SOME INTEGRAL CHARACTERIZATIONS OF TIMELIKE HELICES IN \mathbb{R}_{2}^{4}

ZELİHA ERPEHLİVAN ${ }^{1}$, HÜSEYİN KOCAYİĞİT ${ }^{1}$, TUBA AĞIRMAN AYDIN ${ }^{2}$

Manuscript received: 08.03.2022; Accepted paper: 15.09.2022;
Published online: 30.09.2022.

Abstract

In this study, we examine timelike helices in \mathbb{R}_{2}^{4} and some integral characterizations of these curves in terms of Frenet frame. In addition, we study timelike B_{2} slant helices in \mathbb{R}_{2}^{4} and present the differential equations for vector positions.

Keywords: timelike helix; slant helix; semi Euclid space.

1. INTRODUCTION AND PRELIMINARIES

The curves are used in many different fields such as nature, art, technology and science. It is geometrically important to describe the behavior of the curve in a point on the curve. The curves are interpreted geometrically with the help of a frame in different spaces. There are many studies about curves and especially special curves in \mathbb{R}_{2}^{4} [1-7].

The semi-Euclidean space \mathbb{R}_{2}^{4} is the standard vector space given with the metric

$$
\langle,\rangle=-d x_{1}^{2}-d x_{2}^{2}+d x_{3}^{2}+d x_{4}^{2},
$$

where $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)$ is the coordinate system of \mathbb{R}_{2}^{4}. For the vector \vec{v} in \mathbb{R}_{2}^{4}, if the condition $\langle\vec{v}, \vec{v}\rangle>0$ is met, \vec{v} is spacelike, if the condition $\langle\vec{v}, \vec{v}\rangle<0$ is met, \vec{v} is timelike, if the condition $\langle\vec{v}, \vec{v}\rangle=0, \vec{v} \neq \overrightarrow{0}$ is met, \vec{v} is null (lightlike) vector. The norm of the vector \vec{v} is defined as $\|\vec{v}\|=\sqrt{|\langle\vec{v}, \vec{v}\rangle|}$. If $\langle\vec{v}, \vec{v}\rangle= \pm 1$, then \vec{v} is the unit vector [8].

Let \vec{v} and \vec{w} be two vectors in \mathbb{R}_{2}^{4}. Then there is only one angle between the vectors \vec{v} and \vec{w}, such that;
i) if \vec{v} and \vec{w} are spacelike vectors, then $\langle\vec{v}, \vec{w}\rangle=\|\vec{v}\|\|\vec{w}\| \cos \theta$
ii) if \vec{v} and \vec{w} are timelike vectors, then $\langle\vec{v}, \vec{w}\rangle=-\|\vec{v}\|\|\vec{w}\| \cosh \theta$
iii) if \vec{v} is spacelike vector and \vec{w} is timelike vector, then $|\langle\vec{v}, \vec{w}\rangle|=\|\vec{v}\|\|\vec{w}\| \sinh \theta[9,10]$.

[^0]Let the Frenet frame of the curve $\alpha(s)$ be $\left\{\mathrm{T}(\mathrm{s}), \mathrm{N}(\mathrm{s}), \mathrm{B}_{1}(\mathrm{~s}), \mathrm{B}_{2}(\mathrm{~s})\right\}$ in \mathbb{R}_{2}^{4}, where T is tangent vector field, N is principal normal vector field, B_{1} is first binormal vector field, B_{2} is the second binormal vector field.

Definition 1. If the tangent vector \vec{T} of the curve $\alpha: I \rightarrow E^{4}$ makes constant angle with a unit vector \vec{U} in E^{4}, the curve α is called general helix (inclined curve) [11].

Definition 2. If the principal normal vector \vec{N} of the curve $\alpha: I \rightarrow E^{4}$ makes constant angle with a unit vector \vec{U} in E^{4}, the curve α is called slant helix [12].

Let α be a timelike curve parametrized by arclength function s in \mathbb{R}_{2}^{4}. Let the vector N be timelike, B_{1} and B_{2} spacelike. In this case there exists only one Frenet frame $\left\{T, N, B_{1}, B_{2}\right\}$ for which α is timelike curve with Frenet equations

$$
\begin{aligned}
& T^{\prime}=-k_{1} N \\
& N^{\prime}=k_{1} T+k_{2} B_{1} \\
& B_{1}{ }^{\prime}=k_{2} N+k_{3} B_{2} \\
& B_{2}{ }^{\prime}=-k_{3} B_{1}
\end{aligned}
$$

where the vectors T, N, B_{1}, B_{2} satisfy the equations:

$$
\langle N, N\rangle=\langle T, T\rangle=-1,\left\langle B_{1}, B_{1}\right\rangle=\left\langle B_{2}, B_{2}\right\rangle=1
$$

and the functions $k_{1}=k_{1}(s), k_{2}=k_{2}(s)$ and $k_{3}=k_{3}(s)$ are called the curvatures of the timelike curve $\alpha(s)[4,13]$.

