ORIGINAL PAPER

NEW RESULTS ON A MIXED CONVECTION BOUNDARY LAYER FLOW OVER A PERMEABLE VERTICAL SURFACE EMBEDDED IN A POROUS MEDIUM

KHALED BOUDJEMA DJEFFAL¹

Manuscript received: 15.08.2022; Accepted paper: 24.11.2022; Published online: 30.12.2022.

Abstract. The objective of this paper is to prove the existence, non-existence and the sign of convex and convex-concave solutions of the third-order non-linear differential equation $f''' + ff'' + \beta f'(f'-1) = 0$, satisfying the boundary conditions $f(0) = a \in \mathbb{R}$, f'(0) = b < 0 and $f' \to \lambda$ as $t \to +\infty$ where $\lambda \in \{0,1\}$ and $\beta < 0$. The problematic arises in the study of the Mixed Convection Boundary Layer flow over a permeable vertical surface embedded in a Porous Medium according to the mixed convection parameter b < 0, the permeable parameter $a \in \mathbb{R}$ and the temperature parameter $\beta < 0$.

Keywords: mixed convection; nonlinear differential equation; convex solution; convex-concave solution; shooting technique.

1. INTRODUCTION

Owing to their numerous applications in geothermal energy extraction, oil reservoir modelling, magnetohydrodynamic, casting and welding in manufacturing processes (see [1-3]) or in boundary layer flows (see [4, 5]) etc, the problem of boundary layers related with heated and cooled surfaces embedded in fluid-saturated porous media have attracted considerable attention of researchers during the last few decades. In this paper, our interest focuses on the analysis of the boundary value problems $(P_{\beta;a,b,\lambda})$

$$(P_{\beta;a,b,\lambda}) \begin{cases} f''' + ff'' + \beta f'(f'-1) = 0, \\ f(0) = a \in \mathbb{R}, \\ f'(0) = b < 0, \\ \lim_{t \to +\infty} f'(t) = \lambda. \end{cases}$$

where $\lambda \in \{0,1\}$ which has been examined in [6-8] with a=0. This problem comes from the study of the mixed convection boundary layer flow along a semi-infinite vertical permeable plate embedded in a saturated porous medium, with a prescribed power law of the distance from the leading edge for the temperature. The parameter β is a temperature power-lawprofile and b is the mixed convection parameter, namely $b=\frac{R_a}{P_e}-1$, with R_a the Rayleigh number and P_e the Péclet number.

-

¹ University Hassiba Benbouali of Chlef, Department of Mathematics, Faculty of Exact Sciences and Informatics, Chlef, Algeria. E-mail: <u>k.boudjemadjeffal@univ-chlef.dz</u>.

For more details on the physical derivation and the numerical results, the interested reader can consult references [6, 9]. Mathematical results about the problem $(P_{\beta;a,b,\lambda})$ with $\lambda = 1$ can be found in [7, 8, 10-12]. The case where $a \ge 0$, $b \ge 0$, $\beta > 0$ and $\lambda \in \{0,1\}$ was treated by Aïboudi and al. in [10], and the results obtained generalize the ones of [12]. In [11], Brighi and Hoernel established some results about the existence and uniqueness of convex and concave solution of $(P_{\beta;a,b,1})$ where $-2 < \beta < 0$ and b > 0. These results can be recovered from [4], where the general equation f''' + ff'' + g(f') = 0 is studied. Recently, in [7], the authors prove some theoretical results about the problem $(P_{\beta;0,b,1})$ with

$$-2 < \beta < 0, b = 1 + \varepsilon$$
 and $\varepsilon < -1$.

In particular, the authors prove that there exist $\varepsilon_* \in (-1.807; -1.806)$ and $\varepsilon^* \in (-1.193; -1.192)$, such that:

- (i) $(P_{\beta;0,b,1})$ has no convex solution for any $-2 < \beta < 0$ and each $\varepsilon \le \varepsilon_*$;
- (ii) $(P_{\beta;0,b,1})$ has a convex solution for each $-2 < \beta < 0$ and each $\varepsilon \in [\varepsilon *; -1)$.

