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Abstract. In this study, the dynamics of a discrete-time plant-herbivore model 

obtained using the forward Euler method are discussed. The existence of fixed points is 

investigated. A topological classification is made to examine the behavior of the positive fixed 

point where the plant and the herbivore coexist. In addition, the existence conditions and 

direction of Neimark-Sacker bifurcation of the model are investigated using bifurcation 

theory. Hybrid control method is applied to control the chaos caused by Neimark-Sacker 

bifurcation. Examples including time series figures, bifurcation figures, phase portraits and 

maximum Lyapunov exponent are provided to support our theoretical results. 

Keywords: stability; plant herbivore system; Neimark-Sacker bifurcation; chaos 

control. 
 

 

1. INTRODUCTION  
 

 

Prey-predator models, one of the building blocks of ecosystems, are among important 

study subjects in mathematical biology [1-4]. The Lotka–Volterra prey–predator model is 

well-known as one of the fundamental population models [5, 6]. In 1965, Holling [7] 

introduced three types of functional responses in order to simulate predation processes, 

following the pioneering theoretical research of Lotka [5] and Volterra [6] in the last century. 

The forms are presented based on the Michaelis-Menten or (Michaelis-Menten-Holling type 

II) function by authors in [8]. In [8, 9], the function ( ) /p x x x    is proposed as one the 

predator response functional. Depending on this function, the following continuous-time 

plant-herbivore model with a constant carrying capacity of the plant is given as:    
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where,  ,  ,  ,   and   are conversion rate, capturing rate; plant intrinsic growth 

parameter, half saturation constant, herbivore’s death rates, respectively.  x t  represents 

densities of plant species at time t  and  y t  is population densities of herbivore at time t .  
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The continuous-time prey-predator version has been analyzed by researchers [8, 10-

12]. On the other hand, some researchers analyze similar continuous models by discretization 

[13-17]. Another way to understand the behavior of species involving competitive interactions 

is to use discretization methods [18]. Discrete-time models allow random time step units for 

non-overlapping generations. These models are more realistic for a description of processes 

with different characteristic times which can retain the essential features of the corresponding 

continuous-time models and include richer applications [13, 19-31].  

It is important to understand changes in the nature of stability in a dynamic system 

([32, 33] and references therein). As a parameter changes in system; the stability of the 

systems may change, new stable points may appear, stable points may disappear or vice versa. 

Bifurcation theory is applied to investigate the changes that occur in the qualitative or 

topological structure of a continuous-time or discrete-time system (These reviews can be 

viewed in detail through the references cited here.) 

In this study, we will examine the dynamics of the discrete-time plant-herbivore model 

obtained by discretization of system (1): 
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 (2) 

 

This paper is organized as follows: in Section 2, we detect the existence of fixed 

points, and give the topological classification of the coexistence fixed point. In section 3, 

bifurcation analysis of the coexistence fixed point of system (2) is discussed. Section 4 

includes control of complex behaviors of system (2). The numerical simulations which 

confirm the results obtained for system (2) is carried out in Section 5. Finally, in Section 6, 

the conclusions are presented.  

 

 

2.  EXISTENCE AND TOPOLOGICAL CLASIFICATIONS OF THE FIXED POINT 

E2 OF MODEL (2) 
 

 

The fixed points of system (2) are solutions of the following system: 
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From there, we get 
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Also, the Jacobian matrix J of system (2) evaluated at the fixed point 2E  is as follows: 
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where 
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; and the characteristic equation of the Jacobian 

matrix J  can be found as  
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To investigate the dynamics of the coexistence fixed point of the system (2), we can 

give the definition and the lemma as follows: 
 

Definition 1. The following situaitons are valid for the fixed point  * *,x y  of any system  

(i) If 
1 1   and 

2 1  , then  * *,x y  is a sink point, and it is locally asymptotically             

stable;  

(ii) If 1 1   and 
2 1  , then  * *,x y  is a source point, and it is locally unstable; 

(iii) If 1 1   and 2 1   (or 1 1   and 2 1   ), then  * *,x y  is a saddle point; 

(iv) If either 1 1   or 2 1  , then  * *,x y  is non-hyperbolic point.  

