
Journal of Science and Arts Volume 22, Issue 3, pp. 639-644, 2022 

https://doi.org/10.46939/J.Sci.Arts-22.3-a10 Mathematics Section 

ORIGINAL PAPER 

ASYMPTOTIC BEHAVIOR AND    PROPERTIES OF 

NON-OSCILLATORY SOLUTIONS TO THE THIRD ORDER 

NONLINEAR DIFFERENTIAL EQUATION  

DJEBBAR SAMIR
1
 

_________________________________________________ 

Manuscript received: 14.05.2022; Accepted paper: 25.08.2022;  

Published online: 30.09.2022. 

 

 

Abstract. This article deals with the asymptotic behavior of non oscillatory solutions 

of third order differentiel equation.  

 

                                
 

The behavior of non-oscillatory solutions are shown to be bounded and          
under the specified conditions, the derivative are shown to be in          and the solutions as 

well as their derivatives shown to approach 0 as     implying stability. 

We obtain results which extend and complement those known in [1]. Finally, several 

examples illustrating the usefulness of the procedure are given. 
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1. INTRODUCTION  

 

 

Linear third order differential equations appear as the more basic mathematical models 

in several areas of science and engineering. And also the study of boundary value problem  

for ordinary differential equations arise in variety of different areas of applied mathematics, 

physics and many applications of engineering and sciences. For example, the deformations of 

an elastic beam are described by a differential equation, often referred to as the beam 

equation, and spectral problems for differential equations arise in many different physical 

applications arise in astro- physics, i.e., the narrow convecting layers bounded by stable layers 

which are believed to surround stars may be modeled by boundary value problems, also this 

problems arise in hydrodynamic and magnetohydro dynamic stability theory, and by derived a 

model for beams and pipes that the resulting differential equation after separation of variables 

leads to a differential equation. The study of asymptotic behavior for linear ordinary 

differential equations has been achieved their breakthroughs in the recent research, for more 

research and reading. See the following references [2-11]. 

In 2013, Kroopnick [12] discussed the existence of non-oscillatory solutions to the 

second order differential equations                          . The problem of 

obtaining sufficient conditions to ensure that all solutions of second order nonlinear 

differential equations are non oscillatory has been studied by a number of authors.  
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In this paper we prove the well, posedness and we study the asymptotic behavior. Of 

non-oscillatory    solutions for a third order non linear differential equation 

 

                                                                                     
 

approach 0 as    .  The same will be true of their derivatives, too, the solutions are 

asymptotic stable. The following conditions will be used. Assume that,      and      are 

elements of          are positive on       , and  both possess derivatives are non positive and 

there exists a positive continuous function      on         and     , too, must be 

continuous on         such  that for any                 and, finally  

 

            
 

     as      . 

 

Moreover, it is important to we shall show that these solutions is said to in   solutions 

when                          for                  and              for 

any     . 

 By an   solution, which is a solution  to     such that             
 

 where 

   .  Moreover, we give some examples. 

 

 

2. PRELIMINARIES 

 

For definiteness, we consider real-valued functions. Analogous results apply to 

complex-valued functions. 

 

Definition 2.1. Let           be a measure space and          . The space      consists 

of equivalence classes of measurable functions           such that 

 

             

 

where two measurable functions are equivalent if they are equal µ-a.e. The   -norm of 

        is defined by 

                

 
 
   

 

The notation        assumes that the measure  on   is understood. We say that  

      in    if           . The reason to regard functions that are equal a.e. as 

equivalent is so that          implies that        
The space       is defined in a slightly different way. First, we introduce the notion 

of essential supremum. 

 

Definition 2.2.  Let          be a measurable function on a measure space            
The essential supremum of   on    is 
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Thus, the essential supremum of a function depends only on its µ-a.e. equivalence 

class. We say that   is essentially bounded on   if 
 

      
 

        

 

Definition 2.3.  Let           be a measure space. The space       consistsof pointwise 

a.e.-equivalence classes of essentially bounded measurable functions          with norm 

 

            
 

  

 

We rarely want to use the supremum instead of the essential supremum when the two 

have different values, so this notation should not lead to any confusion. 

 

 

2.1. MINKOWSKI AND H  LDER INEQUALITIES 

 

 

We state without proof two fundamental inequalities. 

 

Theorem 2.1. (Minkowski inequality). If               where           , then      
      and 

                      
 

This inequality means, as stated previously, that        is a norm on        

for           . If           , then the reverse inequality holds 

 

                     
 

So        is not a norm in that case. Nevertheless, for           we have 

 

                   
 

so       is a linear space in that case also. To state the second inequality, we define the 

Hölder conjugate of an exponent 

 

Definition 2.4. Let            The Hölder conjugate   of   is defined by 

 
 

 
 

 

  
                     

 

Note that             , and the H  lder conjugate of    is  . 