In [8] one can found interesting new result about the existence of convex solution of $(P_{\beta;0,b,1})$ where $0 < \beta < 1$ under some conditions. In [13] the results obtained by Aïboudi and all generalize the ones of [8]. In [7, 8], the method used by the authors to prove the existence of a convex solution for the case a=0 seems difficult to generalize for $a\neq 0$. The problem $(P_{\beta;a,b,\lambda})$ with $\beta=0$ is the well known Blasius problem. For a broad view, see [14, 15]. The main goa of this paper is to extend the study of existence and nonexistence of the solutions of $(P_{\beta;a,b,\lambda})$ with $\beta<0$ and $\lambda\in\{0,1\}$. We will focus our attention on convex and convex-concave solutions of the equation

$$f''' + ff'' + \beta f'(f' - 1) = 0. \tag{1}$$

As usually, to get a convex or convex-concave solution of $(P_{\beta;a,b,\lambda})$, we will use the shooting technique which consists of finding the values of a parameter $c \ge 0$ for which the solution of (1) satisfying the initial conditions f(0) = a, f'(0) = b and f''(0) = c, exists on $[0; +\infty)$; and is such that $f'_c \to \lambda \in \{0,1\}$ as $t \to +\infty$. We denote by f_c the solution of the following initial value problem and by $[0; T_c)$ its right maximal interval of existence:

$$(P_{a,b,c}) \qquad \begin{cases} f''' + ff'' + \beta f'(f'-1) = 0, \\ f(0) = a, \\ f'(0) = b, \\ f''(0) = c. \end{cases}$$

2. ON BLASIUS EQUATION

In this section, we recall some basic properties of the supersolutions of the Blasius equation. Let $I \subseteq \mathbb{R}$ be an interval and $f: I \to \mathbb{R}$ be a function.

Definition 1. We say that f is a supersolution of the Blasius equation

$$f''' + ff'' = 0$$
 if f is of class C^3

and if

New results on a mixed... Khaled Boudjema Djeffal 877

$$f''' + ff'' \ge 0$$
 on I .

Proposition 1. Let $t_0 \in \mathbb{R}$. There does not exist nonpositive convex supersolution of the Blasius equation on the interval $[t_0; +\infty)$.

Proof: See [4], Proposition 2.5.

3. PRELIMINARY RESULTS

Proposition 2. Let f be a solution of the equation (1) on some maximal interval I = (T-; T+).

- 1. If F is any anti-derivative of f on I, then $(f''e^F)' = -\beta f'(f'-1)e^F$.
- 2. Assume that $T_+ = +\infty$ and that $f'(t) \to \lambda \in \mathbb{R}$ as $t \to +\infty$: If moreover f is of constant sign at infinity, $f''(t) \to 0$ as $t \to +\infty$.
 - 3. If $T_+ = +\infty$ and if $f'(t) \to \lambda \in \mathbb{R}$ as $t \to +\infty$, then $\lambda = 0$ or $\lambda = 1$;
 - 4. If $T_+ < +\infty$, then f'' and f' are unbounded near T_+ ;
- 5. If there exists a point $t_0 \in I$ satisfying $f''(t_0) = 0$ and $f'(t) = \mu$, where $\mu = 0$ or 1 then for all $t_0 \in I$, we have $f(t) = \mu(t t_0) + f(t_0)$;

Proof: The first item follows immediately from equation (1). For the proof of items 2-5, see [4], Proposition 3:1 with $g(x) = \beta x(x-1)$.

4. THE BOUNDARY VALUE PROBLEM IN THE CASE WHERE β < 0

In the following we take $a; b \in \mathbb{R}$ and $\lambda \in \{0,1\}$ with b < 0 and $\beta < 0$. We are interested here in convex and convex-concave solutions of the boundary value problem $(P_{\beta;a,b,\lambda})$. As mentioned above in the introduction, we will use the shooting method to find these solutions. To reach our goal, let us use Proposition 3.1; items 1 to define the following sets:

$$C_1 = \{c \ge 0; f'_c \le 0 \text{ and } f''_c \ge 0 \text{ on } [0; T_c)\}$$

$$\begin{array}{l} C_2 = \{c \geq 0; \ \exists t_c \in [0; \ T_c), \exists \varepsilon_c > 0 \ s. \ t \ f_c' < 0 \ on \ (0; t_c), \ f_c' > 0 \ on \ (t_c; t_c + \varepsilon_c) \ and \ f_c'' \\ > 0 \ on \ (0; t_c + \varepsilon_c) \ \} \end{array}$$