 

Lemma 1. [28, 34, 35] Let   2 .F x x Bx C    Suppose that  1 0F    1   and 2  are two 

roots of  F     . Then; 

(i)  1 0F    and 1C   if and only if  1 1   and 2 1  ; 

(ii)  1 0F    if and only if   1 1   and 2 1  ( or 1 1   and 2 1  ; 

(iii)  1 0F    and 1C   if and only if  1 1   and 2 1  ;  

(iv)  1 0F    and 0,2B   if and only if  1 1    and 2 1  ; 

(v) 
2 4 0B C   and 1C   if and only if 1   and 2  are a pair of conjugate complex 

roots and 1 2 1   . 

For the dynamics of the system (2), if the Lemma 1 is used, then we have the 

following theorem. 
 

Theorem 1. Assume that 
1





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
. The coexistence fixed point 2E  is a  

i) sink point if  
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ii) source point if  
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iv) flip bifurcation point if  
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3. NEIMARK-SACKER BIFURCATION 
 

 

In this section, we obtain the following bifurcation conditions for the coexistence fixed 

point 2E  of the system (2): 
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such that 1.    For, 2 ,NSBh E  we obtain 
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   

2 332

1 0 1 1 1 1 1 23 2 3 2
, , 1

3 3

1 2 1 2 1 13 2 3 2

6 1 2
( , , )

2 2
,

j k l j k l

h hF
C u v w u v w u v w

h h
u v w u v w



        

      

     

   





   
   

  

 
 


 

 

and  

     

   

2 332

2 0 1 1 1 1 1 22 2 2 2
, , 1

3 3

1 2 1 2 1 12 2 2 2

6 (1 ) 2
( , , )

2 2
.

j k l j k l

h hG
C u v w u v w u v w

h h
u v w u v w



       

      

   

   





   
  

 

 
 


 

 
2U   can be uniquely represented as 

 

U zq zq   

 

for some .z  Also, z  is the conjugate of that complex number ,z  and , .z p U  For all 

sufficiently small h  about ,NSBh  we can transform the system (2) as follows: 

 

( ) ( , , ),z h z g z z h   

 

where ( )( ) (1 ( )) i hh w h e     with ( ) 0NSBw h   and ( , , )g z z h  is a complex valued smooth 

function of z  and .z  Taylor expression of g  with respect to ( , )g z z  is  
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2

1
( , , ) ( )

! !

k l

kl

k l

g z z h g h z z
k l 

   

 

and the Taylor coefficients klg  calculated through vector functions are expressed by the 

formulas 

 

20( ) , ( , )NSBg h p B q q  (5) 

 

11( ) , ( , )NSBg h p B q q  (6) 

 

02( ) , ( , )NSBg h p B q q  (7) 

 

21( ) , ( , , ) .NSBg h p C q q q  (8) 

 

For the system (4) which exhibits Neimark-Sacker bifurcation, the coefficient ( )NSBh  

determining the direction of the appearance of the invariant curve can be calculated as 

 
( ) ( ) 2 ( )

2 2

21 20 11 11 02( )

(1 2 ) 1 1
( ) Re Re

2 2(1 ) 2 4

NSB NSB NSB

NSB

i h i h i h

NSB i h

e e e
h g g g g g

e

  




   
      

   
 (9) 

 

where ( )
( ).NSBi h

NSBe h
   

 

Theorem 2. If (3) holds, ( ) 0NSBh   and the parameter changes its value in a small vicinity 

of 2

NSBE , then the system (2) passes through a Neimark-Sacker bifurcation at the only fixed 

point 2.E  Moreover if ( ) 0 ( ( ) 0),NSB NSBh h    then there exists a unique attracting 

(repelling) invariant closed curve which bifurcates from 2.E  

 

 

4. CHAOS CONTROL 
 

 

Although there are many control methods [23-27, 36-40] for the stabilization of a 

dynamic system that exhibits chaotic behavior, it is desired to stabilize the solutions by 

choosing the appropriate method for the system. Thus, the effect of chaos is reduced or 

completely eliminated by trying to pull chaotic orbits into a fixed orbit. In this section, it is 

aimed to control the chaos behavior of the system with the hybrid control method. 

