation of these operators by utilizing  -analysis by 

performing a Bargmann differential of the      -algebraic generation and destruction 

operator [11]. Wachs and White used the      -number in the mathematical literature to 

obtain the      -Stirling numbers that produces the common distribution of statistical pairs 

[12]. Arik et al. used the      -number to investigate Fibonacci oscillators [13]. 

Since 1991,  -analysis has been developed by many mathematicians and physicists in 

different research fields. For example,      -hypergeometric functions were defined by 

Burban and Klimyk and the relationships between basic hypergeometric functions,      -

hypergeometric functions and      -hypergeometric functions were investigated [14]. The 

binomial coefficients      -analogue were developed by Corcino and some properties 

parallel to the known binomial coefficients and  -binomial coefficients were determined [15]. 

Some properties of  -derivative and  -integration were investigated by Sadjang [16]. Some 

connections between the      -derivative operator and divided differences were given by 

Araci et al., and the      -analogue of the Leibnitz rule was investigated with the help of 

divided differences [17]. These studies provided good ideas for the development of      -

analysis in combinatorics, number theory, and other fields of mathematics and physics. 

In this study, an extension of the      -analysis is considered and their various 

properties are given. We first first introduced the        -analysis by involving a parameter   

to the      -analysis, and some elementary concepts of analysis such a        -numbers, 
       -derivative,        -exonential functions,        -antiderivative, and        -

integral were defined. We obtain some properties of polynomial       ,        -Taylor 

formula,        -binomial coefficients, divided differences and some relations between 
       -derivative,        -exponential functions,        -integral and finally, the 

fundamental theorem of        -analysis are examined in detail. 

In this article, some elementary concepts of the        -analysis are defined. The 

       -numbers,        -differential,        -derivative,        -Taylor formula and 

fundamental theorem of        -analysis are studied and their properties are obtained. Firtly 

we recall some information about the q-analysis and      -analysis.  
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2. QUANTUM AND POST QUANTUM ANALYSİS 

 

 

2.1. QUANTUM ANALYSIS 

 

 

Let    ,    .  -extension (or  -analogue) of a ineger number     is defined by 

 

     
    

   
  

Here, it follows that 

 

   
   

        
   

                

The following formulas are valid for any real (or complex) numbers n and m (see [16, 

18, 19]): 

                               

                                       

                          

 
 

 
 
 

 
       

       
 

    

       
 

The  -differential of any function      is defined by  

 
                  

 

and the  -derivative of      is defined by  

 

( ) ( ) ( )
( )

( 1)

q

q

q

d f x f qx f x
D f x

d x q x


 


,      . 

 

The  -analogue of    is defined by  

 

         ! 1 ... 2 1
q q q q q

n n n   

and 0! =1 (see [20, 21]).  

The  -analogue of the ( )nx a  polynomial is defined as 
0( ) 1qx a   to 

 
1( ) ( )( ) ( )n n

qx a x a x qa x q a      . 

 

For any polynomial      of degree   and any number  , the  -Taylor expansion of 

     is given by formula 

 
 0

( )
( ) ( )

!

nN
qj

q

j q

x c
f x D f c

j


 . 
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Let's take         and    , where   is a positive integer. For     hence the  -

Taylor formula for    around     is 

 

     

 
 

0

1 ... 1
1

!

n
jq q qn

q
j q

n n n j
x x

j

  
  . 

 

Using the  -Taylor formula, taking ( ) ( )n

qf x x a   around    , is  

 

 
( 1)

2

0

( 1)
k kn

n k n k k

q
k q

n
x a q x a

k







 
   

 
 . 

  

The  -binomial coefficients for     positive integers are defined by  

 

 

 

 

with 1
0

q q

n n

n

   
    

   
and 0

q

n

k

 
 

 
 for    . 

 

 

Theorem 2.1. (Fundamental Theorem of  -analysis)      is an antiderivative of      and 

     is  

( ) ( ) ( )

b

q

a

f x d x F b F a   

 

        if     is continuous. 

 

Proposition 2.1. If       exists around     and is continuous at    , then       is the 

classical derivative of     , is  

( ) ( ) ( )

b

q q

a

D f x d x f b f a  . 

 

2.2. POST QUANTUM ANALYSIS 

 

 

The      -analoge of n  is defined by  

 
,

n n

p q

p q
n

p q





. 