2. TIMELIKE HELICES IN THE SEMI-EUCLIDEAN SPACE \mathbb{R}_{2}^{4}

2.1. TIMELIKE HELICES

Theorem 1. Let $\alpha: \mathrm{I} \subset \mathbb{R} \rightarrow \mathbb{R}_{2}^{4}$ be timelike curve parametrized by arclength function s . The necessary and sufficient condition to be a timelike helix of the curve α is

$$
\begin{equation*}
\left(\frac{k_{1}(s)}{k_{2}(s)}\right)^{2}+\frac{1}{k_{3}^{2}(s)}\left[\frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)\right]^{2}=\text { constant } \text {. } \tag{1}
\end{equation*}
$$

Proof: Let $\alpha: \mathrm{I} \subset \mathbb{R} \rightarrow \mathbb{R}_{2}^{4}$ be a timelike helix. In this case, the tangent vector \vec{T} of the curve α makes constant angle with a spacelike unit vector \vec{U}. Thus, the equality $\langle\overrightarrow{\mathrm{T}}, \vec{U}\rangle=\|\overrightarrow{\mathrm{T}}\|\|\vec{U}\| \sinh \theta=$ constant (or $\langle\vec{T}, \vec{U}\rangle=-\|\vec{T}\|\|\vec{U}\| \cosh \theta=$ const., for \vec{U} is timelike)
is written. If this equality is differentiated, the following equation is obtained using the Frenet frame:

$$
\langle\vec{N}, \vec{U}\rangle=\overrightarrow{0} .
$$

So, it is clear that $\vec{N} \perp \vec{U}$. The vector \vec{U} is written as

$$
\vec{U}=u_{1} \overrightarrow{\mathrm{~T}}+u_{2} \overrightarrow{\mathrm{~B}}_{1}+u_{3} \overrightarrow{\mathrm{~B}}_{2} .
$$

Differentiating this equality, we get

$$
\overrightarrow{0}=u_{1}^{\prime} \overrightarrow{\mathrm{T}}+\left(-u_{1} k_{1}(s)+u_{2} k_{2}(s)\right) \vec{N}+\left(u_{2}^{\prime}-u_{3} k_{3}(s)\right) \overrightarrow{\mathrm{B}}_{1}+\left(u_{2} k_{3}(s)+u_{3}^{\prime}\right) \overrightarrow{\mathrm{B}}_{2}
$$

from here the following system is easily visible

$$
\left.\begin{array}{l}
u_{1}^{\prime}=0 \tag{2}\\
-u_{1} k_{1}(s)+u_{2} k_{2}(s)=0 \\
u_{2}^{\prime}-u_{3} k_{3}(s)=0 \\
u_{2} k_{3}(s)+u_{3}^{\prime}=0 .
\end{array}\right\}
$$

It is clear that $u_{1}^{\prime}=0 \Rightarrow u_{1}=c=$ constant , and from the second equality of the system (2)

$$
\begin{equation*}
u_{2}=\frac{k_{1}(s)}{k_{2}(s)} u_{1}=c \frac{k_{1}(s)}{k_{2}(s)} \tag{3}
\end{equation*}
$$

If the value u_{2} found from the last equality of the system (2) is equalized with the Eq.(3), then

$$
\begin{equation*}
u_{2}=\frac{k_{1}(s)}{k_{2}(s)} c=-\frac{1}{k_{3}(s)} \frac{d u_{3}}{d s} \tag{4}
\end{equation*}
$$

Using this value of u_{2} in the third equation of the system (2), we get

$$
\begin{equation*}
u_{3}=\frac{1}{k_{3}(s)} u_{2}^{\prime}=\frac{c}{k_{3}(s)} \frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right) \tag{5}
\end{equation*}
$$

Also, since $\frac{d u_{2}}{d s}=u_{3} k_{3}(s), \quad \frac{d}{d s}\left(\frac{1}{k_{3}(s)} \frac{d u_{3}}{d s}\right)+u_{3} k_{3}(s)=0$. If the transformation $t=\int_{0}^{s} k_{3}(s) d s$ is made, $d t=k_{3}(s) d s \Rightarrow k_{3}(s)=\frac{d t}{d s}$ is obtained. Substituting this equality in the equality (5), we get

$$
\frac{d}{d s}\left(\frac{d u_{3}}{d t}\right)+\frac{d t}{d s} u_{3}=0
$$

Multiplying both sides of this equation by $\frac{d s}{d t}$, we get

$$
\frac{d^{2} u_{3}}{d t^{2}}+u_{3}=0
$$

This equation is the second order, constant coefficient, linear, homogeneous differential equation. The solution of this equation is calculated as

$$
\begin{equation*}
u_{3}=\mu_{1} \cos t+\mu_{2} \sin t, \quad \mu_{1}, \mu_{2} \in \mathbb{R} \tag{6}
\end{equation*}
$$

and it is clear that

$$
u_{3}=\frac{c}{k_{3}(s)} \cdot \frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)=\mu_{1} \cos \left(\int_{0}^{s} k_{3}(s) d s\right)+\mu_{2} \sin \left(\int_{0}^{s} k_{3}(s) d s\right) .
$$

