NEW RESULTS ON A MIXED CONVECTION BOUNDARY LAYER FLOW OVER A PERMEABLE VERTICAL SURFACE EMBEDDED IN A POROUS MEDIUM

KHALED BOUDJEMA DJEFFAL ${ }^{1}$

Manuscript received: 15.08.2022; Accepted paper: 24.11.2022;
Published online: 30.12.2022.

Abstract

The objective of this paper is to prove the existence, non-existence and the sign of convex and convex-concave solutions of the third-order non-linear differential equation $f^{\prime \prime \prime}+f f^{\prime \prime}+\beta f^{\prime}\left(f^{\prime}-1\right)=0$, satisfying the boundary conditions $f(0)=a \in \mathbb{R}$, $f^{\prime}(0)=b<0$ and $f^{\prime} \rightarrow \lambda$ as $t \rightarrow+\infty$ where $\lambda \in\{0,1\}$ and $\beta<0$. The problematic arises in the study of the Mixed Convection Boundary Layer flow over a permeable vertical surface embedded in a Porous Medium according to the mixed convection parameter $b<0$, the permeable parameter $a \in \mathbb{R}$ and the temperature parameter $\beta<0$.

Keywords: mixed convection; nonlinear differential equation; convex solution; convex-concave solution; shooting technique.

1. INTRODUCTION

Owing to their numerous applications in geothermal energy extraction, oil reservoir modelling, magnetohydrodynamic, casting and welding in manufacturing processes (see [1$3]$) or in boundary layer flows (see $[4,5]$) etc, the problem of boundary layers related with heated and cooled surfaces embedded in fluid-saturated porous media have attracted considerable attention of researchers during the last few decades. In this paper, our interest focuses on the analysis of the boundary value problems $\left(P_{\beta ; a, b, \lambda}\right)$

$$
\left(P_{\beta ; a, b, \lambda}\right)\left\{\begin{array}{c}
f^{\prime \prime \prime}+f f^{\prime \prime}+\beta f^{\prime}\left(f^{\prime}-1\right)=0 \\
f(0)=a \in \mathbb{R} \\
f^{\prime}(0)=b<0 \\
\lim _{t \rightarrow+\infty} f^{\prime}(t)=\lambda
\end{array}\right.
$$

where $\lambda \in\{0,1\}$ which has been examined in [6-8] with $a=0$. This problem comes from the study of the mixed convection boundary layer flow along a semi-infinite vertical permeable plate embedded in a saturated porous medium, with a prescribed power law of the distance from the leading edge for the temperature. The parameter β is a temperature power-lawprofile and b is the mixed convection parameter, namely $b=\frac{R_{a}}{P_{e}}-1$, with R_{a} the Rayleigh number and P_{e} the Péclet number.

[^0]For more details on the physical derivation and the numerical results, the interested reader can consult references [6, 9]. Mathematical results about the problem $\left(P_{\beta ; a, b, \lambda}\right)$ with λ $=1$ can be found in [7, 8, 10-12]. The case where $a \geq 0, b \geq 0, \beta>0$ and $\lambda \in\{0,1\}$ was treated by Aïboudi and al. in [10], and the results obtained generalize the ones of [12]. In [11], Brighi and Hoernel established some results about the existence and uniqueness of convex and concave solution of $\left(P_{\beta ; a, b, 1}\right)$ where $-2<\beta<0$ and $b>0$. These results can be recovered from [4], where the general equation $f^{\prime \prime \prime}+f f^{\prime \prime}+g\left(f^{\prime}\right)=0$ is studied. Recently, in [7], the authors prove some theoretical results about the problem $\left(P_{\beta ; 0, b, 1}\right)$ with

$$
-2<\beta<0, b=1+\varepsilon \text { and } \varepsilon<-1 .
$$

In particular, the authors prove that there exist $\varepsilon_{*} \in(-1: 807 ;-1: 806)$ and $\varepsilon^{*} \in(-1: 193$; -1:192), such that:
(i) $\left(P_{\beta ; 0, b, 1}\right)$ has no convex solution for any $-2<\beta<0$ and each $\varepsilon \leq \varepsilon_{*}$;
(ii) $\left(P_{\beta ; 0, b, 1}\right)$ has a convex solution for each $-2<\beta<0$ and each $\varepsilon \in[\varepsilon * ;-1)$.