 

Hence,    
, ,p q q p

n n . For 1p  , the ( , )p q -number  
,p q

n turns into the q –number 

 
q

n . Some formulas for sum, difference, product and quotient of      -numbers are  

 

         
, , , , ,

n m m n

p q p q p q p q p q
n m p m q n p n q m      

 

   

!
,

! !

q

q qq q

nn n

k n kn k k

   
    
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           , , , , ,

m n m m n m

p q p q p q p q p q
n m q n p m p n q m         

         
, , , , ,m m n np q p q p q p q p q

nm n m m n   

 

 

 

 

1 1

1 1

, ,

, , ,

m m

n n

m m m m

p q p q

p q p q p q

n nn

m m m

 
  

 
 

 

where n and m are real or complex numbers [16, 22]. 

Let      be an arbitrary function. The      -differential of      is defined by 

 

, ( ) ( ) ( )p qd f x f px f qx   

 

and the      -derivative of      is defined by 

 

,

( ) ( )
( )

( )
p q

f px f qx
D f x

p q x





,  0x  . 

 

The      -analogue of factorial of   is defined by  

 

         
, , , , ,

! 1 2 1
p q p q p q p q p q

n n n    

 

and  
,

0 ! 1
p q

 . The      -analogue of the ( )nx a  polynomial is defined as
0

,( ) 1p qx a   to 

 
1 1

,( ) ( )( ) ( )n n n

p qx a x a px qa p x q a      . 

 

For any polynomial      of degree   and any number  , the      -Taylor expansion 

of      is  

 
 ,2

,
0 ,

( )( )
( )

!

k k kN
kp q

p q
k p q

D f ap
f x p x a

k

  
 
 



  . 

which based on the formula  

2

,

0 ,

( ) ( )

k
n
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k p q
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x p ap x a
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 
 

  
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  

 
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The      -binomial coefficients are defined by  

 

 

   
,

, ,, ,

!

! !

p q

p q p qp q p q

nn n

k n kn k k

   
    
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. 

 

The      -binomial coefficients for    , the initial conditions 
,

0
p q

n

k

 
 

 
 and 

,

0
1

0
p q

 
 

 
and the triangle recursion relationship is satisfied as 
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and 

1

, , ,

1
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k n k
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n n n
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k k k

 
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. 

 

Theorem 2.1. (Fundamental Theorem of      -analysis)      is an antiderivative of      

and      is  

,( ) ( ) ( ),

b

p q

a

f x d x F b F a   

 

        if     is continuous. 

 

Proposition 2.1. If       exists around     and is continuous at    , then       is the 

classical derivative of     , is  

 

, ,( ) ( ) ( )

b

p q p q

a

D f x d x f b f a  . 

 

 

3. MAIN RESULTS 

 

 

In the present work we introduce the        -analysis as an extension of the      -

analysis. Fisrtly, we define the        -numbers,        -differential and        -derivative, 

and we give their properties. We derive the        -Taylor formula and fundamental theorem 

of        -analysis. 

  

 

3.1.        -ANALYSIS AS AN EXTENSION OF      -ANALYSIS 

 

 

Assume that        ,     and     . 

 

Definition 3.1.1 The        -analogue of      is defined by  

 

 

   

   
, ,

, 1

, 1

n n

r r

r r
r p q

n n

p q
r

p q
n

p q
r

p q

 
 


 


 

 (3.1.1) 

 

We note that the numbers     and   can be chosen as real or complex numbers. Here, 

the  -analogue of   is defined by 
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 and for    ,      turns into the number  . Similarly, the  -analogue of   is given by  

 

     
    

   
 

 

for    ,      turns into  . For    , the                 -number turns into             -

number. A few examples of        -numbers are 

 

 
, ,

0 0
r p q

 ,  
, ,

1 1
r p q

 ,      
, ,

2
r p q r r

p q  ,          
2 2

, ,
3

r p q r r r r
p p q q   . 

 

Now, we examine the sum and difference formulas of ( , , )r p q -numbers. 