To control the system (2) subject to bifurcation, we consider the following controlled 

system 

1

1

(1 ) (1 )

(1 )

n n
n n n n n

n

n n
n n n n

n

x y
x x h x x x

x

x y
y y h y y

x


  




  







  
       

  

  
      

  

 (10) 
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where (0,1)  is control parameter. The Jacobian matrix of controlled system (10) is given 

by  

 

 
 

 

* * * *
* *

2 * **

* * * *

2 * **

1

.

1

1

x y y hx
h x x

x xx

x y y x
h h

x xx

  
  

 

  
  

 

 
      
  
 

 
       

 
 
 
 


 


 
 
 

   
  

 

 

If  

 

     
 

          
 

2 2

2 2 2 2 2 2

2 1 2 1

1 1 1 1 1 2
1 2,

h h

h h h h h

        

  

             

  

      



          
  



 then the the fixed point 
* *( , )x y  of the controlled system (10) is locally asymptotic stable. 

 

 

5. NUMERICAL SIMULATIONS  
 

 

Example 1. By considering the condition (i) in Theorem 1, we choose the coefficients 

0.15, 0.5  h , 0.35, 1.27, 0.95      and 1.1  . Then the system (2) can be written 

as follows: 

1

1

1.27
0.5 0.35 (1 )

1.1

0.95
0.5 0.15 .

1.1

n n
n n n n

n

n n
n n n

n

x y
x x x x

x

x y
y y y

x





 
    

 

 
   

   
 

  
Figure 1. Phase Portrait and Time Series plot of System (2) when 0.15, 0.5  h  

0.35, 1.27, 0.95      and 1.1   with initial point (0.6,0.5).  
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The coexistence fixed point 2E  of system (2) is locally asymptotically stable since 

0.15 / (1 ) 0.45       and 0.5 0.807h   (see Theorem 1). For these parameter 

values, the positive fixed point occurs at the points * 0.21x   * 0.29.y   The eigenvalues of 

Jacobian matrix of the system (2) are 0.9928 0.0934.   i  These are the complex conjugate 

eigenvalues with 0.9971 1   . We say that 2E  is in the stable region for the parameter 

values 0.15, 0.5  h , 0.35, 1.27, 0.95, 1.1.        According to these values, the time 

series and phase portrait plots of system (2) are displayed in Figure 1.  

 

  
Figure 2. Phase Portrait and Time Series plot of System (2) when 0.15, 0.45  h  

0.35, 1.25, 0.95, 0.9        with initial point (0.6,0.5).  

  

 

Let us take 0.15, 0.45  h  0.35, 1.25, 0.95, 0.9       . The coexistence fixed point 

2E  of system (2) is unstable since 0.15 / (1 ) 0.5       and 0.45 0.357h  

(see Theorem 1). For these parameter values, the coexistence fixed point occurs at the points 
* 0.1687,x  * 0.2487y  ; and 0.9970 0.0862   i  are the complex conjugate eigenvalues with 

1.0008 1   . We say that 2E  is in the unstable region for the parameter values 

0.15, 0.45  h , 0.35, 1.25, 0.95, 0.9        (see Figure 2). 

 

Example 2. By considering the parameter values 0.9,   4.1, 3, 3.5, 0.9        and 

initial point (0.2,0.1) , we obtain the following system 

1

1

3
[4.1 (1 ) ]

0.9

3.5
[ 0.9 ].
0.9

n

n

xy
x x h x x

x

xy
y y h y

x





   


  


 

 

For 0.292222NSBh  , the Neimark-Sacker bifurcation emerges at the fixed point 

* 0.31153846153846154x   and * 1.1399334319526626y   produced by calculations. The 

eigenvalues of the Jacobian matrix * *
0.8388477358481655 0.22542820308183437

0.71487179487179
( ,

19
)

4
J x y

 
  
 


 

are  

1 0.9194238679240827 0.39326803975344693i     

and 
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2 0.9194238679240827 0.39326803975344693i    

such that 1,2 1  .  So, we get the complex eigenvectors correspondig to eigenvalues  

 

( 0.09827863529054795 0.4796686717841284i,0.8719284805270887)Tq    

and  

(0.8719284805270887,0.09827863529054795 0.4796686717841284i) .Tp   

 

To get , 1p q  , we calculate as 

 

1.0423861915773012i, 0.5734415 .277933639 0.11749162304229392i( )Tp     

 

By considering the formulas (5-8), the normal coefficients of the system (2) can be 

obtained as follow: 