Differentiating this equality, we get

$$
\begin{equation*}
\frac{d u_{3}}{d s}=-\mu_{1} \sin \left(\int_{0}^{s} k_{3}(s) d s\right) k_{3}(s)+\mu_{2} \cos \left(\int_{0}^{s} k_{3}(s) d s\right) k_{3}(s) \tag{7}
\end{equation*}
$$

Substituting this equality in the equality (4), we get

$$
\begin{equation*}
u_{2}=-c \cdot \frac{k_{1}(s)}{k_{2}(s)}=\mu_{1} \sin \left(\int_{0}^{s} k_{3}(s) d s\right)-\mu_{2} \cos \left(\int_{0}^{s} k_{3}(s) d s\right) . \tag{8}
\end{equation*}
$$

The solving equations (7) and (8) together, we get

$$
\begin{aligned}
& \mu_{1}=\frac{c}{k_{3}(s)} \frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right) \cos \left(\int_{0}^{s} k_{3}(s) d s\right)+c \frac{k_{1}(s)}{k_{2}(s)} \cdot \sin \left(\int_{0}^{s} k_{3}(s) d s\right), \\
& \mu_{2}=-c \frac{k_{1}(s)}{k_{2}(s)} \cos \left(\int_{0}^{s} k_{3}(s) d s\right)+\frac{c}{k_{3}(s)} \frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right) \sin \left(\int_{0}^{s} k_{3}(s) d s\right) .
\end{aligned}
$$

Since $\mu_{1}, \mu_{2} \in \mathbb{R}$ and $\mu_{1}^{2}+\mu_{2}^{2} \in \mathbb{R}, \mu_{1}^{2}+\mu_{2}^{2}=$ constant . And so we get

$$
\begin{gathered}
\mu_{1}^{2}+\mu_{2}^{2}=c^{2}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)^{2}+\frac{c^{2}}{k_{3}^{2}(s)}\left[\frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)\right]^{2}=\text { constant and } \\
\left(\frac{k_{1}(s)}{k_{2}(s)}\right)^{2}+\frac{1}{k_{3}^{2}(s)}\left[\frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)\right]^{2}=\text { constant } .
\end{gathered}
$$

Let

$$
\begin{equation*}
\left(\frac{k_{1}(s)}{k_{2}(s)}\right)^{2}+\frac{1}{k_{3}^{2}(s)}\left[\frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)\right]^{2}=\text { constant } \tag{9}
\end{equation*}
$$

Let's take a vector in the form

$$
\begin{equation*}
\vec{U}=\left[-\overrightarrow{\mathrm{T}}-\frac{k_{1}(s)}{k_{2}(s)} \overrightarrow{\mathrm{B}}_{1}-\frac{1}{k_{3}(s)} \frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right) \overrightarrow{\mathrm{B}}_{2}\right] s \operatorname{inh} \theta . \tag{10}
\end{equation*}
$$

It is clear that $\langle\vec{U}, \overrightarrow{\mathrm{~T}}\rangle=\sinh \theta=-u_{1}$. Differentiating the equality (10), we get

$$
\begin{equation*}
\frac{d \vec{U}}{d s}=\left[-\left(\frac{k_{1}(s)}{k_{2}(s)}\right) k_{3}(s)-\left[\frac{1}{k_{3}(s)} \frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)\right]^{\prime}\right] \overrightarrow{\mathrm{B}_{2}} . \tag{11}
\end{equation*}
$$

Differentiating the equality (9), we get

$$
\begin{equation*}
\left[\frac{1}{k_{3}(s)} \frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)\right]^{\prime}=-\frac{k_{1}(s) k_{3}(s)}{k_{2}(s)} . \tag{12}
\end{equation*}
$$

So, $\frac{d \vec{U}}{d s}=\overrightarrow{0}$ and $\vec{U}=$ constant. Therefore, the curve α is a timelike helix curve. Thus, the proof is completed.