 

 
   

   
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 
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
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
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


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Similarly, we have 

 
   
   

           
   

       
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n m n m
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r p q
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r r r r r r
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p q
n m
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
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
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

 

 

Taking m  instead of m  in the sum formula above, we have  

 

         
, , , , , ,

n m

r p q r r p q r r p q
n m p m q n


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and by  

 
   

   
      

, , , ,
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n
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r p q r r r p q
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n p q n

p q

 

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

 

we reach to the equality 

          , , , , , ,
.

m n m

r p q r r p q r r p q
n m q n p m

 
    

 

 

3.1.1.        -differential and        -derivative  

 

 

Definition 3.1.2. Let   be a function defined on a subset of complex numbers. The        -

differential of the   function is defined by 
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     , , ( )r p q r r
d f x f p x f q x   (3.1.2) 

 

For any function      and      we have 

 

             

                       

     

, ,

, , , ,

( ) ( )

( ) ( )

r p q r r r r

r r r r r r r r

r p q r p qr r

d f x g x f p x g p x f q x g q x

f p x g p x f q x g q x f p x g q x f p x g q x

f p x d g x g q x d f x

 

   

 

 

and thus, 

 

       , , , , , ,( ) ( ) ( ) ( )r p q r p q r p qr r
d f x g x f p x d g x g q x d f x   (3.1.3) 

 

are obtained. Similarly, 

 

       , , , , , ,( ) ( ) ( ) ( )r p q r p q r p qr r
d f x g x g p x d f x f q x d g x   (3.1.4) 

 

Definition 3.1.3. The        -derivative of the   function is defined by 

 

     
   

, ,

, ,

, ,

( )
( ) ,  ( 0).

r p q r r

r p q

r p q r r

f p x f q xd f x
D f x x

d x p x q x


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
 (3.1.5) 

 

For    , we have                 . Let      and      be any two functions. The 

       -derivative of the product of the functions      and     , using         and        , 

is as follows: 

 

 
       

     

, , , ,, ,

, ,

, , , ,

, , , ,

( ) ( )( ) ( )
( ) ( )

( ) ( )

r p q r p qr p q r r

r p q

r p q r p q

r p q r p qr r

f p x d g x g q x d f xd f x g x
D f x g x

d x d x

f p x D g x g q x D f x


 

 

 (3.1.6) 

 

and similarly, 

 

       , , , , , ,( ) ( ) ( ) ( ) r p q r p q r p qr r
D f x g x g p x D f x f q x D g x  (3.1.7) 

 

Let's look at how the        -derivative of the quotient of functions      and      is 

defined. 
( ) ( )

( )
( ) ( )

( )

f x f x

f x
g x f x

g x




 

 

Let's take the        -derivative of both sides of the equality, 

, , , ,

( )
( ) ( )

( )
r p q r p q

f x
D g x D f x

g x

 
 

 
. 
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Using (3.1.6), we find the following result with            and           . 

 

  
  
  , , , , , ,
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( ) ( )
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r
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  
  
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, , , ,

, ,
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r p q r p q

r
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r
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D
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
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     
     
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, ,

( ) ( )( )
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r r

g q x D f x f q x D g xf x
D

g x g q x g p x

 
 

 
 

 

Lemma 3.1.1. Let the functions       and       be        -differentiable on the 

order of  . Then, 

 

      
           

 

 
 
     

      
          

          
            

  

 

   

  

 

Proof: Lemma is provided for    . Assuma that 1m  and the lemma is true for    . 

Let's show that it is true for       using     and the equality        .  

 

      1

, , , , , ,

m m

r p q r p q r p qD fg x D D fg x   

         , , , , , ,

0 , ,

m
m k kk m k

r p q r p q r p qr r
k r p q

m
D D f x p D g x q

k

 



  
      

  

           11

, , , ,

0 , ,

m
m k m k kk m k

r p q r p qr r r
k r p q

m
p D f x p D g x q

k

   



      
  

          
1 1

, , , ,

m k k kk m k

r p q r p qr r r
D f x p D g x q q

    


 

          
1 1

, , , ,

0 , ,

m
m k k kk m k

r p q r p qr r r
k r p q

m
D f x p D g x q q

k

   



 
  

 
  

           
1

1 1 1

, , , ,

1 , ,
1

m
m k m k kk m k

r p q r p qr r r
k r p q

m
p D f x p D g x q

k


     



 
  

 
  

     
1 1

, ,

m m

r p qr
f x p D g x

   

             1 1 1

, , , ,

1 , , , ,
1

m
k m k m k kk m k

r p q r p qr r r r
k r p q r p q

m m
q p D f x p D g x q

k k

     



     
     

     
  

     11

, ,

mm

r p q r
D f x g x q

  

         
1

1 1

, , , ,

0 , ,
1

m
m k kk m k

r p q r p qr r
k r p q

m
D f x p D g x q

k


   



 
  

 
  

and the proof is complete.  
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3.2.        -ANALOGUE AND        -DERIVATIVE OF  
n

x a  

 

 

First, let's recall the general Taylor formula for polynomials. 

