ORIGINAL PAPER

NEIGHBORHOOD PROPERTIES OF CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS DEFINED BY GENERALIZED MITTAG-LEFFLER FUNCTION

MURAT ÇAĞLAR¹, ELİF KAYA BÜYÜKYURT¹

Manuscript received: 06.11.2021; Accepted paper: 01.03.2022; Published online: 30.03.2022.

Abstract. In this paper, we introduce new subclasses $\mathcal{M}_{\lambda,\mu}^n(\alpha,\beta,\gamma)$ and $\mathcal{R}_{\lambda,\mu}^n(\alpha,\beta,\gamma;\vartheta)$ of analytic functions in the open unit disk \mathcal{U} with negative coefficients defined by generalized Mittag-Leffler function. The object of the present paper is to determine coefficient inequalities, inclusion relations and neighborhoods properties for functions f(z) belonging to these subclasses.

Keywords: Analytic function; starlike and convex functions; Mittag-Leffler function; neighborhoods; coefficient inequality.

1. INTRODUCTION

Let \mathcal{A} be a class of functions f of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1}$$

that are analytic in the open unit disk $\mathcal{U} = \{z : |z| < 1\}$. Denote by T(n) the class of functions consisting of functions f of the form

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n, \quad (a_n \ge 0)$$
 (2)

which are analytic in \mathcal{U} .

We recall that the convolution (or Hadamard product) of two functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
 and $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$

is given by

 $(f * g)(z) := z + \sum_{n=2}^{\infty} a_n b_n z^n =: (g * f)(z), \quad (z \in \mathcal{U}).$

¹ Erzurum Technical University, Faculty of Science, Department of Mathematics, 25100, Erzurum, Turkey. E-mail: mcaglar25@gmail.com; kayelif@gmail.com.

Note that $f * g \in \mathcal{A}$.

Next, following the earlier investigations by Altıntaş et al. [1, 2], Goodman [3], Ruscheweyh [4], Silverman [5], and Srivastava and Bulut [6] (see also [7-17]), we define the (n, δ) -neighborhood of a function $f \in T(n)$ by

$$\mathcal{N}_{n,\delta}(f) = \left\{ g \in \mathsf{T}(n) \colon g(z) = z - \sum_{n=2}^{\infty} b_n z^n \text{ and } \sum_{n=2}^{\infty} n|a_n - b_n| \le \delta \right\}. \tag{3}$$

For e(z) = z, we have

$$\mathcal{N}_{n,\delta}(e) = \left\{ g \in \mathsf{T}(n) \colon g(z) = z - \sum_{n=2}^{\infty} b_n z^n \text{ and } \sum_{n=2}^{\infty} n |b_n| \le \delta \right\}. \tag{4}$$

A function $f \in T(n)$ is α -starlike of complex order γ , denoted by $f \in \mathcal{S}_n^*(\alpha, \gamma)$ if it satisfies the following condition

$$Re\left\{1+\frac{1}{\gamma}\left(\frac{zf'(z)}{f(z)}-1\right)\right\}>\alpha, \qquad (\gamma\in\mathbb{C}\backslash\{0\}, 0\leq\alpha<1, z\in\mathcal{U})$$

and a function $f \in T(n)$ is α –convex of complex order γ , denoted by $f \in C_n(\alpha, \gamma)$ if it satisfies the following condition

$$Re\left\{1+\frac{1}{\gamma}\frac{zf''(z)}{f'(z)}\right\} > \alpha, \qquad (\gamma \in \mathbb{C}\setminus\{0\}, 0 \le \alpha < 1, z \in \mathcal{U}).$$

The Mittag-Leffler [18] function $E_{\lambda}(z)$, defined by

$$E_{\lambda}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\lambda n + 1)}, \qquad (\lambda \in \mathbb{C}, Re(\lambda) > 0, z \in \mathcal{U}).$$
 (5)

