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Abstract.The main objective of this paper is to estimate non-parametrically the 

quantiles of a conditional distribution based on the single-index model in the censorship 

model when the sample is considered as an independent and identically distributed (i.i.d.) 

random variables. First of all, a kernel type estimator for the conditional cumulative 

distribution function (cond-cdf) is introduced. Afterwards, we give an estimation of the 

quantiles by inverting this estimated cond-cdf, the asymptotic properties are stated when the 

observations are linked with a single-index structure. Finally, a simulation study is carried 

out to evaluate the performance of this estimate. 

Keywords: Asymptotic normality; conditional quantile; functional single-index 

process; functional random variable; nonparametric estimation; small ball probability. 

 

 

1. INTRODUCTION  

 

 

The estimation of a conditional model, because of the variety of its application 

possibilities, is an important question in statistics. This subject can (and must) be approached 

from several angles depending on the complexity of the problem posed: the possible presence 

of censorship in the observed sample (a common phenomenon in medical applications for 

example), the possible presence of dependence between the observed variables (e.g. a 

common phenomenon in seismological, and econometric applications), and the presence of 

explanatory variables. Many techniques have been studied in the literature to deal with these 

different situations, but they all only deal with real or multi-dimensional explanatory random 

variables. 

The technical progress made in the collection and storage of data make it possible to 

have more and more often functional statistical data: curves, images, tables, etc. These data 

are modeled as being the realizations of a random variable taking its values in an abstract 

space of infinite dimension, and the scientific community has naturally been interested in 

recent years in the development of statistical tools capable of processing this type of sample.  

 Thus, the estimation of conditional models in the presence of a functional explanatory 

variable from a simple index regression model is a topical question to which this article 

proposes to provide a first element of answer. After a brief bibliographic overview presented 

in Section 1, the conditional model for a functional explanatory variable is presented in 

Section 2, to which this work proposes an extension of the simple index model, when 

considering an explanatory random variable with values in an infinite dimensional space. 
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Such a model was designated generically by a simple functional index model. Naturally, these 

methods have some drawbacks, and to overcome these, an alternative approach is naturally 

provided by semi-parametric modeling which supposes the introduction of a parameter on the 

regressors – these models are known in the literature as simple index models, which have two 

major advantages. First it is possible to generalize existing models, and then to remedy the 

problems of the scourge of dimension. These are single revealing direction models (or simple 

functional index models), and have the advantage of specifying the model to a minimum. The 

authors used a non-parametric link function having previously determined linear 

combinations of explanatory variables which contain the maximum information, thus 

alleviating the scourge of dimension. The idea of these models, in the case of conditional 

density estimation or regression, consists in reducing to covariates of a dimension smaller 

than the dimension of the space of variables, thus making it possible to overcome the problem 

of the scourge of dimension. These models make it possible to obtain a compromise between 

a parametric model, generally too restrictive, and a non-parametric model where the speed of 

convergence of the estimators deteriorates quickly in the presence of a large number of 

explanatory variables, for example, in the partially linear model one decomposes the quantity 

which one seeks to estimate, in a linear part and a functional part. This last quantity does not 

pose an estimation problem since it is expressed as a function of the explanatory variables of 

the defined dimension, thus avoiding the problems linked to the scourge of dimension.  

This work proposes an extension of the simple index model when considering an 

explanatory random variable with values in an infinite dimensional space. Such a model is 

generically referred to as a model with a simple functional index. The main contribution of 

this paper lies in a double generalization of the simple index model. On the one hand, the 

authors place themselves in a framework of functional random variables, and on the other, 

introduce hypotheses on the law of the explanatory random variable that are less restrictive 

than those usually used in the vector framework.  

First point convergence results were established. The non-parametric method only 

considers regularity assumptions. Naturally, these methods have some drawbacks, therefore 

an alternative approach was provided by semi-parametric modeling which supposes the 

introduction of a parameter on the regressors, these models are known in the literature as 

simple index models, with two major advantages which, firstly makes it possible to generalize 

the already existing models, and then to remedy the problems of the scourge of the dimension. 