In [8] one can found interesting new result about the existence of convex solution of $\left(P_{\beta ; 0, b, 1}\right)$ where $0<\beta<1$ under some conditions. In [13] the results obtained by Aïboudi and al generalize the ones of [8]. In [7, 8], the method used by the authors to prove the existence of a convex solution for the case $a=0$ seems difficult to generalize for $a \neq 0$. The problem $\left(P_{\beta ; a, b, \lambda}\right)$ with $\beta=0$ is the well known Blasius problem. For a broad view, see $[14,15]$. The main goa of this paper is to extend the study of existence and nonexistence of the solutions of $\left(P_{\beta ; a, b, \lambda}\right)$ with $\beta<0$ and $\lambda \in\{0,1\}$. We will focus our attention on convex and convex-concave solutions of the equation

$$
\begin{equation*}
f^{\prime \prime \prime}+f f^{\prime \prime}+\beta f^{\prime}\left(f^{\prime}-1\right)=0 \tag{1}
\end{equation*}
$$

As usually, to get a convex or convex-concave solution of $\left(P_{\beta ; a, b, \lambda}\right)$, we will use the shooting technique which consists of finding the values of a parameter $c \geq 0$ for which the solution of (1) satisfying the initial conditions $f(0)=a, f^{\prime}(0)=b$ and $f^{\prime \prime}(0)=c$, exists on $[0 ;+\infty)$; and is such that $f_{c}^{\prime} \rightarrow \lambda \in\{0,1\}$ as $t \rightarrow+\infty$. We denote by f_{c} the solution of the following initial value problem and by $\left[0 ; T_{c}\right.$) its right maximal interval of existence:

$$
\left(P_{a, b, c}\right) \quad\left\{\begin{array}{c}
f^{\prime \prime \prime}+f f^{\prime \prime}+\beta f^{\prime}\left(f^{\prime}-1\right)=0 \\
f(0)=a \\
f^{\prime}(0)=b \\
f^{\prime \prime}(0)=c
\end{array}\right.
$$

2. ON BLASIUS EQUATION

In this section, we recall some basic properties of the supersolutions of the Blasius equation. Let $I \subseteq \mathbb{R}$ be an interval and $f: I \rightarrow \mathbb{R}$ be a function.

Definition 1. We say that f is a supersolution of the Blasius equation

$$
f^{\prime \prime \prime}+f f^{\prime \prime}=0 \text { if } f \text { is of class } C^{3}
$$

and if

$$
f^{\prime \prime \prime}+f f^{\prime \prime} \geq 0 \text { on } I .
$$

Proposition 1. Let $t_{0} \in \mathbb{R}$. There does not exist nonpositive convex supersolution of the Blasius equation on the interval $\left[\mathrm{t}_{0} ;+\infty\right)$.

Proof: See [4], Proposition 2.5.

3. PRELIMINARY RESULTS

Proposition 2. Let f be a solution of the equation (1) on some maximal interval $I=$ (T-; T+).

1. If F is any anti-derivative of f on I, then. $\left(f^{\prime \prime} e^{F}\right)^{\prime}=-\beta f^{\prime}\left(f^{\prime}-1\right) e^{F}$.
2. Assume that $\mathrm{T}_{+}=+\infty$ and that $\mathrm{f}^{\prime}(\mathrm{t}) \rightarrow \lambda \in \mathbb{R}$ as $\mathrm{t} \rightarrow+\infty$: If moreover f is of constant sign at infinity, $\mathrm{f}^{\prime \prime}(\mathrm{t}) \rightarrow 0$ as $\mathrm{t} \rightarrow+\infty$.
3. If $\mathrm{T}_{+}=+\infty$ and if $\mathrm{f}^{\prime}(\mathrm{t}) \rightarrow \lambda \in \mathbb{R}$ as $\mathrm{t} \rightarrow+\infty$, then $\lambda=0$ or $\lambda=1$;
4. If $T_{+}<+\infty$, then $\mathrm{f}^{\prime \prime}$ and f^{\prime} are unbounded near T_{+};
5. If there exists a point $t_{0} \in I$ satisfying $f^{\prime \prime}\left(t_{0}\right)=0$ and $f^{\prime}(t)=\mu$, where $\mu=0$ or 1 then for all $t_{0} \in I$, we have $f(t)=\mu\left(t-t_{0}\right)+f\left(t_{0}\right)$;

Proof: The first item follows immediately from equation (1). For the proof of items 2-5, see [4], Proposition 3:1 with $g(x)=\beta x(x-1)$.