Prabhakar [19] considered a new Mittag-Leffler type function $E_{\lambda,\mu}^{\beta}(z)$ of the form

$$E_{\lambda,\mu}^{\beta}(z) = \sum_{n=0}^{\infty} \frac{(\beta)_n}{\Gamma(\lambda n + \mu)} \frac{z^n}{n!}, (z \in \mathcal{U}), \tag{6}$$

where $\lambda, \mu, \beta \in \mathbb{C}$, $Re(\lambda) > 0$, $Re(\mu) > 0$, $Re(\beta) > 0$ and

$$(\beta)_n = \begin{cases} 1, & n = 0 \\ \beta(\beta+1)\cdots(\beta+n-1), & n \in \mathbb{N} \end{cases}$$

is the well-known Pochhammer symbol.

Note that $E_{\lambda}(z) = E_{\lambda,1}^1(z)$ and $E_{\lambda,\mu}(z) = E_{\lambda,\mu}^1(z)$.

The generalized Mittag-Leffler function $E_{\lambda,\mu}^{\beta}(z)$ does not belong to the class \mathcal{A} . Therefore, we consider the following normalization for the function $E_{\lambda,\mu}^{\beta}(z)$:

$$\tilde{E}_{\lambda,\mu}^{\beta}(z) = \Gamma(\mu)zE_{\lambda,\mu}^{\beta}(z) = z + \sum_{n=1}^{\infty} \frac{\Gamma(\mu)(\beta)_n}{\Gamma(\lambda n + \mu)} \frac{z^{n+1}}{n!}, (z \in \mathcal{U}).$$
 (7)

In terms of Hadamard product and $E_{\lambda,\mu}^{\beta}(z)$ given by (1.7), a new operator $\varepsilon_{\lambda,\mu}^{\beta}: \mathcal{A} \to \mathcal{A}$ can be defined as follows:

$$\varepsilon_{\lambda,\mu}^{\beta}f(z) = \left(\tilde{E}_{\lambda,\mu}^{\beta} * f\right)(z) = z + \sum_{n=1}^{\infty} \frac{\Gamma(\mu)(\beta)_n a_{n+1}}{\Gamma(\lambda n + \mu)} \frac{z^{n+1}}{n!}, (z \in \mathcal{U}).$$
 (8)

If $f \in T(n)$ is given by (1.2), then we have

$$\varepsilon_{\lambda,\mu}^{\beta} f(z) = z - \sum_{n=1}^{\infty} \frac{\Gamma(\mu)(\beta)_n a_{n+1}}{\Gamma(\lambda n + \mu)} \frac{z^{n+1}}{n!}, (z \in \mathcal{U}). \tag{9}$$

Finally, by using the differential operator defined by (1.9), we investigate the subclasses $\mathcal{M}^n_{\lambda,\mu}(\alpha,\beta,\gamma)$ and $\mathcal{R}^n_{\lambda,\mu}(\alpha,\beta,\gamma;\vartheta)$ of T(n) consisting of functions f as the followings:

However, throughout this paper, we restrict our attention to the case real-valued λ , μ , β with $\lambda > 0$, $\mu > 0$ and $\beta > 0$.

Definition 1.1 The subclass $\mathcal{M}_{\lambda,\mu}^n(\alpha,\beta,\gamma)$ of T(n) is defined as the class of functions f such that

$$\left| \frac{1}{\gamma} \left(\frac{z \left[\varepsilon_{\lambda,\mu}^{\beta} f(z) \right]'}{\varepsilon_{\lambda,\mu}^{\beta} f(z)} - 1 \right) \right| < \alpha, (z \in \mathcal{U}), \tag{10}$$

where $\gamma \in \mathbb{C} \setminus \{0\}$ and $0 \le \alpha < 1$.

Definition 1.2 Let $\mathcal{R}^n_{\lambda,\mu}(\alpha,\beta,\gamma;\vartheta)$ denote the subclass of T(n) consisting of f which satisfy the inequality

$$\left| \frac{1}{\gamma} \left[(1 - \vartheta) \frac{\varepsilon_{\lambda,\mu}^{\beta} f(z)}{z} + \vartheta \left(\varepsilon_{\lambda,\mu}^{\beta} f(z) \right)' - 1 \right] \right| < \alpha, \tag{11}$$

where $\gamma \in \mathbb{C} \setminus \{0\}$, $0 \le \alpha < 1$ and $0 \le \theta \le 1$.