Non-parametric methods based on convolution kernel ideas, which are known to 

perform well in model estimation problems (conditional or not), are thus widely used in non-

parametric estimation of conditional models. A wide range of literature in this area is 

provided by the bibliographic reviews of [1-5]. The immediate consequence of progress in 

data collection processes is to offer statisticians the opportunity to increasingly have 

observations of functional variables. In [6] and [7] it is proposed a wide range of statistical 

methods, parametric or non-parametric, recently developed to deal with various estimation 

problems involving functional random variables (i.e., with values in a space of infinite 

dimension). To date, such statistical developments for directionally revealing functional 

variables occurred rarely in this context, despite the obvious potential for their application. In 

practice, in medical applications in particular, one may be in the presence of censored 

variables. This problem is usually modeled by considering positive variable $C$ called 

(censorship), and the observed random variables. Such censoring models have been 

extensively studied in the literature on real and multidimensional random variables, and in 

non- parametric frameworks, particularly in kernel techniques (see [8-11]), for not a 

necessarily exhaustive sample of the literature in this field.  

Other authors have been interested in the estimation of conditional models from 

censored or truncated observations (see, e.g. [12-18]). Many statistical applications had to 
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involve a variable of duration denoted  , designating the time elapsed until the occurrence of 

the event of interest. These types of variables are observed in various fields such as in 

reliability (first failure for a machine, lifespan of a material, etc.), in medicine (death or 

remission for a patient, etc.) in economics and insurance (duration of unemployment, time 

between two successive breakdowns of a device, etc.). A specificity of these models is the 

existence of incomplete observations, for which the variable of interest is not completely 

observed for all the data in the sample. This work studied models where the duration is likely 

to be right-censored by then calling on techniques adapted to this type of context to take into 

account the censored observations without losing too much information on it. This study was 

only interested in the case of right-censored random data. This corresponds to the model 

frequently used in practice. For example, during a therapeutic trial this can be caused by a loss 

of sight (the patient leaves the study in progress), the stopping or the change of a treatment, in 

which case the patients are excluded from the study, or the study ends when some individuals 

have not experienced the event.  

The well-known functional regression model with scalar response postulates a relation 

between real random variable and functional random variable  .  

A large class of flexible and useful tools for modeling regression operator r is 

presented by the simple functional index model. This consists in putting a semi-parametric 

dimension reduction approach on the model by introducing functional parameter  . The main 

idea was to find the direction of    on which the projection of covariate   captures the most 

information about answer  . The considered model was a single revealing direction model (or 

simple functional index model). This approach arouses various interests. Firstly, to avoid the 

problems due to dimensionality that can be encountered in the purely non-parametric 

approach [19]. The non-parametric estimation of the regression would no longer be affected 

by the scourge of dimension since it is a dependent function of   which is of dimension 1. 

Finally, the estimation of functional parameter   provides an easily interpretable tool. The 

simple index approach is well-known in the standard multivariate context for its interest in its 

predictive abilities, and for its interpretability attested by various works that appeared over the 

past two decades [20]. Extensions to the functional framework of such functional semi-

parametric methodology have been the subject of extensive study in the literature. The first 

work linking the single index model and the non-parametric regression model for functional 

variables is made [21] in the case of independent observations, and they established almost 

complete convergence. Their results were extended to dependent cases by [22]. Ait-Saidi et 

al. [23] studied the case where the simple functional index is unknown; they proposed an 

estimator of this parameter based on the cross-validation technique. These results were 

extended to the multiple functional index models by [24]. Ferraty and Park [25] proposed a 

new estimator of this parameter based on the idea of functional derivative estimation; the 

problem of the single index model to the functional data where the observations are censored 

does not seem to have been considered much in the literature, which makes this paper one of 

the more recent research work on the subject.  

Moreover, the analysis of functional data being a branch of statistics that has been the 

subject of several recent studies and developments, this paper makes it possible to adapt the 

functional conditional models to censored data based on a single functional index structure.  