 

Theorem 3.2.1. Let a be any number and D be a linear operator in the space of polynomials. 

Let  0 1( ), ( ),...P x P x  be the sequence of polynomials satisfying the following three conditions: 

1. 0 ( ) 1P a   and ( ) 0nP a   1n   

2. ( )nderP x n  

3. 1( ) ( )n ndP x P x  for 1n   and (1) 0D   

 

The general Taylor formula for any polynomial      of degree   is: 

 

 
0

( ) ( ) ( )
N

n

n

n

f x D f a P x


  [30]. 

 

Let's take the linear operator 
, ,r p qD  instead of the linear operator D in the theorem 

above. If we choose    , we can find polynomials ( )nP x  satisfying the the conditions 

above. Let's look at the question of how to write a polynomial ( )nP x  if 0a  . 

Let's find the polynomial ( )nP x  with the help of the theorem above by choosing 0a 

and 
, ,r p qD D . It should be 0 ( ) 1P x   , 

, , 1 0( ) ( )r p qD P x P x  and            .  

 

     
   

1 1

, , 1 0( ) ( ) 1
r r

r p q

r r

P q x P p x
D P x P x

q x p x


  


 

         1 1r r r r
P q x P p x q x p x    

 

For    ,          1 1r r r r
P q a P p a q a p a   .             should be 

      1 r r r
P q a q a p a   . Then it is found as  

 

1( )P x x a  . 

 

Now let's find 2 ( )P x . It should be
, , 2 1( ) ( )   r p qD P x P x  and            .  

 

     
   

2 2

, , 2 ( )
r r

r p q

r r

P q x P p x
D P x x a

q x p x


  


 

 

            2 2r r r r
P q x P p x x a q x p x     

 

For    ,      2 2 0
r r

P q a P p a   and must be   2 0
r

P q a  . Therefore, it must 

be     2( ) ( )
r r

P x x a p x q a   . Let's try this. 



On an expansion of  ...  Hamza Menken  and Burçak Harnupdali 

ISSN: 1844 – 9581 Mathematics Section 

43 

     
   

2 2

, , 2 ( )
r r

r p q

r r

P q x P p x
D P x x a

q x p x


  


 

must be. Accordingly, 

 

                 
    

2

, , 2 ( )
rr r r r r r

r p q

r r

q x a p q x q a p x a p x q a
D P x

q p x

    



 

           
    

2 2

r rr r r

r r

p x a q x q a p x q a

q p x

   



 

       
    

2 2

r rr

r r

p x a q p x

q p x

 



 

   
, ,

2
r r p q

p x a  . 

 

whereas 
, , 2( ) ( )r p qD P x x a   should have been. In that case, it is found as  

 

    
 2

, ,

( )
( )

2

r r

r p q

x a p x q a
P x

 
   

 

by providing the equality. Continuing in this way, we can generalize the polynomial ( )nP x  for 

0a  as follows: 

                
 

2 2 1 1

, ,

...
( )

!

r r r r

n n

r r

n

r p q

x a p x q a p x q a p x q a
P x

n

 
   

 . 

 

Definition 3.2.1. The        -analogue of !n  is identified by  

 

         , ,
, , , , , , , ,

1 0
!

1 ... 2 1 1r p q
r p q r p q r p q r p q

n
n

n n n


 

 

 

 

Definition 3.2.2. The        -analogue of the  
n

x a  polynomial is defined by  

 

 
           1 1, ,

1 0

... 1
r r

n

n nr p q

r r

n
x a

x a p x q a p x q a n
 




  
   

 

 

 

3.2.1. Some propositions of polynomials  
n

x a  

 

 

Proposition 3.2.1. For 1n , the following statement is true:  

 



 On an expansion of  post quantum analysis  Hamza Menken  and Burçak Harnupdali 

 

www.josa.ro Mathematics Section 

44 

      
1

, , , , , , , ,



  
nn

r p q r p q r p q r r p q
D x a n p x a  (3.2.1) 

and  
0

, , , ,
0 r p q r p q

D x a . 