4. THE BOUNDARY VALUE PROBLEM IN THE CASE WHERE $\boldsymbol{\beta}<0$

In the following we take $a ; b \in \mathbb{R}$ and $\lambda \in\{0,1\}$ with $b<0$ and $\beta<0$. We are interested here in convex and convex-concave solutions of the boundary value problem $\left(P_{\beta ; a, b, \lambda}\right)$. As mentioned above in the introduction, we will use the shooting method to find these solutions. To reach our goal, let us use Proposition 3.1; items 1 to define the following sets:

$$
\begin{gathered}
C_{1}=\left\{c \geq 0 ; f_{c}^{\prime} \leq 0 \text { and } f_{c}^{\prime \prime} \geq 0 \text { on }\left[0 ; T_{c}\right)\right\} \\
C_{2}=\left\{c \geq 0 ; \exists t_{c} \in\left[0 ; T_{c}\right), \exists \varepsilon_{c}>0 \text { s.t } f_{c}^{\prime}<0 \text { on }\left(0 ; t_{c}\right), f_{c}^{\prime}>0 \text { on }\left(t_{c} ; t_{c}+\varepsilon_{c}\right) \text { and } f_{c}^{\prime \prime}\right. \\
\left.>0 \text { on }\left(0 ; t_{c}+\varepsilon_{c}\right)\right\} \\
C_{3}=\left\{c \geq 0 ; \exists s _ { c } \in [0 ; T _ { c }) , \exists \varepsilon _ { c } > 0 \text { s.t } f _ { c } ^ { \prime \prime } > 0 \text { on } [0 ; s _ { c }) , f _ { c } ^ { \prime \prime } < 0 \text { on } \left(s_{c} ; s_{c}+\right.\right. \\
\left.\left.\varepsilon_{c}\right) \text { and } f_{c}^{\prime}<0 \text { on }\left[0 ; s_{c}+\varepsilon_{c}\right)\right\} .
\end{gathered}
$$

Remark 1. It is easy to prove that C_{2} and C_{3} are disjoint nonempty open subsets of $[0,+\infty$) and that there exist $\mathrm{c}_{0}>\mathrm{c}_{*}>0$ such that $\mathrm{C}_{2}=\left(\mathrm{c}_{0},+\infty\right), \mathrm{C}_{3}=\left[0, \mathrm{c}_{*}\right)$, and $\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3}=$ $[0 ;+\infty$) (see Appendix A of [4] with $g(x)=\beta x(x-1)$ and $\beta>0$).

Lemma 1. f_{c} is a convex solution of the boundary value problem $\left(\mathrm{P}_{\beta ; \mathrm{a}, \mathrm{b}, 0}\right)$ if and only if $c \in C_{1}$.

Proof: See Appendix A of [4] with $g(x)=\beta x(x-1)$.

Lemma 2. The set \mathbf{C}_{3} is empty.
Proof: See Lemma A. 5 of [4] with $g(x)=\beta x(x-1)$ and $\beta<0$.
From the previous Lemma, we have $\mathrm{C}_{1} \cup \mathrm{C}_{2}=[0 ;+\infty)$ and $\mathrm{C}_{1} \cap \mathrm{C}_{2}=\emptyset$.

4.1 THE $a \leq 0$ CASE

Lemma 3. The set C_{1} is empty.
Proof: For contradiction, assume that $\mathrm{C}_{1} \neq \emptyset$ and let $\mathrm{c} \in \mathrm{C}_{1}$. From Lemma $1, \mathrm{f}_{\mathrm{c}}$ is a convex solution of the boundary value problem $\left(\mathrm{P}_{\beta ; \mathrm{a}, \mathrm{b}, 0}\right)$. Hence f_{c} and $\mathrm{f}_{\mathrm{c}}^{\prime}$ are negative on $[0 ;+\infty)$. This implies that

$$
f^{\prime \prime \prime}+f^{\prime \prime}=-\beta f^{\prime}\left(f^{\prime}-1\right)>0 \text { on }[0 ;+\infty)
$$

Hence, f_{c} is a nonpositive convex supersolution of the Blasius equation on $(0 ;+\infty)$. This contradicts Proposition 1.