 

Theorem 2.2. (Hölder’s inequality) Suppose that           is a measure space and    
      . If          and          , then          and 

 

                      

 

For        , this is the Cauchy-Schwartz inequality. 
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2.2. THE BEHAVIOR OF NON-OSCILLATORY SOLUTIONS   

  

 

We study the behavior of non-oscillatory solutions of (1). We use 

an approach that leads to only three independent conditions, but we obtain sufficient 

conditions which guarantee that every non-oscillatory solution of (1) tends to zero as    .   

 

Definition 2.5. A solution   of     is said to be non-oscillatory if it is positive or negative.  

Otherwise, it is said to be oscillatory. 

 

 

3. MAIN RESULTS 

 

 

In this section, we are in a position to give the main result of this work . 

 

Theorem 3.3. Give the differential equation      Assume the following hypotheses: 

(i)                     with non-positive derivatives and, both          
                then any non-oscillatory solution is bounded as    .   

(ii)                are greater than constants                and 
                  for      then any non-oscillatory solution approaches 0 as     . 

(iii) We also assume that there exists      such that            . Then the 

solution of      is an element of          . 
 

Proof:  Multiplying equation (1) by        and then integrating from   to    We obtain, 

 

     
        

 
          

 

 

                               

 

 

 

                

 

 

        
        

 
                                                                          

 

                             
 

 where we have the third term in     can be 

integrated by parts. 

Next multiplying equation     by       and then integrating from   to   Thus we 

obtain 

 

                         
        

 

 

 

                     

 

 

                            

                             
       

 

 
            

 

 

                                                 

 

                           
 

  

We will now look at equation      it follows that both      and        are bounded 

as    . 



Asymptotic behavoir and… Djebbar Samir                                                                  

ISSN: 1844 – 9581 Mathematics Section 

643 

Either, the LHS of     would become infinite as     which is impossible. 

Should      and      will remain greater than some positive constants    and    respectively, 

we can conclude that       is square-integrable, and, hence  in         . 
We next show that      is in          when             . Multiply equation     by 

     and integrate from   to    thus we obtain, 

 

           
       

 

 
                   

 
  

 

 

                          

 

 

    

 

             

 

 

                  
       

 

 
                                         

 

                              
 

  

Where we have the first two terms of equation      can be integrated by parts. 

Examining equation     shows us that as long as             , then      is an 

element in           under the hypotheses of the theorem 3.3. 

We next can prove        and         approach   as     . 

Without any loss of generality, assume that           for       . A similar argument 

works for           We will seethat both      and       approach  , we first observe that 

      must be of fixed sign. Otherwise, whenever                ,  we have from equation 

    

                       , 

 

so we have an infinite number of consecutive relative maxima one after the other which is 

impossible because a negative second derivative means       is always decreasing between 

consecutive zeroes of        
Moreover, if we have two consecutive critical points, then                 

between these two points which we have shown is not possible. Furthermore,       must be 

negative or else      will increase without bound and hence      could not be in          
should       become positive. Hence, by the monotonicity of both      and       and the    

property of       we must have that      and       approach   as      
 

 

4. APPLICATIONS  

 

 

The following examples illustrate applications of theoretical results presented in this 

paper. 

 

 

4.1. EXAMPLE  

 

 

Consider the non-linear differential equation 
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For equation (5), we have non-oscillatory solution to is      
 

   
. 

The solution of       is non oscillatory and an element of            
After a straightforward computation, we conclude by Theorem 3.3. 

That            moreover, its derivative                   can be seen easily an 

element of           withal       
 

   
  is not bounded away from zero. 

 

 

4.2. EXAMPLE  
 

 

Consider the non-linear differential equation  

 

                                                                                                                                          
 

A non-oscillatory solution to     is            .  The solution of (6)  is non 

oscillatory and an element of             After a straightforward computation, we conclude by 

Theorem 3.3, that            . Moreover, its derivative             is as before easily 

seen to be in          . 
 

 

 CONCLUSION 

 

 

In this research ee have studied the asymptotic behavior of non-oscillating solutions of  

a third-order differential equation. We demonstrated all sufficient specific conditions to obtain 

the behavior of constrained non-volatile solutions. We also set the necessary conditions for 

stability solutions. We can apply these basic results to a fourth-order or higher order 

differential equation. With all conditions imposed to achieve our goal. 
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