$$\begin{array}{l} C_3 = \{c \geq 0; \; \exists s_c \; \in [0; \; T_c), \exists \varepsilon_c > 0 \; s. \, t \; f_c'' > 0 \; \; on \; [0; s_c), f_c'' < 0 \; on \; (s_c; s_c + \varepsilon_c) \; and \; f_c' < 0 \; on \; [0; s_c + \varepsilon_c) \; \}. \end{array}$$

Remark 1. It is easy to prove that C_2 and C_3 are disjoint nonempty open subsets of $[0, +\infty)$ and that there exist $c_0 > c_* > 0$ such that $C_2 = (c_0, +\infty)$, $C_3 = [0, c_*)$, and $C_1 \cup C_2 \cup C_3 = [0; +\infty)$ (see Appendix A of [4] with $g(x) = \beta x(x - 1)$ and $\beta > 0$).

Lemma 1. f_c is a convex solution of the boundary value problem $(P_{\beta;a,b,0})$ if and only if $c \in C_1$.

Proof: See Appendix A of [4] with $g(x) = \beta x(x-1)$.

Lemma 2. The set C_3 is empty.

Proof: See Lemma A.5 of [4] with $g(x) = \beta x(x-1)$ and $\beta < 0$. From the previous Lemma, we have $C_1 \cup C_2 = [0; +\infty)$ and $C_1 \cap C_2 = \emptyset$.

 $4.1 \text{ THE } a \leq 0 \text{ CASE}$

Lemma 3. The set C_1 is empty.

Proof: For contradiction, assume that $C_1 \neq \emptyset$ and let $c \in C_1$. From Lemma 1, f_c is a convex solution of the boundary value problem $(P_{\beta;a,b,0})$. Hence f_c and f'_c are negative on $[0; +\infty)$. This implies that

$$f''' + ff'' = -\beta f'(f' - 1) > 0$$
 on $[0; +\infty)$.

Hence, f_c is a nonpositive convex supersolution of the Blasius equation on $(0; +\infty)$. This contradicts Proposition 1.

Remark 2. From the previous lemma and Lemma 2, $C_2 = [0; +\infty)$.

Remark 3. From Proposition 3:1; items 1, 3 and 5, if $c \in C_2$, then there are only three possibilities for the solution of the initial value problem $(P_{a,b,c})$:

- 1. f_c is convex on its right maximal interval of existence $[0; T_c)$ and $f'_c(t) \to +\infty$ as $t \to T_c$ (with $T_c < +\infty$);
 - 2. There exists a point $t_0 \in [0; T_c)$ such that $f_c''(t_0) = 0$ and $0 < f_c'(t_0) < 1$;
 - 3. f_c is a convex solution of $(P_{\beta;a,b,1})$.

Lemma 4. Let $\beta < 0$, $a \le 0$ and $b \le -1$. If $c \ge 0$ and if there exists $t_0 \in [0; T_c)$ such that $f_c''(t_0) = 0$ and $0 < f_c'(t_0) < 1$; then $f_c(t_0) > 0$.

Proof: Let $c \ge 0$ and assume that there exists $t_0 \in [0; T_c)$ such that

$$f_c''(t_0) = 0$$
 and $0 < f_c'(t_0) = \theta < 1$.

Suppose that $f_c(t_0) \le 0$. Let us consider the function

$$L_c = 3f_c^{"2} + 2 \beta f_c^{'3} - 3 \beta f_c^{'2}.$$

Then, from (1), we have

$$L_c' = -6f_c f_c''^2 > 0 \text{ on } [0; t_0)$$

and hence:

$$L_c(0\;) = 3c^2 + 2\;\beta\;b^3 \; \text{-}\; 3\;\beta\;b^2 \; < L_c\;(t_0) = 2\;\beta\;\theta^3 \; \text{-}\; 3\;\beta\;\theta^2\;.$$

It follows that $\theta^2 - b^2 > 0$ which implies that $\theta > 1$. This is a contradiction.