Remark 2. From the previous lemma and Lemma 2, $C_{2}=[0 ;+\infty)$.
Remark 3. From Proposition 3:1; items 1,3 and 5 , if $c \in C_{2}$, then there are only three possibilities for the solution of the initial value problem $\left(P_{a, b, c}\right)$:

1. f_{c} is convex on its right maximal interval of existence $\left[0 ; T_{c}\right)$ and $f_{c}^{\prime}(t) \rightarrow+\infty$ as $t \rightarrow T_{c}$ (with $T_{c}<+\infty$);
2. There exists a point $t_{0} \in\left[0 ; T_{c}\right)$ such that $f_{c}^{\prime \prime}\left(t_{0}\right)=0$ and $0<f_{c}^{\prime}\left(t_{0}\right)<1$;
3. f_{c} is a convex solution of $\left(P_{\beta ; a, b, 1}\right)$.

Lemma 4. Let $\beta<0, \mathrm{a} \leq 0$ and $\mathrm{b} \leq-1$. If $\mathrm{c} \geq 0$ and if there exists $t_{0} \in\left[0 ; T_{c}\right)$ such that $f_{c}^{\prime \prime}\left(t_{0}\right)=0$ and $0<f_{c}^{\prime}\left(t_{0}\right)<1$; then $f_{c}\left(t_{0}\right)>0$.

Proof: Let $\mathrm{c} \geq 0$ and assume that there exists $\mathrm{t}_{0} \in\left[0 ; \mathrm{T}_{\mathrm{c}}\right)$ such that

$$
\mathrm{f}_{\mathrm{c}}^{\prime \prime}\left(\mathrm{t}_{0}\right)=0 \text { and } 0<\mathrm{f}_{\mathrm{c}}^{\prime}\left(\mathrm{t}_{0}\right)=\theta<1 .
$$

Suppose that $\mathrm{f}_{\mathrm{c}}\left(\mathrm{t}_{0}\right) \leq 0$. Let us consider the function

$$
\mathrm{L}_{\mathrm{c}}=3 \mathrm{f}_{\mathrm{c}}^{\prime \prime 2}+2 \beta \mathrm{f}_{\mathrm{c}}{ }^{3}-3 \beta \mathrm{f}_{\mathrm{c}}^{\prime 2} .
$$

Then, from (1), we have

$$
\mathrm{L}_{\mathrm{c}}^{\prime}=-6 \mathrm{f}_{\mathrm{c}} \mathrm{f}_{\mathrm{c}}^{\prime \prime 2}>0 \text { on }\left[0 ; \mathrm{t}_{0}\right)
$$

and hence:

$$
L_{c}(0)=3 c^{2}+2 \beta b^{3}-3 \beta b^{2}<L_{c}\left(t_{0}\right)=2 \beta \theta^{3}-3 \beta \theta^{2}
$$

It follows that $\theta^{2}-b^{2}>0$ which implies that $\theta>1$. This is a contradiction.
Lemma 5. Let $\beta<0, a \leq 0$ and $b \leq \beta$. If $c \geq 0$ and if there exists $t_{0} \in\left[0 ; T_{c}\right)$ such that $\mathrm{f}_{\mathrm{c}}^{\prime \prime \prime}\left(\mathrm{t}_{0}\right)=0$ and $0<\mathrm{f}_{\mathrm{c}}^{\prime}\left(\mathrm{t}_{0}\right)<1$; then $\mathrm{f}_{\mathrm{c}}\left(\mathrm{t}_{0}\right)>0$.

Proof: Let $\mathrm{c} \geq 0$ and assume that there exists $\mathrm{t}_{0} \in\left[0 ; \mathrm{T}_{\mathrm{c}}\right)$ such that

$$
\mathrm{f}_{\mathrm{c}}^{\prime \prime \prime}\left(\mathrm{t}_{0}\right)=0 \text { and } 0<\mathrm{f}_{\mathrm{c}}^{\prime}\left(\mathrm{t}_{0}\right)=\theta<1 .
$$

Suppose that

$$
\mathrm{f}_{\mathrm{c}}\left(\mathrm{t}_{0}\right) \leq 0
$$

Let us consider the function

$$
H_{c}=f_{c}^{\prime \prime}+f_{c}\left(f_{c}^{\prime}-\beta\right)
$$

Then, from (1), we have

$$
\mathrm{H}_{\mathrm{c}}^{\prime}=(1-\beta) \mathrm{f}_{\mathrm{c}}^{\prime 2} \geq 0 \text { on }\left[0 ; \mathrm{t}_{0}\right)
$$

and hence:

$$
0 \leq H_{c}(0)=c+a(b-\beta)<H_{c}\left(t_{0}\right)=f_{c}\left(t_{0}\right)\left(f_{c}^{\prime}\left(t_{0}\right)-\beta\right)
$$

