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Abstract. In [1] (Kikete Wabuya, Luketero Wanyonyi, and Justus Mile) show that if an 

operator (n,m) hyponormal is isometrically equivalent to an operator S, then S is also (n ,m) 

hyponormal operator. In this paper, we prove results in the same spirit but in a semi 

Hilbertian space, i.e., spaces generated by positive semi-definite sesquilinear forms. This kind 

of spaces appears in many problems concerning linear and bounded operators on Hilbert 

spaces and is intensively studied in the present; some of the basic properties of this class are 

studied. Moreover, the product, tensor product and the sum of finite numbers of this type are 

discussed. 

Keywords: Semi-Hilbertian space; (n, m)-power-hyponormal operators; n-power-

hyponormal operators; n-normal operators. 
 

 

1. INTRODUCTION  
 

 

First, we assume that   is a semi  Hilbertian  space. Let us, however, recall some 

notations that will be met below. We said that   is unitary if        =             isometry if  

          co-isometry if          , normal if      =     , n-normal if        =       
hyponormal if              , n-hyponormal if              . An operator T is said to be: 

(n, m) power hyponormal if  
 

                           
 

for some positive integers n and m. This class of operators will be doned by [       ]  
Clearly, if          , then (n,m)-power hyponormal becomes hyponormal, and if      , 

then (n, 1)-power hyponormal becomes n-hyponormal. 
 

 

2. BASIC DEFINITIONS 
 

 

Definition 2.1. [2] Two operators     are said to be: 

- Unitarily equivalent if there exists a unitary operator   such that           
- D-unitarily equivalent if there exists a unitary operator   such that            . 

 

Theorem 2.2. [3] If   is       power hyponormal operator then: 
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(1)   is       power hyponormal operator. 

(2)    is       power hyponormal operator for      . 

(3)    is       power hyponormal operator for     . 

(4)     is n, m-hyponormal operator. 
 

Proof 2.3: 

 We have                         ,  
In the same time we have:            

=              

So               (         ) #   
=           

Hence   is       power hyponormal 

 

                               ⏟          
       

               ⏟            
       

                                     (1) 

 

                                          ⏟            
           

                              ⏟            
           

              (2) 

 

                                              ⏟          
           

                              ⏟            
           

              (3) 

 

                = (         )
 k                                                                                    

(4) 
 

 Hence    is       power hyponormal operator for        
 

 We have  
 

                                                                                                  (1) 
 

=                 =                                                              (2) 
 

                                                                                                                     (3) 
  

Hence    is       power hyponormal 
 

                                ⏟          
       

                 ⏟            
        

 

 

Using the same method of the first demonstration we find  
 

                                         
 

Hence     is   -hyponormal. 
 

 

3. MAIN RESULTS 
 

 

Theorem 3.1. [3] Let         two operators in a semiHilbertian space such that           

where   is an isometry. 

So, if   is       hyponormal then   is also      hyponormal. 
 

Proof 3.2: Let   and   two isometrically equivalent operators so there exists anisometry   

such that         then          . 
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Now we need to find    and    
 

 

                                                              (1) 

 

                                                                  (2) 
 

Similarly,          . 

So                                . 
Therefore, 

 

                                               (1) 

 

                                    (2) 

 

Hence, S is        power hyponormal. 

 

Corollary 3.3. Let         two operators such that:            power hyponormal 

operator. If           with   being a co-isometry, then S is also       power 

hyponormal. 

 

Proof 3.4: We have  

 

           

so  

                        

 

and 

 

                                              (1) 

 
                                          (2) 

 
              (3) 

 

Similarly, we find                            

Therefore, 

 

                          
 

                        

 

          

 

Proposition 3.5. Let Tis  mn,  power-hyponormal, if S  is unitary equivalent of T , then S  is 

 mn,  power hyponormal operator. 

 

Proof 3.6: Let T  be an  mn,  power hyponormal operator , since S  is unitary equivalent of 

T  then there exists a unitary operator U  such that #= UTUS , it is easly to chek that  
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#= UUTS nn  and ### = UUTS  

We have  

 

))()((=)( #### UTUUUTSS mnmn ### )(= UTUUUT mn ##)(= UTUT mn
 (1) 

 

                   ))((= ### UUTUUT nm nm SS )(= #
 (2) 

 

Hence,                 then S  is  mn,  power hyponormal operator. 

The following discusses the conditions for product and sum of two  mn,  power 

hyponormal operators to be  mn,  power hyponormal. 

 

Proposition 3.7. If     are commuting  mn,  power hyponormal operators such that 

STST ## =  and TSTS ## = then TS  is  mn,  power hyponormal operator. 

 

Proof 3.8: Since      and       , then                 

 

                                                                      (1) 
 

                                

 

                                     (2) 

 

                   (3)
 

 

Example 3.9. Let   (
   
  )    (

  
  )   

  two operators. A simple calculation 

shows that 

     (
   
  )     (

   
    )    

 

A direct calculation show that S is of class [(2, 3) H] but T is not [H]. 

 

 

Example 3.10. Let 

  (
   
   )    (

  
   )   

 

 

A simple calculation shows that 
 

     (
    
  )     (

       
        ) 

 

Therefore T is a (3, 2)-Hyponormal and (2, 3)-Hyponormal.
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Proposition 3.11. Let     are  mn, power hyponormal operators for some positive integers n  

and m such that        , STST ## =  and        . Then )( TS   are  mn, power 

hyponormal operators for some positive integers n  and m . 
 

Proof 3.12: Under assumption we have  
 

 ))((=)()( ### nnmmnm TSTSTSTS       (1) 

 

 
nmnmnmnm TTSTTSSS ####=      (2) 

 

 
nmmnmnnm TTTSSTSS ####=     (3) 

 

                          (4) 
 

 ))((= ## mmnn TSTS  mn TSTS #)()(=     (5) 
 

Exemple 3.13. Let 

   (
   
  )    (

   
   )    (

  
  ) 

 

A direct calculation show that      [      ]      [       ]              [       ] 
but       and         . 

 

 

4. DIRECT SUM AND TENSOR PRODUCT 

 

 

In the following theorem we will prove the stability of the class of ),( mn power-

hyponormal operators under the direct sum and tensor product.  
 

Theorem 4.1. Let kTTT ,....,, 21 be  mn, power hyponormal operators, then 

  kTTT  ....21  is  mn,  power -hyponormal operator  

  kTTT  ....21  is  mn,  power hyponormal operator. 

 

Proof 4.2:  

  The direct sum 
 

            
             

    
 

     
    

       
  (  

     
         

  )     (1) 
 

    
   

     
   

          
   

     (2) 
 

    
    

    
    

        
    

    (3) 
 

  (  
     

         
  )   

    
        

      (4) 
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       (5) 

 

Then  mTTT  ...21  is  mn,  power -hyponormal operator. 

 

 The tensorproduct 
 

            
             

                 (1) 
 

    
    

        
  (  

     
         

  )              (2) 
 

  (  
   

       
   

           
   

    )   (3) 
 

  (  
    

      
    

          
    

   )   (4) 
 

 (  
     

         
  )(   

    
        

             )   (5) 
 

=            
              

                 (6) 
 

 

5. CONCLUSIONS 
 

 

It may be concluded that, if an operator  mn,  power-hyponormal is isometrically  

equivalent to an operator S then S  is  mn,  power hyponormal operator in a semi hilbertian 

space .We gave also the conditions for product and sum of two  mn,  power hyponormal 

operators to be  mn,  power hyponormal,so we proved  the stability of the class of ),( mn

power-hyponormal operators under the direct sum and tensor product. 
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