In this paper, we obtain the coefficient inequalities, inclusion relations and neighborhood properties of the subclasses $\mathcal{M}_{\lambda,\mu}^n(\alpha,\beta,\gamma)$ and $\mathcal{R}_{\lambda,\mu}^n(\alpha,\beta,\gamma;\vartheta)$.

ISSN: 1844 – 9581 Mathematics Section

2. COEFFICIENT INEQUALITIES FOR $\mathcal{M}_{\lambda,\mu}^n(\alpha,\beta,\gamma)$ AND $\mathcal{R}_{\lambda,\mu}^n(\alpha,\beta,\gamma;\vartheta)$

Theorem 2.1 Let $f \in T(n)$. Then $f \in \mathcal{M}_{\lambda,\mu}^n(\alpha,\beta,\gamma)$ if and only if

$$\sum_{n=2}^{\infty} \frac{\Gamma(\mu)(\beta)_{n-1}}{\Gamma(\lambda(n-1)+\mu)(n-1)!} [n-1+\alpha|\gamma|] a_n \le \alpha|\gamma|$$
(12)

for $\gamma \in \mathbb{C} \setminus \{0\}$ and $0 \le \alpha < 1$.

Proof: Let $f \in T(n)$. Then, by (1.10) we can write

$$Re\left\{\frac{z\left[\varepsilon_{\lambda,\mu}^{\beta}f(z)\right]'}{\varepsilon_{\lambda,\mu}^{\beta}f(z)}-1\right\} > -\alpha|\gamma|, (z \in \mathcal{U}). \tag{13}$$

Using (1.2) and (1.9), we have,

$$Re\left\{\frac{-\sum_{n=2}^{\infty} \frac{\Gamma(\mu)(\beta)_{n-1}}{\Gamma(\lambda(n-1)+\mu)(n-1)!} [n-1] a_n z^n}{z - \sum_{n=2}^{\infty} \frac{\Gamma(\mu)(\beta)_{n-1}}{\Gamma(\lambda(n-1)+\mu)(n-1)!} a_n z^n}\right\} > -\alpha |\gamma|, (z \in \mathcal{U}).$$
(14)

Since (2.3) is true for all $z \in \mathcal{U}$, choose values of z on the real axis. Letting $z \to 1$, through the real values, the inequality (2.3) yields the desired inequality

$$\sum_{n=2}^{\infty} \frac{\Gamma(\mu)(\beta)_{n-1}}{\Gamma(\lambda(n-1)+\mu)(n-1)!} [n-1+\alpha|\gamma|] a_n \le \alpha|\gamma|.$$

Conversely, supposed that the inequality (2.1) holds true and |z| = 1, then we obtain

$$\left| \frac{z \left[\varepsilon_{\lambda,\mu}^{\beta} f(z) \right]'}{\varepsilon_{\lambda,\mu}^{\beta} f(z)} - 1 \right| \leq \left| \frac{\sum_{n=2}^{\infty} \frac{\Gamma(\mu)(\beta)_{n-1}}{\Gamma(\lambda(n-1) + \mu)(n-1)!} [n-1] a_n z^n}{z - \sum_{n=2}^{\infty} \frac{\Gamma(\mu)(\beta)_{n-1}}{\Gamma(\lambda(n-1) + \mu)(n-1)!} a_n z^n} \right| \\
\leq \frac{\sum_{n=2}^{\infty} \frac{\Gamma(\mu)(\beta)_{n-1}}{\Gamma(\lambda(n-1) + \mu)(n-1)!} [n-1] a_n}{1 - \sum_{n=2}^{\infty} \frac{\Gamma(\mu)(\beta)_{n-1}}{\Gamma(\lambda(n-1) + \mu)(n-1)!} a_n}{1 - \sum_{n=2}^{\infty} \frac{\Gamma(\mu)(\beta)_{n-1}}{\Gamma(\lambda(n-1) + \mu)(n-1)!} a_n} \\
\leq \alpha |\gamma|.$$

Hence, by the maximum modulus theorem, we have $f(z) \in \mathcal{M}_{\lambda,\mu}^n(\alpha,\beta,\gamma)$, which establishes the required result.