 

Proof: Let's do the proof by inductive method. Since 

      
0

, , , , , , , ,
1 1   r p q r p q r p q r r p q

D x a p x a  for    , the proposition is true for    . 

Suppose (3.2.1) is true for some value of  ,       
, ,

1

, , , , , ,



  
r p q

kk

r p q r p q r r p q
D x a k p x a . Using 

this definition for        -power, we can write 

 

        1

, , , ,
, ,


   

r r

k kk k

r p q r p q
r p q

x a x a p x q a . 

 

Let us show that (3.2.1) is true for the value    . From the equality (3.1.7) we obtain  

 

                 
11

, , , , , ,, , , ,


     

r r

k kk k kk

r p q r p q r r r r p q rr p q r p q
D x a p p x a p q x q a k p x a  

               
11

, ,, , , ,


    

r r

k kk k k

r r r r p q rr p q r p q
p p x a q p x q a k p x a  

              
, , , ,, , , ,

1     
k kk

r r r r p q r p q rr p q r p q
p x a p q k k p x a  

 

Hence, the proof is completed.  

 

Proposition 3.2.2. Let   be a complex number and 1n  an integer. The relation holds: 

 

      
1

, , , , , , , ,
  



  
nn

r p q r p q r p q r r p q
D x a n p x a . 

 

Proof: The proof can be done by induction on n .  

 

Proposition 3.2.3. Let 0 k n   and with n , 1n  . So it is  

 

      
           

      
                 

           
     

          
     (3.2.2) 

 

 

3.3. ( , , )r p q -TAYLOR FORMULA 

 

 

In this section, two Taylor formulas for polynomials are given in the light of ( , , )r p q -

analysis and some results are investigated. The first of the Taylor formulas is as follows. 

 

Theorem 3.3.1. For any polynomial      of degree   and any number  , the Taylor's 

formula is given by  
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 (3.3.1) 

 

Proof: Let   be a polynomial of degree  . In this case  

 

 
, ,

0

( )
N

j

j r p q
j

f x c x a


   (3.3.2) 

 

is provided.   is an integer such that      . Then, applying , ,

k

r p qD and using equalities 

(3.3.2) and (3.2.2) we have the formula  

 

       
              

                 

           
     

          
   

 

   

  

 

If  
k

r
x a p


 is chosen in the above equality,  

 

       
         

                   
        

 

 

is found. Hence, it is  

       
                

         
   

         
. 

Thus ends the proof.  

 

Corollary 3.3.1. The following statement is true: 

 

        
         

 
 

 
 
     

      
                

   

 

   

 

 

Theorem 3.3.2. For any polynomial      of degree   and any number  , theTayor's formula 

is given by:  

               
                

         
   

         
          

 

 

   

  

 

Proof: The proof can be proved similarly to the proof of Theorem 3.3.1.  

 

Corollary 3.3.2. The following equality is valid: 

 

             
         

 
 
 
 
     

      
                

 

 

   

 (3.3.3) 

 

Corollary 3.3.3. The following equalities are valid: 
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     
, , , , , ,

0 , ,

n
n n k k

r p q r p q r p q
k r p q

n
x b a b x a

k





 
    

 
  (3.3.4) 

 

     
, , , , , ,

0 , ,

n
n n k k

r p q r p q r p q
k r p q

n
b x b a a x

k





 
    

 
  (3.3.5) 

 

We note that by taking    instead of   in equalities (3.3.4) and (3.3.5), we obtain the 

following expressions: 

 

     
, , , , , ,

0 , ,

1
n

n n k kn k

r p q r p q r p q
k r p q

n
x ab a b x a

k





 
    

 
  (3.3.6) 

 

     
, , , , , ,

0 , ,

1
n

n n k kn k

r p q r p q r p q
k r p q

n
ab x a b a x

k





 
    

 
  (3.3.7) 

 

 

3.4. ( , , )r p q -BINOMIAL COEFFICIENTS 

 

 

Definition 3.4.1. The ( , , )r p q -binomial coefficients are defined by 

  

 

   
, ,

, , , , , ,

!
,

! !

r p q

r p q r p q r p q

nn

k n k k

 
 

 
 (3.4.1) 

 

with          
, , , , , , , , , ,

! 1 2 1 ( 0)
r p q r p q r p q r p q r p q

n n n n    and  
, ,

0 ! 1
r p q

 . 