 

20 1.072359684111499 1.0320391716580672i( )NSBg h    (11) 

 

11 0.5019341926520112 0.5354694635345718i( )NSBg h    (12) 

 

02 0.7528982576646169 0.5271566561738714i( )NSBg h    (13) 

 

21 0.43939695753008834 0.018314528713435696i( )NSBg h     (14) 

 

such that 
2 3

42

0.692345382494331 0.41744990651261554

0.5375257687074829 0.4436720630601448 )

)

(

( ,F u u

uv u v o U

u v 



 

 
 

and 
2 3

42

( , ) 0.590049387089947 0.4870248909313848

0.6271133968253968 0.5176174069035022 ( ).

G u v u u

uv u v o U

  

  
 

 

From (9), we get ( ) 2.20423 0.NSBh     So, a supercritical Neimark-Sacker bifurcation 

emerges at 0.292222.NSBh   

 

  
Figure 3. Neimark-Sacker bifurcation plot of System (2). 
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Figure 4. Lypanouv Exponent of the positive fixed point 2E  of system (2). 

 

The positive fixed point 2E  of system (2) has Neimark-Sacker bifurcation at 

0.292222h   with the parameter values 0.9,   4.1, 3, 3.5, 0.9        and initial point 

(0.2,0.1).  In Fig. 3, Neimark-Sacker bifurcation diagrams of the fixed point 2E  of the model 

(2) in the planes ( , )h x  and ( , )h y  are exhibited respectively. It is clearly observed that for 

2.9222,h   the interior (coexistence) fixed point of the model (2) is locally asymptotically 

stable. At = 2.9222,h  model loses its stability and move a stable invariant cycle for 

2.9222.h   Also, when 2.9222,h the invariant cycle moves to a quasi-periodic orbit, these 

orbits occur in the period windows. Finally, the orbits tend to chaos when the bifurcation 

parameter h  increases. 

 

  
Figure 5. Phase Portrait and Time Series plot of System (2) when 0.75h  , 0.9,   

4.1, 3, 3.5, 0.9        and initial point (0.2,0.1).  

 

Fig.5 exhibits that the positive fixed point 2E  of system (2) has chaos with the 

parameter values 0.75,h   0.9,   4.1, 3, 3.5, 0.9        and initial point 

(0.2,0.1).  
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Figure 6. Phase Portrait and Time Series plot of System (2) when 0.74,h   0.9,   

4.1, 3, 3.5, 0.9, 0.35          and initial point (0.2,0.1)  

 

In Fig. 6, it is seen that the positive fixed point 2E  of system (2) has chaos control with 

the parameter values h = 0.74, 0.9,   4.1, 3, 3.5, 0.9, 0.35          and initial point 

(0.2,0.1).  

 

 

   

   

   
Figure 7. Phase planes of system (2) for various h with the parameter values 0.9,   

4.1, 3, 3.5, 0.9        and initial point (0.2,0.1) . 
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In Fig. 7, model (2) has various phase planes for different values of h . The solution 

curve settles down as stability after spirals inwards for 0.292h  . For h  from 0.3  to 0.4 , the 

curve settles down as a limit cycle from spirally inwards and indicating instability. For 

= 0.5 0.6,h   the solution curve spirals inwards but does not converge to a point. Finally for 

= 0.65 0.75h  , the circle disappears, and chaotic attractors appear. From the bifurcation 

and phase plane diagrams, we can conclude our justifications. 
 

 

6. CONCLUSIONS 
 

 

Depending on the characteristics of herbivores and their plant hosts, the interaction of 

these two species yield different results. For many years, plants have sought to create a 

versatile defense mechanism against herbivores to deter attackers and undermine the health of 

pests. Herbivores, on the other hand, try to overcome plant defenses with various strategies to 

provide the necessary nutrients. A harmonious interaction occurs when herbivore is 

undetectable by the plant or when herbivore develops its ability to defeat the plant's defenses. 

Thus, the herbivore can develop and reproduce successfully. Otherwise, there will be no 

interaction between the host plant and herbivores. 

The behavior of plant-herbivore species was analyzed with the model discussed in this 

study. The existence of Neimark-Sacker bifurcation at the coexistence fixed point was 

investigated. A chaos control strategy was presented to control the chaos. 
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