The rest of the paper is arranged as follows, in Section 2, we present our model and 

some basic assumptions. In Section 3, we state the main results as well as their proofs. As 

then application, we study the asymptotic normality of the conditional quantile for functional 

data in the single functional index model in Section 4. After that, in Section 5, we carry out a 

simulation study in order to illustrate some properties of the resulted estimator.  

In the censoring case, instead of observing the lifetime T, we observe the censored 

lifetime of items under study. That is, assuming that        is a stationary sequence of  
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lifetimes which satisfy some kind of dependency and        is a sequence of i.i.d censoring rv 

with common unknown continuous G, where       {     } and          
.  

To ensure the identifiability of the model, we suppose that      are independent 

of     . Let {(        ) 
} be a sequence of strictly stationary random vectors where        is 

valued in infinite dimensional semi-metric vector space, and    is real valued. To follow the 

convention in biomedical studies and as indicated before, we assume that         and 
{          }are independent; this condition is plausible whenever the censoring is independent 

of the patient’s modality. Furthermore this condition permits to get an unbiased Kernel 

estimator.  

 

 

2. MODEL AND SOME BASIC ASSUMPTIONS  

 

 

Consider a random pair       where T is real-valued random variable   and X be a 

functional random variable(frv) who takes its values in a separable real Hilbert space with 

the norm ‖ ‖generated by an inner product <·,·> and consider that, given the                is 

the statistical sample of pairs which are identically distributed like     . Hence for the, X is 

called a functional random variable f.r.v. Let x be fixed in  and let          be the 

conditional cumulative distribution function (cond-cdf) of T given <θ,X>=<θ,x> specifically: 

 

    ,   (θ,t,x) =  (T≤ t| <θ,X>=<θ,x>). 

 

By saying that, one is implicitly assuming the existence of a regular version of the 

conditional distribution T given <θ,X>=<θ,x>.  

In this infinite dimensional purpose, the term functional nonparametric was used, 

where the word functional refers to the infinite dimensionality of the data and where non-

parametric refers to the infinite dimensionality of the model. Such functional non- parametric 

statistics can also be called doubly infinite dimensional (see [26]). The authors also used the 

term operational statistics since the target object to be estimated (the cond-cdf         ) can 

be viewed as a non-linear operator.  

 

 

2.1. THE ESTIMATORS 

 

 

The kernel estimator          of          is presented as follows: 

 

          
∑  (  

            ) (  
        )

 
   

∑  (  
            ) 

   

  (2.1) 

 

with the convention   ⁄   , where  is a kernel function,  a cumulative distribution 

function and         (resp.        ) is a sequence of of bandwidths that decrease to zero 

as   goes to infinity.  

Let, for any    ,         and                 
  |        | , 

       (  
        ). We denote by Bθ(x,h) = {   : 0 <| < x − ,θ >| < h} be a ball of 

center x and radius h, and let          |〈      〉| denote a random variable such that its 
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cumulative distribution function is given by                        (   

       ). 

In practice, in particularly medical applications, one can be deal with censored 

variables. This problem is usually modeled by considering positive C variable-censorship, and 

the observed random variables are not couples       , but rather (        )where    

   {     } and          
. In the following we will use the notations   

 and   
 to describe 

the conditional distribution function and the conditional density C knowing the covariate X.  

The objective of this section is to adapt these ideas under functional random variable 

X, and build a kernel type estimator of the conditional distribution         adapted for 

censored samples. Thus one can reformulate the expression (2.1) as follows: 

 

 ̃        
∑

  

 ̅    
 (  

            ) (  
        )

 
   

∑  (  
            ) 

   

 

 

(2.2) 

 

In practice  ̅          is unknown, hence it is impossible to use the estimator 

(2.2). Next, the authors replaced  ̅    by its Kaplan and Meier [27] estimate  ̅    given by 

 

 ̅             {
∏(  

      

     
)
 

{      }
 

   

              

                                                                  

 

 

where                 are the order statistics of   and     is the non-censoring 

indicator corresponding to     . 