Corollary 1. Let $\alpha: \mathrm{I} \subset \mathbb{R} \rightarrow \mathbb{R}_{2}^{4}$ be a timelike curve with parameters s. In order for the curve $\alpha(s)$ to be a timelike helix, the equation

$$
\begin{equation*}
k_{3}(s) \frac{k_{1}(s)}{k_{2}(s)}+\frac{d}{d s}\left[\frac{1}{k_{3}(s)} \frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)\right]=0 . \tag{13}
\end{equation*}
$$

must be satisfied.
Proof: Let $\alpha: \mathrm{I} \subset \mathbb{R} \rightarrow \mathbb{R}_{2}^{4}$ be a timelike curve. In that case, we get the equality

$$
\left(\frac{k_{1}(s)}{k_{2}(s)}\right)^{2}+\frac{1}{k_{3}^{2}(s)}\left[\frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)\right]^{2}=\text { constant }
$$

Differentiating this equality, we get

$$
\begin{equation*}
\frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)\left\{\left(\frac{k_{1}(s)}{k_{2}(s)}\right)+\frac{1}{k_{3}(s)} \frac{d}{d s}\left[\frac{1}{k_{3}(s)} \frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)\right]\right\}=0 . \tag{14}
\end{equation*}
$$

where
i) for $\frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)=0, \alpha$ is a timelike helix,
ii) for $\left(\frac{k_{1}(s)}{k_{2}(s)}\right)+\frac{1}{k_{3}(s)} \frac{d}{d s}\left[\frac{1}{k_{3}(s)} \frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)\right]=0$, this equality is multiplied with $k_{3}(s)$ and the proof is completed.

Theorem 2. Let $\alpha=\alpha(s): \mathrm{I} \subset \mathbb{R} \rightarrow \mathbb{R}_{2}^{4}$ be a unit speed timelike curve. The curve $\alpha(s)$ is a timelike helix if and only if there is a differentiable

$$
\begin{gathered}
f(s)=-\frac{1}{k_{3}(s)} \frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)=m_{1} \sin \left(\int_{0}^{s} k_{3}(s) d s\right)-m_{2} \cos \left(\int_{0}^{s} k_{3}(s) d s\right), \\
f^{\prime}(s)=\frac{k_{1}(s) k_{3}(s)}{k_{2}(s)} .
\end{gathered}
$$

Proof: Let $\alpha=\alpha(s): \mathrm{I} \subset \mathbb{R} \rightarrow \mathbb{R}_{2}^{4}$ be a unit speed timelike helix. We get the equation

$$
\frac{d t}{d s} \frac{k_{1}(s)}{k_{2}(s)}+\frac{d}{d s}\left[\frac{d}{d t}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)\right]=0
$$

by applying the variable change $t=\int_{0}^{s} k_{3}(s) d s$ in the equation (13). And thus, the 2 nd order, constant coefficient, linear, homogeneous differential equation depending on $\frac{k_{1}(s)}{k_{2}(s)}$ is obtained as

$$
\frac{d^{2}}{d t^{2}}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)+\frac{k_{1}(s)}{k_{2}(s)}=0 .
$$

The solving this equation, we get

$$
\begin{equation*}
\frac{k_{1}(s)}{k_{2}(s)}=m_{1} \cos t+m_{2} \sin t=m_{1} \cos \left(\int_{0}^{s} k_{3}(s) d s\right)+m_{2} \sin \left(\int_{0}^{s} k_{3}(s) d s\right) . \tag{15}
\end{equation*}
$$

$m_{1}, m_{2} \in \mathbb{R}$. Let's define the equality

$$
\begin{equation*}
f(s)=-\frac{1}{k_{3}(s)} \frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)=\frac{\left(\frac{k_{1}(s)}{k_{2}(s)}\right) \frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)}{\frac{d}{d s}\left(\frac{1}{k_{3}(s)} \frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)\right.} \tag{16}
\end{equation*}
$$

over the equation (14). The solution (15) is used in the equality (16) to get

$$
f(s)=m_{1} \sin \left(\int_{0}^{s} k_{3}(s) d s\right)-m_{2} \cos \left(\int_{0}^{s} k_{3}(s) d s\right)
$$

Also, it is obvious from the equations (14) and (16) that

$$
\begin{gathered}
\left(\frac{k_{1}(s)}{k_{2}(s)}\right) \frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)+\left(\frac{1}{k_{3}(s)} \frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)\right) \frac{d}{d s} \underbrace{\left(\frac{1}{k_{3}(s)} \frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)\right)}_{-f(s)}=0, \\
f^{\prime}(s)=\frac{k_{1}(s) k_{3}(s)}{k_{2}(s)} .
\end{gathered}
$$

Let the equations

$$
f(s)=-\frac{1}{k_{3}(s)} \frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)=m_{1} \sin \left(\int_{0}^{s} k_{3}(s) d s\right)-m_{2} \cos \left(\int_{0}^{s} k_{3}(s) d s\right)
$$

and $f^{\prime}(s)=\frac{k_{1}(s) k_{3}(s)}{k_{2}(s)}$ be given. Let's define the function

$$
\begin{gathered}
\varphi(s)=\frac{d}{d s}\left[\left(\frac{k_{1}(s)}{k_{2}(s)}\right)^{2}+\frac{1}{k_{3}^{2}(s)}\left\{\frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)\right\}^{2}\right]=\frac{d}{d s}\left[\frac{1}{k_{3}^{2}(s)}\left(f^{\prime}(s)\right)^{2}+(f(s))^{2}\right], \\
\varphi(s)=2 f^{\prime}(s) f^{\prime \prime}(s) \frac{1}{k_{3}^{2}(s)}-\frac{2 k_{3}^{\prime}(s)}{k_{3}^{3}(s)}\left(f^{\prime}(s)\right)^{2}+2 f(s) f^{\prime}(s) .
\end{gathered}
$$