Lemma 5. Let $\beta < 0$, $a \le 0$ and $b \le \beta$. If $c \ge 0$ and if there exists $t_0 \in [0; T_c)$ such that $f_c''(t_0) = 0$ and $0 < f_c'(t_0) < 1$; then $f_c(t_0) > 0$.

New results on a mixed... Khaled Boudjema Djeffal 879

Proof: Let $c \ge 0$ and assume that there exists $t_0 \in [0; T_c)$ such that

$$f_c''(t_0) = 0$$
 and $0 < f_c'(t_0) = \theta < 1$.

Suppose that

$$f_c(t_0) \leq 0$$
.

Let us consider the function

$$H_c = f_c'' + f_c (f_c' - \beta).$$

Then, from (1), we have

$$H_c' = (1 - \beta)f_c'^2 \ge 0 \text{ on } [0; t_0)$$

and hence:

$$0 \le H_c(0) = c + a(b - \beta) < H_c(t_0) = f_c(t_0) (f'_c(t_0) - \beta),$$

thus, $f_c(t_0) > 0$. For the rest of this section, if it is defined, we will set $a_* = -\sqrt{\frac{1-b^2}{\beta-2b}}$.

Lemma 6. Let $b \le -1$ and $c \ge 0$. Let $t_* > 0$ be the first point such that $f_c(t_*) = 0$. If, either $2b \le \beta < 0$, or $\beta < 2b$ and $a \ge a_*$, then $f'_c(t_*) > 1$.

Proof: From Remark 2, Remark 3 and Lemma 4, we know that the point t_{*} exists.

Let

$$K_c = 2f_c f_c'' - f_c'^2 + f_c^2 (2 f_c' - \beta).$$

From (1), we obtain

$$K'_c = 2(2 - \beta) f_c f'_c < 0 \text{ on } (0, t_*).$$

Therefore, K_c is decreasing on $(0, t_*)$ and hence $K_c(0) > K_c(t_*)$. It follows that

$$2b < \beta < 0$$

then

$$\label{eq:fc'2} {f_c}'^2(t_*) \, > \text{-2ac} + b^2 \, + a^2 \, (\beta \, - \, 2b) \geq b^2 \, ,$$

which implies that

$$f'_{c}(t_{*}) > 1.$$

The same result is obtained where

$$b \le -1$$
, $\beta < 2b$ and $a \ge a_*$.

Theorem 1. Let $\beta < 0$ and a; $b \in \mathbb{R}$ with $b \le 0$ and $a \le 0$.

- 1) The boundary value problem $(P_{\beta;a,b,0})$ has no convex solution.
- 2) If $b \le -1$ and if either $2b \le \beta < 0$, or $\beta < 2b$ and $a \ge a_*$, then the boundary value problem $(P_{\beta;a,b,1})$ has no convex and no convex-concave solution.

3) If $b \le -1$ and if, either $2b \le \beta < 0$, or $\beta < 2b$ and $a \ge a_*$, then, for any $c \ge 0$, the solution f_c of the initial value problem $(P_{a,b,c})$ is convex on its right maximal interval of existence $[0; T_c)$ and $f'_c(t) \to +\infty$ as $t \to T_c$ (with $T_c < +\infty$).

Proof: The first result follows from Lemma 1 and Lemma 3. The second result follows from Proposition 2, item1, Lemma 4, Lemma 5 and Lemma 6. The third result follows from Remark 2, Remark 3, and Lemma 5.

4.2. THE a > 0 CASE

Let $a; b \in \mathbb{R}$ with $\beta < 2b < 0$ and a > 0. We consider the solution f_c of the initial value problem $(P_{a,b,c})$ on the right maximal interval of existence $[0; T_c)$. Let us set $a^* = -\frac{b}{\sqrt{2b-\beta}}$.

Lemma 7. Let $a \ge a^*$, $c \ge 0$ and $\beta < 2b < 0$. If f_c is a solution of the initial value problem $(P_{a,b,c})$, then f_c is positive on the right maximal interval of existence $[0; T_c)$.