Therefore the feasible estimator of the conditional distribution function         is 

given by 

 

 ̂        
∑

  

 ̅     
 (  

            ) (  
        )

 
   

∑  (  
            ) 

   

  (2.3) 

 

 

2.2. ASSUMPTIONS ON THE FUNCTIONAL VARIABLES 

 

 

Let    be a fixed neighborhood of x in   and    is a fixed compact of   . Assume 

that,         and         areindependent.  

For any df , let       {                  }be its support’s right endpoint. Let 
   be a compact set such that                 , where             .  Assume that 

       are independent and let's consider the following hypotheses: 

 

(H1)        (           )           . 
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2.3. THE NONPARAMETRIC MODEL 

 

 

As usually in non-parametric estimation, it is supposed that the cond-cdf          

verifies some smoothness constraints. Let    and    be two positive numbers; such that: 

 

(H2)                               

 

(i) |                     |       ‖     ‖
   |     |

    

(ii) ∫               for all      . 

 

To this end, we need some assumptions concerning the kernel estimator  ̂       . 

 

(H3) The kernel H is a positive bounded function such that∀(t1,t2) ∈  , |H(t1) − H(t2)| ≤ 

C|t1 −t2|, ∫         and  ∫| |          . 

 

(H4) The kernel K is a positive bounded function supported on [0,1] and is differentiable 

on [0,1] with derivative such that: ∃C1, C2, − < C1 < K’(t) < C2 <0, for 0 < t <1. 

 

(H5) The df of the censored random variable, G has bounded first derivative G’. 

 

(H6) There exists a function βθ,x(·) such that       

         

        
        , for  s  [0,1]. 

 

(H7) The bandwidth hKand hH, small ball probability φθ,x(hK) satisfying  

 

(i)    
     

         and       

   
             

     
  ,      . 

(ii)    
     

              . 

 

 

3. MAIN RESULTS 

 

 

In this section the asymptotic normality of the estimator  ̂       in the single 

functional index model is established. 

 

Theorem 3.1 Under Assumptions we have (H1)-(H6)-(ii) for all x∈  

 
         

         
( ̂                )

            
→            

 

where           
       

          
        (

 

 ̅   
         ) with               

∫         
 

 
         ,      , 

            
→     means the convergence in distribution.  

 

Proof: In order to establish the asymptotic normality of  ̂       , we need further notations 

and definitions. First we consider the following decomposition 
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 ̂                 
 ̂        

 ̂      
 

               

       
 

 
 

 ̂      
{( ̂           ̂        )  (                  ̂        )} 

 
        

 ̂      
{(          ̂      )  ( ̂         ̂      )} 

 ̂                 
 

 ̂      
                                                            

 

where  ̂         
 

  (       )
∑

  

 ̅     
            

 
   ,  ̂       

 

  (       )
∑         

    

and 

              
 

  (       )
∑{(

  

 ̅     
              )         

 

   

  [(
  

 ̅     
              )       ]} 

 
 

  (       )
∑  

 

   

         

It follows that, 

            (         )  
        

  (       )
   (         )

                          

 

 

and                              ̂                 (          ̂      ). 

 

Then, the proof of Theorem 3.1 can be deduced from the following Lemmas. 

 

Lemma 3.1. Under assumptions of Theorem 3.1, we have 

  

√                  
 
  (           ). 

Proof: 

          
        

  (       )
 [  

      (
  

 ̅    
              )

 

]

   
        

  (       )
 [  

       ((
  

 ̅    
              )

 

| 〈    〉)]

                       

 

Then, the proof of Theorem 3.1 can be deduced from the following Lemmas. 

 

Lemma 3.1. Under assumptions of Theorem 3.1, we have 

  

√                  
 
  (           ). 
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Proof: 

          
        

  (       )
 [  

      (
  

 ̅    
              )

 

]

  
        

  (       )
 [  

       ((
  

 ̅    
              )

 

| 〈    〉)]

 

Using the definition of conditional variance, we have 

 

 ((
  

 ̅    
              )

 

| 〈    〉)           

 

where        (
  

 ̅    
     | 〈    〉),     [ (

  

 ̅    
     | 〈    〉)          ]

 
. 