Differentiating $f^{\prime}(s)$ again, we get

$$
f^{\prime \prime}(s)=\frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right) k_{3}(s)+\frac{k_{1}(s)}{k_{2}(s)} \frac{d}{d s}\left(k_{3}(s)\right),
$$

and thus

$$
f^{\prime}(s) f^{\prime \prime}(s)=k_{3}^{2}(s) \frac{k_{1}(s)}{k_{2}(s)} \frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)+\left(\frac{k_{1}(s)}{k_{2}(s)}\right)^{2} k_{3}(s) \frac{d}{d s}\left(k_{3}(s)\right) .
$$

Also, it is clear that

$$
f(s) f^{\prime}(s)=-\frac{k_{1}(s)}{k_{2}(s)} \frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)
$$

Since $\varphi(s)=0$ for these equalities, $\left(\frac{k_{1}(s)}{k_{2}(s)}\right)^{2}+\frac{1}{k_{3}^{2}(s)}\left[\frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)\right]^{2}=$ constant. Thus, the curve $\alpha(s)$ is a timelike helix.

2.2. TIMELIKE B_{2}-SLANT HELIX

Theorem 3. Let $\alpha=\alpha(s): \mathrm{I} \subset \mathbb{R} \rightarrow \mathbb{R}_{2}^{4}$ be a unit speed timelike curve. The curve $\alpha(s)$ is a timelike B_{2}-slant helix if and only if

$$
\left(\frac{k_{3}(s)}{k_{2}(s)}\right)^{2}+\frac{1}{k_{1}^{2}(s)}\left\{\frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)\right\}^{2}=\text { constant, for }
$$

Proof: Let $\alpha=\alpha(s): \mathrm{I} \subset \mathbb{R} \rightarrow \mathbb{R}_{2}^{4}$ be a timelike B_{2}-slant helix. In this case, the second binormal vector B_{2} of the curve α makes a constant angle with a spacelike unit vector U. So $\left\langle\overrightarrow{\mathrm{B}_{2}}, \vec{U}\right\rangle=\left\|\overrightarrow{\mathrm{B}_{2}}\right\|\|\vec{U}\| \cos \theta=$ constant. (or $\left\langle\overrightarrow{\mathrm{B}_{2}}, \vec{U}\right\rangle=\left\|\overrightarrow{\mathrm{B}_{2}}\right\|\|\vec{U}\| \sinh \theta=$ const., for \vec{U} is timelike)

Differentiating this equality, we get

$$
\left\langle\overrightarrow{\mathrm{B}_{1}}, \vec{U}\right\rangle=0 .
$$

Thus, $\overrightarrow{\mathrm{B}_{1}} \perp \vec{U}$ and

$$
\vec{U}=u_{1} \overrightarrow{\mathrm{~T}}+u_{2} \overrightarrow{\mathrm{~N}}+u_{3} \overrightarrow{\mathrm{~B}_{2}}
$$

are written. Differentiating this equality, we get

$$
\overrightarrow{\mathrm{T}}\left(u_{1}^{\prime}+u_{2} k_{1}(s)\right)+\overrightarrow{\mathrm{N}}\left(-u_{1} k_{1}(s)+u_{2}^{\prime}\right)+\overrightarrow{\mathrm{B}_{1}}\left(u_{2} k_{2}(s)-u_{3} k_{3}(s)\right)+\overrightarrow{\mathrm{B}_{2}} u_{3}^{\prime}=\overrightarrow{0} .
$$

So we get the system

$$
\left.\begin{array}{l}
u_{1}^{\prime}+u_{2} k_{1}(s)=0 \tag{17}\\
-u_{1} k_{1}(s)+u_{2}^{\prime}=0 \\
u_{2} k_{2}(s)-u_{3} k_{3}(s)=0 \\
u_{3}^{\prime}=0
\end{array}\right\}
$$

It is clear that $u_{3}^{\prime}=0 \Rightarrow u_{3}=c=$ constant, and from the third equality of the system (17)

$$
\begin{equation*}
u_{2}=\frac{k_{3}(s)}{k_{2}(s)} c . \tag{18}
\end{equation*}
$$

If the value u_{2} found from the first equality of the system (17) is equalized with the Eq.(18), then

$$
\begin{equation*}
u_{2}=\frac{k_{3}(s)}{k_{2}(s)} c=-\frac{1}{k_{1}(s)} \frac{d u_{1}}{d s} . \tag{19}
\end{equation*}
$$