thus, $\mathrm{f}_{\mathrm{c}}\left(\mathrm{t}_{0}\right)>0$. For the rest of this section, if it is defined, we will set $a_{*}=-\sqrt{\frac{1-b^{2}}{\beta-2 b}}$.
Lemma 6. Let $\mathrm{b} \leq-1$ and $\mathrm{c} \geq 0$. Let $\mathrm{t}_{*}>0$ be the first point such that $\mathrm{f}_{\mathrm{c}}\left(\mathrm{t}_{*}\right)=0$. If, either $2 b \leq \beta<0$, or $\beta<2 b$ and $a \geq a_{*}$, then $f_{c}^{\prime}\left(t_{*}\right)>1$.

Proof: From Remark 2, Remark 3 and Lemma 4, we know that the point t_{*} exists.
Let

$$
K_{c}=2 f_{c} f_{c}^{\prime \prime}-f_{c}^{\prime 2}+f_{c}^{2}\left(2 f_{c}^{\prime}-\beta\right)
$$

From (1), we obtain

$$
\mathrm{K}_{\mathrm{c}}^{\prime}=2(2-\beta) \mathrm{f}_{\mathrm{c}} \mathrm{f}_{\mathrm{c}}^{\prime}<0 \text { on }\left(0, \mathrm{t}_{*}\right)
$$

Therefore, K_{c} is decreasing on $\left(0, t_{*}\right)$ and hence $K_{c}(0)>K_{c}\left(t_{*}\right)$. It follows that

$$
2 b \leq \beta<0
$$

then

$$
\mathrm{f}_{\mathrm{c}}^{\prime 2}\left(\mathrm{t}_{*}\right)>-2 \mathrm{ac}+\mathrm{b}^{2}+\mathrm{a}^{2}(\beta-2 \mathrm{~b}) \geq \mathrm{b}^{2}
$$

which implies that

$$
\mathrm{f}_{\mathrm{c}}^{\prime}\left(\mathrm{t}_{*}\right)>1
$$

The same result is obtained where

$$
\mathrm{b} \leq-1, \beta<2 \mathrm{~b} \text { and } \mathrm{a} \geq \mathrm{a}_{*} .
$$

Theorem 1. Let $\beta<0$ and $\mathrm{a} ; \mathrm{b} \in \mathbb{R}$ with $\mathrm{b} \leq 0$ and $\mathrm{a} \leq 0$.

1) The boundary value problem $\left(\mathrm{P}_{\beta ; a, b, 0}\right)$ has no convex solution.
2) If $b \leq-1$ and if either $2 b \leq \beta<0$, or $\beta<2 b$ and $a \geq a_{*}$, then the boundary value problem ($\mathrm{P}_{\beta ; \mathrm{a}, \mathrm{b}, 1}$) has no convex and no convex-concave solution.
3) If $b \leq-1$ and if, either $2 b \leq \beta<0$, or $\beta<2 b$ and $a \geq a_{*}$, then, for any $c \geq 0$, the solution f_{c} of the initial value problem $\left(\mathrm{P}_{\mathrm{a}, \mathrm{b}, \mathrm{c}}\right)$ is convex on its right maximal interval of existence $\left[0 ; \mathrm{T}_{\mathrm{c}}\right.$) and $\mathrm{f}_{\mathrm{c}}^{\prime}(\mathrm{t}) \rightarrow+\infty$ as $\mathrm{t} \rightarrow \mathrm{T}_{\mathrm{c}}$ (with $\mathrm{T}_{\mathrm{c}}<+\infty$).

Proof: The first result follows from Lemma 1 and Lemma 3. The second result follows from Proposition 2, item1, Lemma 4, Lemma 5 and Lemma 6. The third result follows from Remark 2, Remark 3, and Lemma 5.

4.2. THE $a>0$ CASE

Let $\mathrm{a} ; \mathrm{b} \in \mathbb{R}$ with $\beta<2 \mathrm{~b}<0$ and $\mathrm{a}>0$. We consider the solution f_{c} of the initial value $\operatorname{problem}\left(\mathrm{P}_{\mathrm{a}, \mathrm{b}, \mathrm{c}}\right)$ on the right maximal interval of existence $\left[0 ; \mathrm{T}_{\mathrm{c}}\right)$. Let us set $\mathrm{a}^{*}=-\frac{\mathrm{b}}{\sqrt{2 \mathrm{~b}-\beta}}$.