 

 Concerning    , 

 

     (
  

 ̅
 
    

  (
    

  
)| 〈    〉)  [ (

  

 ̅    
  (

    

  
)| 〈    〉)]

 
      . 

 

 

As for   , by the property of double conditional expectation, we get that, 

 

    { (
  

 ̅     
  (

    

  
)| 〈    〉   )}   {

  

 ̅     
  (

    

  
) [      

|  ]|〈    〉}

  (
  

 ̅    
  (

    

  
) |〈    〉)  ∫

 

 ̅   
  (

   

  
)           

 ∫
 

 ̅       
                   

 (3.3) 

 

By the first order Taylor's expansion of the function  ̅      around zero, one gets 

 

   ∫
 

 ̅   
                    

 
  

 

 ̅    
∫      ̅                            

 

 

where    is between  and      . 

Under hypothesis (H7) and using hypothesis (H3)-(ii), we get 

 

    
  

 

 ̅    
∫       ̅                           

    

 

Indeed 

      
 (   

   
|     |  ̅    ⁄ )∫                  

On the other hand, by integrating by part and under assumption (H3)-(i), we have 
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∫
     

 ̅   
               

 

 ̅   
∫                         

 
 

 ̅   
∫                    

 
 

 ̅   
∫                    

 

 

Clearly we have 

 

∫                     [                
             (3.4) 

 

thus  

 

∫
 

 ̅   
                     

        

 ̅   
  (  

     
  )  (3.5) 

 

As for    , by (H2), (H4)-(H5), and using Lemma 3.2 in [28] we obtain that       as 

   . 

 Concerning    

  
   (

  

 ̅    
     |〈    〉)   { (

  

 ̅    
     |〈    〉   )}

  (
 

 ̅    
 (

    

  
) [      

|  ]|  )   ( (
    

  
) |〈    〉)

 ∫ (
   

  
)            

 

 

Moreover, we have by integration by parts and changing variables 

 

            ∫        ∫     (                     )    

 

the last equality is due to the fact thatH0 is a probability density. 

 

Thus we have: 

 

  
            (  

     
  )  (3.6) 

 

Finally by hypothesis (H5) we get             . Meanwhile, by (H1), (H4), (H6) 

and (H8), it follows that: 

 

           
      

  (       )    
→  

       

          
  

 

which leads to combining equations (3.2)-(3.6) 
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→  

       

          
        (

 

 ̅   
         )   (3.7) 

 

Lemma 3.2.If the assumptions (H1)-(H6) are satisfied, we have 

  

√                    , in Probability. 

 

Proof: We have 

 

√                   
√         

 ̂      
{  ̂                        

         (          ̂      )

 

 

Firstly, observed that the results below as     

 

 

        
 [  (

〈      〉

  
)]                     (3.8) 

 

  ̂                (3.9) 

and 

  ̂                          (3.10) 

 

can be proved in the same way as in [29] corresponding to their Lemmas 5.1 and 5.2, and then 

their proofs are omitted. 

Secondly, on the one hand, making use of (3.8), (3.9) and (3.10), we have as    

 

{  ̂                                 (          ̂      )}     

 

On other hand, 

 

√         

 ̂      
 

√           ̃       

 ̂        ̃       
 

√           ̃       

 ̃ 
        

  

 

Then using Proposition 3.2 in [28], it suffices to show that 
√         

 ̃ 
        

 tends to zero as 

  goes to infinity. 

Indeed  

 

 ̃ 
         

 

    (       )
∑

  

 ̅    
 (  

            )  (  
        )

 

   

  

 

Because   and    are continuous with support on [0, 1] then by (H5)-(ii) and (H6) 

∃     [              it follows that 

 

 ̃ 
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wich give  

         

 ̃ 
        

 
√   

     
     

 
  

 

Finally, using (H7)-(ii), completes the proof of Lemma 3.2. 