Using this value of u_{2} in the second equation of the system (17), we get

$$
\begin{equation*}
u_{1}=\frac{1}{k_{1}(s)} \frac{d u_{2}}{d s}=\frac{c}{k_{1}(s)} \frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right) \tag{20}
\end{equation*}
$$

Using this value of u_{1} in the first equation of the system (17), we get

$$
\begin{equation*}
\frac{d}{d s}\left(\frac{1}{k_{1}(s)} \frac{d u_{2}}{d s}\right)+u_{2} k_{1}(s)=0 \tag{21}
\end{equation*}
$$

If the transformation $t=\int_{0}^{s} k_{1}(s) d s$ is made, $d t=k_{1}(s) d s \Rightarrow k_{1}(s)=\frac{d t}{d s}$ is obtained. Substituting this equality in the equality (21), we get

$$
\frac{d}{d s}\left(\frac{d u_{2}}{d t}\right)+u_{2} \frac{d t}{d s}=0
$$

Multiplying both sides of this equation by $\frac{d s}{d t}$, we get

$$
\frac{d^{2} u_{2}}{d t^{2}}+u_{2}=0
$$

This equation is the second order, constant coefficient, linear, homogeneous differential equation. The solution of this equation is calculated as

$$
u_{2}=\omega_{1} \cos t+\omega_{2} \sin t, \omega_{1}, \omega_{2} \in \mathbb{R}
$$

and it is clear that

$$
\begin{equation*}
u_{2}=c \frac{k_{3}(s)}{k_{2}(s)}=\omega_{1} \cos \left(\int_{0}^{s} k_{1}(s) d s\right)+\omega_{2} \sin \left(\int_{0}^{s} k_{1}(s) d s\right) \tag{22}
\end{equation*}
$$

Differentiating this equality, we get

$$
u_{1}=-\omega_{1} \sin \left(\int_{0}^{s} k_{1}(s) d s\right)+\omega_{2} \cos \left(\int_{0}^{s} k_{1}(s) d s\right)
$$

Substituting this equality in the equality (20), we get

$$
\begin{equation*}
u_{1}=\frac{c}{k_{1}(s)} \frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)=-\omega_{1} \sin \left(\int_{0}^{s} k_{1}(s) d s\right)+\omega_{2} \cos \left(\int_{0}^{s} k_{1}(s) d s\right) . \tag{23}
\end{equation*}
$$

The solving equations (22) and (23) together, we get

$$
\begin{aligned}
& \omega_{1}=c \frac{k_{3}(s)}{k_{2}(s)} \cos \left(\int_{0}^{s} k_{1}(s) d s\right)-\frac{c}{k_{1}(s)} \frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right) \sin \left(\int_{0}^{s} k_{1}(s) d s\right), \\
& \omega_{2}=\frac{c}{k_{1}(s)} \frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right) \cos \left(\int_{0}^{s} k_{1}(s) d s\right)+c \frac{k_{3}(s)}{k_{2}(s)} \sin \left(\int_{0}^{s} k_{1}(s) d s\right) .
\end{aligned}
$$

Since $\omega_{1}, \omega_{2} \in \mathbb{R}, A^{2}+B^{2} \in \mathbb{R}$, for $A=\omega_{1}+\omega_{2}, \quad B=\omega_{1}-\omega_{2}$. And so we get

$$
A^{2}+B^{2}=\left(\frac{k_{3}(s)}{k_{2}(s)}\right)^{2}+\frac{1}{k_{1}^{2}(s)}\left(\frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)\right)^{2}=\text { constant } \text {. }
$$

Let

$$
\begin{equation*}
\left(\frac{k_{3}(s)}{k_{2}(s)}\right)^{2}+\frac{1}{k_{1}^{2}(s)}\left(\frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)\right)^{2}=\text { constant } \tag{24}
\end{equation*}
$$

Let's take a vector in the form

$$
\begin{equation*}
\vec{U}=\left\{\frac{1}{k_{1}(s)} \frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right) \overrightarrow{\mathrm{T}}+\frac{k_{3}(s)}{k_{2}(s)} \overrightarrow{\mathrm{N}}+\overrightarrow{\mathrm{B}_{2}}\right\} \cos \theta \tag{25}
\end{equation*}
$$

It is clear that $\left\langle\vec{U}, \overrightarrow{\mathrm{~B}_{2}}\right\rangle=\cos \theta=$ constant. Differentiating the equality (25), we get

$$
\frac{d \vec{U}}{d s}=\overrightarrow{\mathrm{T}}\left\{\left(\frac{1}{k_{1}(s)} \frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)\right)^{\prime}+\frac{k_{3}(s) k_{1}(s)}{k_{2}(s)}\right\} \cos \theta .
$$

Differentiating the equality (11), we get,

$$
\left[\frac{1}{k_{1}(s)}\left(\frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)\right)\right]^{\prime}=-\frac{k_{1}(s) k_{3}(s)}{k_{2}(s)}
$$

So, $\frac{d \vec{U}}{d s}=\overrightarrow{0}$ and $\vec{U}=$ constant. Therefore, the timelike curve α is B_{2}-slant helix. Thus, the proof is completed.