Lemma 7. Let $\mathrm{a} \geq \mathrm{a}^{*}, \mathrm{c} \geq 0$ and $\beta<2 \mathrm{~b}<0$. If f_{c} is a solution of the initial value problem $\left(P_{a, b, c}\right)$, then f_{c} is positive on the right maximal interval of existence $\left[0 ; T_{c}\right)$.

Proof: Assume that there exists $\mathrm{t}_{*} \in\left(0, \mathrm{~T}_{\mathrm{c}}\right)$. Such that $\mathrm{f}_{\mathrm{c}}>0$ on $\left[0 ; \mathrm{t}_{*}\right)$ and $\mathrm{f}_{\mathrm{c}}\left(\mathrm{t}_{*}\right)=0$.
Let

$$
\mathrm{K}_{\mathrm{c}}=2 \mathrm{f}_{\mathrm{c}} \mathrm{f}_{\mathrm{c}}^{\prime \prime}-\mathrm{f}_{\mathrm{c}}^{\prime 2}+\mathrm{f}_{\mathrm{c}}^{2}\left(2 \mathrm{f}_{\mathrm{c}}^{\prime}-\beta\right)
$$

From (1), we obtain

$$
\mathrm{K}_{\mathrm{c}}^{\prime}=2(2-\beta) \mathrm{f}_{\mathrm{c}} \mathrm{f}_{\mathrm{c}}^{\prime} \text { on }\left(0, \mathrm{t}_{*}\right) .
$$

Therefore, K_{c} is increasing on $\left(0, t_{*}\right)$ and hence $K_{c}(0)<K_{c}\left(t_{*}\right)$. It follows that

$$
0>-\mathrm{f}_{\mathrm{c}}^{\prime 2}\left(\mathrm{t}_{*}\right)>\mathrm{a}^{2}(2 \mathrm{~b}-\beta)-\mathrm{b}^{2}
$$

This is a contradiction.
Remark 4. From the previous Lemma and Lemma 5.16 of [4], if there exists $t_{0} \in\left[0 ; T_{c}\right.$) such that $f_{c}^{\prime \prime}\left(t_{0}\right)=0$, then $f_{c}\left(t_{0}\right)>0$ and f_{c} is a convex-concave solution of $\left(P_{\beta ; a, b, 0}\right)$.

Lemma 8. The set C_{2} is not empty.
Proof: Assume C_{2} is empty, then from Lemma 2, $\mathrm{C}_{1}=[0 ;+\infty)$ and f_{c} is a convex solution of $\left(\mathrm{P}_{\beta ; \mathrm{a}, \mathrm{b}, 0}\right)$ for all $\mathrm{c} \in[0 ;+\infty)$.

Let

$$
A_{c}=f_{c}^{\prime \prime}+f_{c}\left(f_{c}^{\prime}-1\right)
$$

From (1), we obtain

$$
A_{c}^{\prime}=(1-\beta) f_{c}^{\prime}\left(f_{c}^{\prime}-1\right)
$$

Since f_{c} is a convex solution of $\left(P_{\beta ; a, b, 0}\right)$, then $f_{c}^{\prime}<0$. Therefore, A_{c} is increasing on $[0 ;+\infty)$ and hence $A_{c}(0)<A_{c}(t)$ as $t \rightarrow+\infty$. It follows that $c<-a .(b-1)$. This is a contradiction.

Remark 5. From the Remark 4, Proposition 3:1; items 1,3 and 5, if $c \in C_{2}$, then there are only three possibilities for the solution of the initial value problem $\left(\mathrm{P}_{\mathrm{a}, \mathrm{b}, \mathrm{c}}\right)$:

1. f_{c} is convex on its right maximal interval of existence $[0 ; \mathrm{Tc})$ and $\mathrm{f}_{\mathrm{c}}^{\prime}(\mathrm{t}) \rightarrow+\infty$ as $\mathrm{t} \rightarrow \mathrm{T}_{\mathrm{c}}$ (with $\mathrm{T}_{\mathrm{c}}<+\infty$);
2. f_{c} is convex-concave solution of $\left(\mathrm{P}_{\beta ; \mathrm{a}, \mathrm{b}, 0}\right)$;
3. f_{c} is a convex solution of $\left(\mathrm{P}_{\beta ; a, b, 1}\right)$.