 

 

4. APPLICATION: THE CONDITIONAL QUANTILE IN FUNCTIONAL SINGLE-

INDEX MODEL  

 

 

The main objective of this section is to establish the asymptotic normality of the 

conditional quantile estimator of  T given <θ,X>=<θ,x>denoted by        . Saying that, we 

are implicitly assuming the existence of a regular version for the conditional distribution of T 

given <θ,X>=<θ,x>. Now, let         be the  th-conditional quantile of the distribution of T 

given <θ,X>=<θ,x>denoted by        . Formally,         is defined as: 

 

            {                 }                
 

In order to simplify our framework and to focus on the main interest of our paper (the 

functional feature of <θ,X>), we assume that              is  strictly increasing and 

continuous in a neighborhood of        . This is insuring that the conditional quantile 

        is uniquely defined by: 

 

                               ̂(   ̂        )     (4.1)  

 

As a by-product of (4.1) and (2.1), it is easy to derive an estimator           of  

       :  

 

            
           (4.2)  

 

Then a natural estimator of         is given by 

 

 ̂        ̂             {      ̂           }  (4.3)  

 

which satisfies 

 

 ̂(   ̂ 
       )     (4.4)  

 

Theorem 4.1. If the assumptions (H1)-(H7) are satisfied and if   is the unique order of the 

quantile such that                   ̂(   ̂        ),  x∈  
 

(
         

               
)
  ⁄

( ̂              )
 
         

 

where                 
               

               
 

       

          

 [ ̅  (       )  ]

               
. 
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Proof: For Theorem 4.1, making use of (3.1), we have 

 

√         ( ̂              )  √         
               

  
 (   ̂ 

        )

 √         
              

  
 (   ̂ 

        )

 
√                  

  
 (   ̂ 

        )
 

√                  

  
 (   ̂ 

        )

 (4.7)  

 

Then using Theorem 3.1 and Lemma 3.2 we obtain the result. 

 

 

4.1. APLICATION AND CONFIDENCE BANDS 

 

 

The asymptotic variances           and                  in theorems Theorem 3.1 

and Theorem 4.1 depend on some unknown quantities including   ,   ,     ,        ,  ̅    

and               . Therefore,  ̅   ,       , and               should be replaced, 

respectively, by the Kaplan-Meier's estimator  ̅    , the kernel-type estimator of the joint 

distribution  ̂              and  ̂      the conditional quantile estimator given by equation 

(4.3). Moreover, using the decomposition given by assumption (H1), one can estimate 

        by           ∑  {          }
 
   ⁄ . Because the unknown functions   

         and         intervening in the expression of the variance. So we need to estimate 

the quantities        ,        and         , respectively.  

By the assumptions (H1)-(H4) we know that         can be estimated by  ̂       

which is defined as: 

 

 ̂       
 

  ̂      
∑  

               ̂       
 

 

 

   

∑ {|〈      〉|  }

 

   

  

 

with  { }being the indicator function. 

 

By applying the kernel estimator of          given above, the quantity          can 

be estimated by: 

 

 ̂         
 ̂      

  ̂        
 ̂       ∫        

 

so we can derive the following corollary: 

 

Corollary 4.1. Under the assumptions of Theorem 3.1,   and      are integrable functions, 

then we get as    . 

  



Asymptotic normality single … Abdessamad Dib et al. 

ISSN: 1844 – 9581 Mathematics Section 

857 

1.  

 ̂ 

√ ̂ 

√
  ̂   

    

 ̂       [ ̅ 
  

     ̂       ]
( ̂                )

 
         

2.  

 ̂  ̂(   ̂
 
       )

√ ̂ 

√
  ̂

   
    

 [ ̅ 
  

( ̂
 
     )   ]

( ̂ 
        

     )
 
         

 

Proof: Observe that 

1.  