Corollary 2. Let $\alpha: \mathrm{I} \subset \mathbb{R} \rightarrow \mathbb{R}_{2}^{4}$ be a timelike curve with parameters s. In order for the curve $\alpha(s)$ to be a timelike B_{2}-slant helix, the equation

$$
\begin{equation*}
k_{1}(s) \frac{k_{3}(s)}{k_{2}(s)}+\frac{d}{d s}\left[\frac{1}{k_{1}(s)} \frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)\right]=0 \tag{26}
\end{equation*}
$$

must be satisfied.
Proof: Let $\alpha: \mathrm{I} \subset \mathbb{R} \rightarrow \mathbb{R}_{2}^{4}$ be a timelike B_{2}-slant helix. In that case,

$$
\left(\frac{k_{3}(s)}{k_{2}(s)}\right)^{2}+\frac{1}{k_{1}^{2}(s)}\left[\frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)\right]^{2}=\text { constant }
$$

Differentiating this equality, we get

$$
\begin{equation*}
\frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right) \int\left\{\left(\frac{k_{3}(s)}{k_{2}(s)}\right)+\frac{1}{k_{1}(s)} \frac{d}{d s}\left[\frac{1}{k_{1}(s)} \frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)\right]\right\}=0 \tag{27}
\end{equation*}
$$

where
i) for $\frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)=0, \alpha$ is a timelike B_{2}-slant helix,
ii) for $\left(\frac{k_{3}(s)}{k_{2}(s)}\right)+\frac{1}{k_{1}(s)} \frac{d}{d s}\left[\frac{1}{k_{1}(s)} \frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)\right]=0$, this equality is multiplied with $k_{1}(s)$ and the proof is completed.

Theorem 4. Let $\alpha=\alpha(s): \mathrm{I} \subset \mathbb{R} \rightarrow \mathbb{R}_{2}^{4}$ be a unit speed timelike curve. The curve $\alpha(s)$ is a timelike B_{2}-slant helix if and only if there is a differentiable

$$
\begin{gathered}
f(s)=-\frac{1}{k_{1}(s)} \frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)=\ell_{1} \sin \left(\int_{0}^{s} k_{1}(s) d s\right)-\ell_{2} \cos \left(\int_{0}^{s} k_{1}(s) d s\right), \\
f^{\prime}(s)=\frac{k_{1}(s) k_{3}(s)}{k_{2}(s)} .
\end{gathered}
$$

Proof: Let $\alpha=\alpha(s): I \subset \mathbb{R} \rightarrow \mathbb{R}_{2}^{4}$ be a unit speed timelike B_{2}-slant helix. We get the equation

$$
\frac{d t}{d s} \frac{k_{3}(s)}{k_{2}(s)}+\frac{d}{d s}\left[\frac{d}{d t}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)\right]=0
$$

by applying the variable change $t=\int_{0}^{s} k_{1}(s) d s$ in the equation (26). And thus, the second order, constant coefficient, linear, homogeneous differential equation depending on $\frac{k_{3}(s)}{k_{2}(s)}$ is obtained as

$$
\frac{k_{3}(s)}{k_{2}(s)}+\frac{d^{2}}{d t^{2}}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)=0
$$

The solving this equation, we get

$$
\begin{equation*}
\frac{k_{3}(s)}{k_{2}(s)}=\ell_{1} \cos t+\ell_{2} \sin t=\ell_{1} \cos \left(\int_{0}^{s} k_{1}(s) d s\right)+\ell_{2} \sin \left(\int_{0}^{s} k_{1}(s) d s\right), \tag{28}
\end{equation*}
$$

$\ell_{1}, \ell_{2} \in \mathbb{R}$. Let's define the equality

$$
\begin{equation*}
f(s)=-\frac{1}{k_{1}(s)} \frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)=\frac{\left(\frac{k_{3}(s)}{k_{2}(s)}\right) \frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)}{\frac{d}{d s}\left(\frac{1}{k_{1}(s)} \frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)\right)} \tag{29}
\end{equation*}
$$

over the equation (27). The solution (28) is used in the equality (29) to get

$$
f(s)=\ell_{1} \sin \left(\int_{0}^{s} k_{1}(s) d s\right)-\ell_{2} \cos \left(\int_{0}^{s} k_{1}(s) d s\right)
$$

Also, it is obvious from the equations (27) and (29) that

$$
\begin{gathered}
\left(\frac{k_{3}(s)}{k_{2}(s)}\right) \frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)+\left(\frac{1}{k_{1}(s)} \frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)\right) \frac{d}{d s} \underbrace{\left(\frac{1}{k_{1}(s)} \frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)\right)}_{-f(s)}=0 \\
f^{\prime}(s)=\frac{k_{1}(s) k_{3}(s)}{k_{2}(s)} .
\end{gathered}
$$