 

If 1r  , ( , )p q -binomial coefficients are obtained. In this case, the properties of 

( , , )r p q -binomial coefficients are similar to the properties of ( , )p q -binomial coefficients. 

Some properties of ( , , )r p q -binomial coefficients with     non-negative integers and k n  

are as follows: 

 

 

   

 

 

, ,

, , , , , ,

, , , ,

, , , ,

, ,

, , , ,, ,

!
,

! !

,

,

1
.

1

r p q

r p q r p q r p q

r p q r q p

r p q r p q

r p q

r p q r p qr p q

nn

k n k k

n n

k k

n n

k n k

nn n

k kk

 
 

 

   
   

   

   
   

   

   
   

   

 (3.4.2) 
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First, let's give the triangle recursion relationship to calculate ( , , )r p q -binomial 

coefficients. 

 

Theorem 3.4.1. The ( , , )r p q -binomial coefficients are given by 

   
1

, , , , , ,

1

1

k n k

r r

r p q r p q r p q

n n n
p q

k k k

      
      

     
 (3.4.3) 

 

and 

   
1

, , , , , ,

1

1

k n k

r r

r p q r p q r p q

n n n
q p

k k k

      
      

     
 (3.4.4) 

 

with initial conditions 
, ,

0
1

0
r p q

 
 

 
 and 

, ,

0
r p q

n

k

 
 

 
 for n k . 

 

Proof. Let 0 k n  . 

 

                     

                     
       

1 1 1 1

, ,

1 1 1 2 1

1

, , , ,

1

1

n n k n k k n k n n

r p q r r r r r r r r r r

k n k n k n k n k k k k

r r r r r r r r r r

k n k

r r p q r r p q

n p p q p q p q p q q

p p p q q q p p q q

p n k q k

     

        

 

        

       

   

  

 so that, 

 

   

   
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Thus, the equality (3.4.3) is proved. The proof of the equality (3.4.4) can be proved 

similarly.  

 

Theorem 3.4.2. The ( , , )r p q -binomial coefficients are given by 

 

   
( )( 1)

, , , ,

1

1

n
n j k j k

r r
j kr p q r p q

n j
p q

k k

  



   
   

   
  

and 

     
1 1

( 1)( )
2 2

0, , , ,

1
1

1

j jn k
j n k jkj

r r
jr p q r p q

n n
p q

k k j

     
       

   



   
    

    
 . 
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Theorem 3.4.3. ( , , )r p q -binomial coefficients are  

 

        
1

2 2

0 0 , ,

n k kn n
j j k

r r r r
j k r p q

n
p x q p q x

k
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 

 
   

 
   (3.4.5) 

 

Proof: The proof can be done by inductive method.  

 

Result 3.4.1. For 1n  , the following equality is valid: 
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   
   (3.4.6) 

 

Proof: Taking as 1x    in Theorem 3.4.3, we obtain 
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The first element of the     
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This corresponds to equality (3.4.6). 

 

3.5. FUNDAMENTAL THEOREM OF ( , , )r p q -ANALYSIS 

 

Theorem 3.5.1. (The Fundamental Theorem of ( , , )r p q -Analysis). ( )F x , is an 

antiderivative of ( )f x ’ and if ( )F x , is continuous at 0x   and 0 a b   , 

 

, ,( ) ( ) ( ).

b

r p q

a

f x d x F b F a   (3.5.1) 

 

Proof: Since ( )F x  is continuous at 0x  , ( )F x  can be written as 
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 it can be written as  
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a

r p qf x d x F a F  . 
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Similarly, for a finite b , it can be written as  

, ,

0

( ) ( ) (0)

b

r p qf x d x F b F  . 

Thus, we obtain 

, ,( ) ( ) ( )

b

r p q

a

f x d x F b F a  . 