 ̂ 

√ ̂ 

√
  ̂   

    

 ̂       [ ̅ 
  

     ̂       ]
( ̂                )

 
 ̂ √  

  √ ̂ 

√
  ̂   

    [ ̅
  

            ]        

 ̂       [ ̅ 
  

     ̂       ]     
    

 
  

√  
√

     
    

        [ ̅
  

            ]
( ̂                )

 

 

Via Theorem 3.1, we have  

 

  

√  
√

     
    

        [ ̅
  

            ]
( ̂                )

 
         

 

Next, by [30], we can prove that 

 

 ̂ 

 
     ̂ 

 
        

 ̂   
    

√    
    

 
            

 

If in addition, we consider Lemma 3.2 and (4.7), the consistency of  ̅ 
  

    to 

 ̅
  

   according to [31], we obtain 

 

 ̂ √  

  √ ̂ 

√
  ̂   

    [ ̅
  

            ]        

 ̂       [ ̅ 
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2.  
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Making use of Theorem 4.1, we obtain 
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Further, by considering Lemma 3.2, (4.7), and the consistency of  ̅ 
  

    to  ̅
  

   (see 

[31]), we obtain as    . 
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Hence, the proof is completed. 

 

Remark 4.1.Thus, following the Corollary 4.1, the asymptotic      confidence interval of 

         and        respectively, which are expressed as follows: 
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where     is the upper     quantile of the normal distribution       . 

 

 

5. SIMULATION STUDY 

 

 

In this section we consider simulated data studies to assess the finite sample 

performance of the proposed estimator and compare it to its competitor. To study the behavior 
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of our conditional quantiles estimator, we consider in this part a comparison of our CFSIM 

(2.4) model(functional single index model with censored data) with that of CNPFDA (5.1) 

(censored nonparametric functional data analysis), for more details, we can refer be made 

tothe works ([32] or [33])and in the latter, knowing the distribution of the regression 

model(the distribution is known and usual), we look to the behavior of our estimator of the 

conditional distribution function with respect to this distribution. 

 

 ̂       
∑

  

 ̅     
 (  

         ) (  
        )

 
   

∑  (  
         )

 
   

  (5.1) 

 

Furthermore, some tuning parameters have to be specified. The kernel      is chosen 

to be the quadratic function defined as   
 

 
       [    and the cumulative df     

∫
 

 

 

  
       [          . 

The semi-metric       will be specified according to the choice of the functional 

space  discussed in the scenarios below. It is well-known that one of the crucial   

parameters in semi-parametric models is the smoothing parameters which are involved in 

defining the shape of the link function between the response and the covariate. 

Now for simplifying the implementation of our methodology, we take the bandwidths 

       , where   will be chosen by the cross-validation method on the  -nearest 

neighbors (see [6], p. 102). 

 

 

5.1. SIMULATION 1: CASE OF SMOOTH CURVES 

 

 

Let us consider the following regression model, where the covariate is a curve and the 

response is a scalar: 

 

                     
 

where   a sequence of i.i.d. random variables normally distributed with a variance equal to 

   . 

The functional covariate   is assumed to be a diffusion process defined on [     and 

generated by the following equation: 

 

                                             [      
 

where    and   are independent of normal distributions respectively        ,  
          and           . The variables   and  are Bernoulli's laws Bernoulli       . 

Fig. 1depicts a sample of 200 curves representing a realization of the functional random 

variable  . 

Take into account of the smoothness of the curves       (see Fig. 1), we choose the 

distance        (the semi-metric based on the first derivatives of the curves) in   as: 
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as semi-metric. Then, we consider a nonlinear regression function defined as 

 

         { 

(∫ (     )
 
    [∫        

 

 
]
  

 
)

⁄ }  

 

 
Figure 1. A sample of 200 curves               ,            [    . 

 

Given    ,              , and thus, the conditional median, the conditional 

mode and the conditional mean functions will coincide and will be equal to     , for any 

fixed  . The computation of our estimator is based on the observed data               and the 

single index  which is unknown and has to be estimated.  