Let the equations

$$
f(s)=-\frac{1}{k_{1}(s)} \frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)=-\frac{1}{k_{1}(s)} \frac{d}{d s}\left[\ell_{1} \cos \left(\int_{0}^{s} k_{1}(s) d s\right)+\ell_{2} \sin \left(\int_{0}^{s} k_{1}(s) d s\right)\right]
$$

and $f^{\prime}(s)=\frac{k_{1}(s) k_{3}(s)}{k_{2}(s)}$ be given. Let's define the function

$$
\begin{gathered}
\varphi(s)=\frac{d}{d s}\left[\frac{1}{k_{1}^{2}(s)}\left(f^{\prime}(s)\right)^{2}+(f(s))^{2}\right] \\
\varphi(s)=2 f^{\prime}(s) f^{\prime \prime}(s) \frac{1}{k_{1}^{2}(s)}-\frac{2 k_{1}^{\prime}(s)}{k_{1}^{3}(s)}\left(f^{\prime}(s)\right)^{2}+2 f(s) f^{\prime}(s)
\end{gathered}
$$

Differentiating $f^{\prime}(s)$ again, we get

$$
f^{\prime \prime}(s)=\frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right) k_{1}(s)+\frac{k_{3}(s)}{k_{2}(s)} \frac{d}{d s}\left(k_{1}(s)\right)
$$

and thus

$$
f^{\prime}(s) f^{\prime \prime}(s)=k_{1}^{2}(s) \frac{k_{3}(s)}{k_{2}(s)} \frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)+\left(\frac{k_{3}(s)}{k_{2}(s)}\right)^{2} k_{1}(s) \frac{d}{d s}\left(k_{1}(s)\right) .
$$

Also, it is clear that

$$
f(s) f^{\prime}(s)=-\frac{k_{3}(s)}{k_{2}(s)} \frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)
$$

Since $\varphi(s)=0$ for these equalities, $\left(\frac{k_{3}(s)}{k_{2}(s)}\right)^{2}+\frac{1}{k_{1}^{2}(s)}\left[\frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)\right]^{2}=$ constant. Thus, the curve $\alpha(s)$ is a timelike B_{2}-slant helix.

3. CONCLUSION

In this study, the integral characterizations are given for the timelike helices according to the Frenet frame in \mathbb{R}_{2}^{4}. In addition, the timelike helix, the timelike B_{2}-slant helix concepts are examined in \mathbb{R}_{2}^{4} and the differential equations for vector positions are presented.

REFERENCES

[1] Aydın, T. A., Ayazoğlu, R., Kocayiğit, H., Honam Mathematical Journal, 44, 3, 2022.
[2] Aydın, T. A., Kocayiğit, H., Turk. J. Math. Comput. Sci., 13, 331, 2021.
[3] Aydın, T. A., Kocayiğit, H., Euroasia Journal of Mathematics, Engineering, Natural \& Medical Sciences, 8, 217, 2021.
[4] Ersoy, S., Tosun, M., Timelike Bertrand Curves in Semi-Euclidean Space, arXiv:1003.1220v1, 2010.
[5] Körpınar, T., Sazak, A., Körpınar, Z., Journal of Science and Arts, 22, 2, 2022.
[6] Altınkaya, A., Çalı̧̧kan, M., Journal of Science and Arts, 22, 1, 2022.
[7] Şenyurt, S., Kılıçoğlu, Ş., Bulletin of Mathematical Analysis and Applications, 9, 2, 2017.
[8] O'Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, London, 1983.
[9] Şahiner, B., Examination of robot end-effector using the curvature theory of ruled surfaces in Minkowski space and of the curvature theory of spherical curves in dual Lorentz space. Celal Bayar Uni., PhD Thesis, Manisa, 2013.
[10] Uğurlu, H. H., Çalışkan, A., Darboux Ani Dönme Vektörleri ile Spacelike ve Timelike Yüzeyler Geometrisi, Celal Bayar University Publications, Manisa, 2012.
[11] Öztürk, G., Arslan, K., Hacisalihoğlu, H. H., Proc. Estonian Acad. Sci., 57, 217, 2008.
[12] Ahmad, T.A., Lopez R., Slant Helices in Euclidean 4-space E ${ }^{4}$, arXiv:0901.3324, 2009.
[13] Çöken, A. C., Görgülü, A., Nonlinear Analysis: Theory, Methods and Applications, 70, 3932, 2009.

[^0]: ${ }^{1}$ Celal Bayar University, Department of Mathematics, 45000 Manisa, Turkey.
 E-mail: zelihaerpehlivan@gmail.com; huseyin.kocayigit@cbu.edu.tr.
 ${ }^{2}$ Bayburt University, Department of Mathematics, 69000 Bayburt, Turkey. E-mail: tubaaydin@ bayburt.edu.tr. This article was produced from Zeliha Erpehlivan's master's thesis.