 

Proposition 3.5.1. If there is ( )f x  in a neighborhood of 0x  and it is continuous at the point 

0x  , then we have 

 

, , , ,( ) ( ) ( )

b

r p q r p q

a

D f x d x f b f a   (3.5.2) 

 

Proof: Using L'Hospital's rule, we have 
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Therefore, it follows from the equality     , , 0 0r p qD f f   and (3.5.2) that 

, , ( )r p qD f x  is continuous at the point 0x  . 

 

 

4. CONCLUSIONS 

 

 

In this paper, the basic concepts of ( , , )r p q -analysis as an extension of      -analysis 

are defined and examined. We obtain results that include the concepts of ( , , )r p q -analogue of 

a number n, and ( , , )r p q -differential and derivative of a function f(x), ( , , )r p q -analogue and 

properties of the  
n

x a  polynomial. 

Some results containing the ( , , )r p q -analogue and ( , , )r p q -Taylor formula, ( , , )r p q -

binomial coefficients, and the fundamental theorem and properties of ( , , )r p q -analysis are 

obtained.  

 

 

  



 On an expansion of  post quantum analysis  Hamza Menken  and Burçak Harnupdali 

 

www.josa.ro Mathematics Section 

50 

REFERENCES 

 

 

[1] Annaby, M.H., Zeinab, M.S., q-Fractional Calculus and Equations, Springer, Berlin, 

Germany, 2012. 

[2] Ernst, T., History of  -Calculus and a New Method, U. U. D. M. Report 2000, Uppsala 

University, 1999. 

[3] Gauchman, H., Computers Mathematics with Applications, 47(2-3), 281, 2004. 

[4] Heine, E., Handbuch Der Kugelfunctionen, Theorie Und Anwendugen, Druck und 

Verlag von G. Reimer, Berlin, 1878. 

[5] Jackson, F.H., Transactions of the Royal Society of Edinburgh Earth Science, 46(2), 

253, 1909. 

[6] Goldman, J., Rota, G.C., The number of subspaces of a vector space, Technical Report 

AD0683687, University of Harvard, United States, 1969. 

[7]  Thomae, J., Journal Für die Reine und Angewandte Mathematik, 70, 258, 1869. 

[8] Thomae, J., Mathematicshe Annalen, 2, 427, 1870. 

[9] Jackson, F.H., Pure and Applied Mathematics Quarterly, 41, 193, 1910. 

[10] Chakrabarti, R., Jagannathan, R., Journal of Physics a Mathematical and General, 

24(13), L711, 1991. 

[11] Brodimas, G., Jannussis, A., Mignani, R., Two parameter quantum groups, Universita 

di Roma Preprint, 820, 1991. 

[12] Wachs, M., White, D., Journal of Combinatorial Theory, Serias A, 56, 27, 1991. 

[13] Arik, M., Demircan, E., Turgut, T., Ekinci, L., Mungan, M., Zeitschrift für Physik C 

Particles and Fields, 55(1), 89, 1992. 

[14] Burban, M., Klimyk, A., UIntegral Transforms and Special Functions, 2, 15, 1994. 

[15] Corcino, R. B., Electronic Journal of Combinatorial Number Theory, 8, A29, 2008. 

[16] Sadjang, P. N., Journal of Difference Equations and Applications, 23 (9), 1562, 2017. 

[17] Araci, S., Duran, U., Acikgoz, M., Srivastava, H.M., Journal of Inequalities and 

Applications, 2016, 301, 2016. 

[18] Duran, U., Acikgoz, M., Araci, S., TWMS Journal of Pure and Applied Mathematics, 8 

(2), 198, 2017. 

[19] Jagannathan, R., Rao, K.S., Two-parameter quantum algebras, twin-basic numbers, and 

associated generalized hypergeometric series, arXiv preprint: 

https://arxiv.org/abs/math/0602613v1, 2006. 

[20] Duran, U., Master Thesis  Post Quantum Calculus, University of Gaziantep, 2016. 

[21] Kac, V., Cheung, P., Quantum Calculus, Springer Verlag, New York, 2002. 

[22] Sadjang, P., Duran, U., Miskolc Mathematical Notes, 20(2), 1185, 2019 

[23] Sadjang, P. N., Results in Mathematics, 73, 39, 2018. 

 

 