Lemma 9. If $\beta<2 b<0$ and $a \geq a^{*}$ then there exists $c_{0} \in C_{2}$ such that if $c \geq c_{0}$ then f_{c} is a convex solution of ($\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})$) on its right maximal interval of existence $[0 ; \mathrm{Tc}$) and $\mathrm{f}_{\mathrm{c}}^{\prime}(\mathrm{t}) \rightarrow+\infty$ as $\mathrm{t} \rightarrow \mathrm{T}_{\mathrm{c}}\left(\right.$ with $\left.\mathrm{T}_{\mathrm{c}}<+\infty\right)$.

Proof: From Remark 5 and Lemma 8, we know that, if $\mathrm{c}_{0} \in \mathrm{C}_{2}$, then f_{c} is a convex solution of $\left(\mathrm{P}_{\beta ; \mathrm{a}, \mathrm{b}, 1}\right)$, a convex-concave solution of $\left(\mathrm{P}_{\beta ; \mathrm{a}, \mathrm{b}, 0}\right)$ or f_{c} is convex on its right maximal interval of existence [0; Tc) and $f_{c}^{\prime}(t) \rightarrow+\infty$ as $t \rightarrow T_{c}\left(\right.$ with $\left.T_{c}<+\infty\right)$. Let $c \in C_{2}$, be such that f_{c} is a convex solution of $\left(\mathrm{P}_{\beta ; \mathrm{a}, \mathrm{b}, 1}\right)$ or a convex-concave solution of $\left(\mathrm{P}_{\beta ; \mathrm{a}, \mathrm{b}, 0}\right)$. Therefore, we have b $<\mathrm{f}_{\mathrm{c}}^{\prime}<1$ on $[0 ;+\infty)$ and, from Lemma 6, we have $\mathrm{f}_{\mathrm{c}}>0$.

It follows that

$$
\left(f_{c}^{\prime \prime}+f_{c}\left(f_{c}^{\prime}-1\right)\right)^{\prime}=(1-\beta) f_{c}^{\prime}\left(f_{c}^{\prime}-1\right) \geq-\frac{1}{4}(1-\beta) \text { on }[0 ;+\infty)
$$

Integrating between 0 and $t \geq 0$, and using the fact that $f_{c}>0$, we obtain

$$
f_{c}^{\prime \prime} \geq-\frac{1}{4}(1-\beta) t+a(b-1)+c-f_{c}(t)\left(f_{c}^{\prime}(t)-1\right) \geq-\frac{1}{4}(1-\beta) t+a(b-1)+c
$$

Integrating once again we get, for all $\mathrm{t} \geq 0$,

$$
1>-\mathrm{f}_{\mathrm{c}}{ }^{\prime}(\mathrm{t})>-\frac{1}{8}(1-\beta) \mathrm{t}^{2}+(\mathrm{a}(\mathrm{~b}-1)+\mathrm{c}) \mathrm{t}+\mathrm{b}
$$

Let us set

$$
P_{c}(t)=-\frac{1}{8}(1-\beta) t^{2}+(a(b-1)+c) t+b-1 .
$$

We have $P_{c}(t)<0$ for all $t \geq 0$. It means that P_{c} has no positive roots. Thus c cannot be too large, because, on the contrary, its discriminant

$$
\Delta=((a(b-1)+c) t+b)^{2}+\frac{1}{2}(1-\beta)(b-1)
$$

and

$$
\mathrm{a}(\mathrm{~b}-1)+\mathrm{c} \text { would be positive, }
$$

and hence the polynomial P_{c} would have two positive roots, a contradiction.
Therefore, there exists $\mathrm{c}_{0}>0$ such that for any $\mathrm{c}>\mathrm{c}_{0}, \mathrm{f}_{\mathrm{c}}$ is convex on its right maximal interval of existence [0; Tc) and $\mathrm{f}_{\mathrm{c}}^{\prime}(\mathrm{t}) \rightarrow+\infty$ as $\mathrm{t} \rightarrow \mathrm{T}_{\mathrm{c}}$ (with $\mathrm{T}_{\mathrm{c}}<+\infty$). This completes the proof.

Theorem 2. Let $\beta<2 \mathrm{~b}<0, \mathrm{a} \geq \mathrm{a}^{*}>0$ and f_{c} be a solution of the initial value problem ($\mathrm{P}_{\mathrm{a}, \mathrm{b}, \mathrm{c}}$).