Proof: Assume that there exists $t_* \in (0, T_c)$. Such that $f_c > 0$ on $[0; t_*)$ and $f_c(t_*) = 0$. Let

$$K_c = 2f_c f_c'' - f_c'^2 + f_c^2 (2 f_c' - \beta).$$

From (1), we obtain

$$K'_{c} = 2 (2 - \beta) f_{c} f'_{c} \text{ on } (0, t_{*}).$$

Therefore, K_c is increasing on $(0, t_*)$ and hence $K_c(0) < K_c(t_*)$. It follows that

$$0 > - f_c^{'2}(t_*) > a^2 (2b - \beta) - b^2.$$

This is a contradiction.

Remark 4. From the previous Lemma and Lemma 5.16 of [4], if there exists $t_0 \in [0; T_c)$ such that $f_c''(t_0) = 0$, then $f_c(t_0) > 0$ and f_c is a convex-concave solution of $(P_{\beta;a,b,0})$.

Lemma 8. The set C_2 is not empty.

Proof: Assume C_2 is empty, then from Lemma 2, $C_1 = [0; +\infty)$ and f_c is a convex solution of $(P_{\beta;a,b,0})$ for all $c \in [0; +\infty)$.

Let

$$A_c = f_c'' + f_c(f_c'-1).$$

From (1), we obtain

$$A'_{c} = (1 - \beta) f'_{c} (f'_{c} - 1).$$

Since f_c is a convex solution of $(P_{\beta;a,b,0})$, then $f'_c < 0$. Therefore, A_c is increasing on $[0;+\infty)$ and hence $A_c(0) < A_c(t)$ as $t \to +\infty$. It follows that c < -a.(b-1). This is a contradiction.

New results on a mixed... Khaled Boudjema Djeffal 881

Remark 5. From the Remark 4, Proposition 3:1; items 1, 3 and 5, if $c \in C_2$, then there are only three possibilities for the solution of the initial value problem $(P_{a,b,c})$:

- 1. f_c is convex on its right maximal interval of existence [0; Tc) and $f'_c(t) \to +\infty$ as $t \to T_c$ (with $T_c < +\infty$);
 - 2. f_c is convex-concave solution of $(P_{\beta;a,b,0})$;
 - 3. f_c is a convex solution of $(P_{\beta;a,b,1})$.

Lemma 9. If $\beta < 2b < 0$ and $a \ge a^*$ then there exists $c_0 \in C_2$ such that if $c \ge c_0$ then f_c is a convex solution of (P(a,b,c)) on its right maximal interval of existence [0; Tc) and $f_c'(t) \to +\infty$ as $t \to T_c$ (with $T_c < +\infty$).

Proof: From Remark 5 and Lemma 8, we know that, if $c_0 \in C_2$, then f_c is a convex solution of $(P_{\beta;a,b,1})$, a convex-concave solution of $(P_{\beta;a,b,0})$ or f_c is convex on its right maximal interval of existence $[0; T_c)$ and $f'_c(t) \to +\infty$ as $t \to T_c$ (with $T_c < +\infty$). Let $c \in C_2$, be such that f_c is a convex solution of $(P_{\beta;a,b,1})$ or a convex-concave solution of $(P_{\beta;a,b,0})$. Therefore, we have $f_c < 1$ on $[0; +\infty)$ and, from Lemma 6, we have $f_c > 0$.

It follows that

$$(f_c'' + f_c(f_c'-1))' = (1 - \beta) f_c' (f_c'-1) \ge -\frac{1}{4}(1 - \beta) \text{ on } [0; +\infty).$$

Integrating between 0 and $t \ge 0$, and using the fact that $f_c > 0$, we obtain

$$f_c'' \ge -\frac{1}{4}(1-\beta)t + a(b-1) + c - f_c(t)(f_c'(t) - 1) \ge -\frac{1}{4}(1-\beta)t + a(b-1) + c.$$

Integrating once again we get, for all $t \ge 0$,

$$1 > -f_c'(t) > -\frac{1}{8}(1-\beta)t^2 + (a(b-1)+c)t + b.$$

Let us set

$$P_c(t) = -\frac{1}{8}(1-\beta)t^2 + (a(b-1)+c)t + b - 1.$$

We have $P_c(t) < 0$ for all $t \ge 0$. It means that P_c has no positive roots. Thus c cannot be too large, because, on the contrary, its discriminant

$$\Delta = ((a (b - 1) + c)t + b)^2 + \frac{1}{2}(1 - \beta)(b - 1)$$

and

$$a(b-1) + c$$
 would be positive,

and hence the polynomial P_c would have two positive roots, a contradiction.