In practice this parameter can be selected by cross-validation approach (see [23]. In 

this passage it may be that one can select the real-valued function     among the 

eigenfunctions of the covariance operator  [        〈    〉  where     is a diffusion 

processes defined on a real interval [    and       its first derivative (see [34]). So for a 

chosen training sample , by applying the principal component analysis (PCA) method, the 

computation of the eigenvectors of the covariance operator estimated by its empirical 

covariance operator: 
 

 
∑    

     
   

      
     

  , will be the one best approximation of our 

functional parameter  . Now, let us denote    the first eigenfunction corresponding to the 

first higher eigenvalue of the empirical covariance operator, which will replace   during the 

simulation step. 

In the following graphs, the covariance operator for   {       } gives the 

discretization of the eigenfunctions       (presented as a continuous curve) (Fig. 2). 
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Figure 2. The curves               ,            [    . 

 

In this simulation part, we divide our sample of size 200 into two parts. The first one 

from 1 to 125 will be used to make the simulation and the second from 126 to 200 will serve 

us for the prediction. 

We follow the following steps: 

Step 1: Compute the inner product: 〈     〉   〈       〉, generate independently the 

variables          , then simulate the response variables      〈     〉    , 

where   〈     〉     (   〈     〉       )and generate independently the 

variables          . 

Step 2:For each  in the test sample            , we compute:  ̂    ̂      , 

where 

 

           {              }  
and 

 

 ̂
 
    

∑  (          ) (         )
 
   

∑  (          )
 
   

        

  

(5.2) 

Step 3: Finally, we present the results by plotting the predicted values versus the true 

values and compute the mean squared error (MSE): 

 

    
 

| |
∑(    ̂ )

 
 

   

 

 

then, using the learning sample to compute the estimator of  

 

 ̂    ̂     for   {         }. 
 

Finally we show the results by plotting the true values versus the predicted values for 

the MSE under censored data for both estimators with different censored rate (CR) (2.4) and 

(5.2) which are defined as: 
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respectively. 

We see that the sum of mean square error (MSE) of our method (Censored-Single-

Index-Method) is less than the one of the Non-Parametric-Functional-Data-Analysis 

(NPFDA). This is confirmed by the following graphs, when we compare the conditional 

quantile by censored single index methods (CFSIM) against the conditional quantile by 

nonparametric functional data analysis (NPFDA) (Figs. 3- 4). Our estimator is so acceptable. 

  
Figure 3. Comparison between NPFDA and CFSIM with      . 

 

  
Figure 4. Comparison between NPFDA and CFSIM with       . 

 

 

4. CONCLUSIONS 

 

 

This paper focused on the non-parametric estimation of a conditional quantile for 

independent data under random censorship. Both the almost complete convergence (with 

rates), and the resulting estimator were shown to be asymptotically normally distributed under 

some regularity conditions. Naturally, the plug-in rules were used to obtain an estimator of the 

asymptotic variance term. The authors point out that here it is possible to prove that the 

variance estimator is almost completely consistent, using analogous ideas. 

The proofs are based on a combination of the existing techniques. The author’s prime 

aim was to improve the performance of this model for the conditional quantile with the 

censored response variable. The simulations experiments in this paper show that this 

methodology can be easily implemented and works very well for both simulated and real data. 

It is well known that the kernel choice does not affect substantially the quality of the 
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estimator. By contrast, the bandwidth choice is very crucial in non-parametric estimation. In 

addition, in order to explore the effectiveness of this method in real situations, the authors 

applied the CNPFDA estimator to data constituting hourly electricity demand for the Rocky 

Mountain region of the United States, as well as spectrometric data.  

This paper examines conditional distribution based on the single-index model in the 

censorship model when the sample is considered as an independent and identically distributed 

(i.i.d.) random variables. The asymptotic properties such as point-wise almost complete 

consistency, and the uniform almost complete convergence of the kernel estimator with rates, 

are presented under some mild conditions. In this case, the asymptotic properties of the 

estimation of the conditional hazard function and the asymptotic normality of the conditional 

quantile in the single functional index model are being investigated in other works by these 

authors. 
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