1) For all $c \geq 0, f_{c}$ is positive.
2) There exists $c_{0}>0$ such that for any $c>c_{0}, f_{c}$ is convex on its right maximal interval of existence $\left[0 ; \mathrm{Tc}\right.$) and $\mathrm{f}_{\mathrm{c}}^{\prime}(\mathrm{t}) \rightarrow+\infty$ as $\mathrm{t} \rightarrow \mathrm{T}_{\mathrm{c}}$ (with $\mathrm{T}_{\mathrm{c}}<+\infty$).

Proof: The first result follows from Lemma 7. The second result follows from the first result, Remark 4, Remark 5, Lemma 8 and Lemma 9.

5. CONCLUSIONS

In this work we have presented a set of new and important results for $\beta<0$ and $b<0$, we summarize as follows:

1) If a ≤ 0
(a) The boundary value problem $\left(\mathrm{P}_{\beta ; a, b, 0}\right)$ has no convex solution on $[0 ;+\infty)$.
(b) If $b \leq-1$ and if either $2 b \leq \beta<0$ or $\beta<2 b$ and $a \geq a_{*}$ with $a_{*}=-\sqrt{\frac{1-b^{2}}{\beta-2 b}}$, then the boundary value problem $\left(\mathrm{P}_{\beta ; \mathrm{a}, \mathrm{b}, 1}\right)$ has no convex and no convex-concave solution.
(c) If $\mathrm{b} \leq-1$ and either $2 \mathrm{~b} \leq \beta<0$ or $\beta<2 \mathrm{~b}$ and $\mathrm{a} \geq a_{*}$, and if f_{c} is a solution of the initial problem ($\mathrm{P}_{\mathrm{a}, \mathrm{b}, \mathrm{c}}$) with $\mathrm{c} \geq 0$ then f_{c} is a convex solution of the boundary value problem $\left(\mathrm{P}_{\beta ; \mathrm{a}, \mathrm{b},+\infty}\right)$.
2) For a > 0
(a) If $\mathrm{a} \geq \mathrm{a}^{*}>0$ where $\mathrm{a}^{*}=-\frac{\mathrm{b}}{\sqrt{2 \mathrm{~b}-\beta}}$, all solution of the initial value problem $\left(\mathrm{P}_{\mathrm{a}, \mathrm{b}, \mathrm{c}}\right)$ is a positive.
(b) The boundary value problem $\left(\mathrm{P}_{\beta ; \mathrm{a}, \mathrm{b},+\infty}\right)$ has infinitely many positive convex solutions.

REFERENCES

[1] Fatheah, A.H., Majid, H., Journal of Applied Mathematics, 2012, 123185, 2012.
[2] Guedda, M., Ouahsine, A., European Journal of Mechanics - B/Fluids, 33, 87, 2012.
[3] Makinde, O.D., Aziz, A., International Journal of Thermal Sciences, 49, 1813, 2010.
[4] Brighi, B., Results in Mathematics, 61, 355, 2012.
[5] Guedda, M., Aly, Emad. H., Ouahsine, A., Applied Mathematical Modelling, 35, 5182, 2011.
[6] Aly, E.H., Elliott, L., Ingham, D.B., European Journal of Mechanics - B/Fluids, 22(6), 529, 2003.
[7] Dang, L.F., Yang, G.C., Zhang, L., European Journal of Mechanics B/Fluids, 43, 148, 2014.
[8] Yang, G.C., Applied Mathematics Letters, 38(1), 180, 2014.
[9] Nazar, R., Amin, N., Pop, I., International Journal of Heat and Mass Transfer, 47, 2681, 2004.
[10] Aiboudi, M., Bensari-Khellil, I., Brighi, B., Differential Equations \& Applications, 9(1), 69, 2017.
[11] Brighi, B., Hoernel, J.D., Applied Mathematics Letters, 19(1), 69, 2006.
[12] Guedda, M., Applied Mathematics Letters, 19(1), 63, 2006.
[13] Aiboudi, M., Boudjema-Djeffal, K., Brighi, B., Abstract and Applied Analysis, 2018, 4340204, 2018.
[14] Brighi, B., Fruchard, A., Sari, T., Advances in Differential Equations, 13(5-6), 509, 2008.
[15] Yang, G.C., Journal of Inequalities and Applications, 2010, 960365, 2010.

[^0]: ${ }^{1}$ University Hassiba Benbouali of Chlef, Department of Mathematics, Faculty of Exact Sciences and Informatics, Chlef, Algeria. E-mail: k.boudjemadjeffal@univ-chlef.dz.