Therefore, there exists $c_0 > 0$ such that for any $c > c_0$, f_c is convex on its right maximal interval of existence [0; Tc) and $f'_c(t) \to +\infty$ as $t \to T_c$ (with $T_c < +\infty$). This completes the proof.

Theorem 2. Let $\beta < 2b < 0$, $a \ge a^* > 0$ and f_c be a solution of the initial value problem $(P_{a,b,c})$.

- 1) For all $c \ge 0$, f_c is positive.
- 2) There exists $c_0 > 0$ such that for any $c > c_0$, f_c is convex on its right maximal interval of existence [0; Tc) and $f'_c(t) \to +\infty$ as $t \to T_c$ (with $T_c < +\infty$).

Proof: The first result follows from Lemma 7. The second result follows from the first result, Remark 4, Remark 5, Lemma 8 and Lemma 9.

5. CONCLUSIONS

In this work we have presented a set of new and important results for β < 0 and b < 0, we summarize as follows:

- 1) If $a \leq 0$
 - (a) The boundary value problem $\left(P_{\beta;a,b,0}\right)$ has no convex solution on $[0;+\infty).$
- (b) If $b \le -1$ and if either $2b \le \beta < 0$ or $\beta < 2b$ and $a \ge a_*$ with $a_* = -\sqrt{\frac{1-b^2}{\beta-2b}}$, then the boundary value problem $(P_{\beta;a,b,1})$ has no convex and no convex-concave solution.
- (c) If $b \le -1$ and either $2b \le \beta < 0$ or $\beta < 2b$ and $a \ge a_*$, and if f_c is a solution of the initial problem $\left(P_{a,b,c}\right)$ with $c \ge 0$ then f_c is a convex solution of the boundary value problem $\left(P_{\beta;a,b,+\infty}\right)$.
- 2) For a > 0
- (a) If $a \ge a^* > 0$ where $a^* = -\frac{b}{\sqrt{2b-\beta}}$, all solution of the initial value problem $(P_{a,b,c})$ is a positive.
- (b) The boundary value problem $\left(P_{\beta;a,b,+\infty}\right)$ has infinitely many positive convex solutions.

REFERENCES

- [1] Fatheah, A.H., Majid, H., Journal of Applied Mathematics, 2012, 123185, 2012.
- [2] Guedda, M., Ouahsine, A., European Journal of Mechanics B/Fluids, 33, 87, 2012.
- [3] Makinde, O.D., Aziz, A., International Journal of Thermal Sciences, 49, 1813, 2010.
- [4] Brighi, B., Results in Mathematics, 61, 355, 2012.
- [5] Guedda, M., Aly, Emad. H., Ouahsine, A., *Applied Mathematical Modelling*, **35**, 5182, 2011.
- [6] Aly, E.H., Elliott, L., Ingham, D.B., European Journal of Mechanics B/Fluids, 22(6), 529, 2003.
- [7] Dang, L.F., Yang, G.C., Zhang, L., European Journal of Mechanics B/Fluids, 43, 148, 2014.
- [8] Yang, G.C., *Applied Mathematics Letters*, **38**(1), 180, 2014.
- [9] Nazar, R., Amin, N., Pop, I., *International Journal of Heat and Mass Transfer*, **47**, 2681, 2004.
- [10] Aiboudi, M., Bensari-Khellil, I., Brighi, B., *Differential Equations & Applications*, **9**(1), 69, 2017.
- [11] Brighi, B., Hoernel, J.D., Applied Mathematics Letters, 19(1), 69, 2006.
- [12] Guedda, M., Applied Mathematics Letters, **19**(1), 63, 2006.
- [13] Aiboudi, M., Boudjema-Djeffal, K., Brighi, B., Abstract and Applied Analysis, 2018, 4340204, 2018.
- [14] Brighi, B., Fruchard, A., Sari, T., Advances in Differential Equations, 13(5-6), 509, 2008.
- [15] Yang, G.C., Journal of Inequalities and Applications, 2010, 960365, 2010.