Theorem 2.2 Let $f \in T(n)$. Then $f \in \mathcal{R}^n_{\lambda,\mu}(\alpha,\beta,\gamma;\vartheta)$ if and only if

$$\sum_{n=2}^{\infty} \frac{\Gamma(\mu)(\beta)_{n-1}}{\Gamma(\lambda(n-1) + \mu)(n-1)!} [1 + \vartheta(n-1)] a_n \le \alpha |\gamma|$$
 (15)

for $\gamma \in \mathbb{C} \setminus \{0\}$, $0 \le \alpha < 1$ and $0 \le \theta \le 1$.

Proof: We omit the proofs since it is similar to Theorem 2.1.

3. INCLUSION RELATIONS INVOLVING $\mathcal{N}_{n,\delta}(e)$ OF $\mathcal{M}_{\lambda,\mu}^n(\alpha,\beta,\gamma)$ AND $\mathcal{R}_{\lambda,\mu}^n(\alpha,\beta,\gamma;\vartheta)$

Theorem 3.1 If

$$\delta = \frac{2\alpha |\gamma| \Gamma(\lambda + \mu)}{\beta (1 + \alpha |\gamma|) \Gamma(\mu)}, (|\gamma| < 1), \tag{16}$$

then $\mathcal{M}_{\lambda,\mu}^n(\alpha,\beta,\gamma) \subset \mathcal{N}_{n,\delta}(e)$.

Proof: Let $f(z) \in \mathcal{M}_{\lambda,\mu}^n(\alpha,\beta,\gamma)$. By Theorem 2.1, we have

$$\frac{\beta\Gamma(\mu)}{\Gamma(\lambda+\mu)}(1+\alpha|\gamma|)\sum_{n=2}^{\infty}a_n\leq\alpha|\gamma|,$$

which implies

$$\sum_{n=2}^{\infty} a_n \le \frac{\alpha |\gamma|}{\frac{\beta \Gamma(\mu)}{\Gamma(\lambda + \mu)} (1 + \alpha |\gamma|)}.$$
(17)

Using (2.1) and (3.2), we get

$$\frac{\beta\Gamma(\mu)}{\Gamma(\lambda+\mu)}\sum_{n=2}^{\infty}na_n \leq \alpha|\gamma| + \frac{\beta\Gamma(\mu)}{\Gamma(\lambda+\mu)}(1-\alpha|\gamma|)\sum_{n=2}^{\infty}a_n$$

$$\leq \frac{2\alpha|\gamma|}{(1+\alpha|\gamma|)} = \delta.$$

That is,

$$\sum_{n=2}^{\infty} n a_n \leq \frac{2\alpha |\gamma|}{\frac{\beta \Gamma(\mu)}{\Gamma(\lambda + \mu)} (1 + \alpha |\gamma|)} = \delta.$$

Thus, by the definition given by (1.4), $f(z) \in \mathcal{N}_{n,\delta}(e)$, which completes the proof.

Theorem 3.2 If

ISSN: 1844 – 9581 Mathematics Section

$$\delta = \frac{2\alpha |\gamma| \Gamma(\lambda + \mu)}{\beta (1 + \vartheta) \Gamma(\mu)}, (|\gamma| < 1), \tag{18}$$

then $\mathcal{R}_{\lambda,\mu}^n(\alpha,\beta,\gamma;\vartheta) \subset \mathcal{N}_{n,\delta}(e)$.

Proof: For $f(z) \in \mathcal{R}^n_{\lambda,\mu}(\alpha,\beta,\gamma;\vartheta)$ and making use of the condition (2.4), we obtain

$$\frac{\beta\Gamma(\mu)}{\Gamma(\lambda+\mu)}(1+\vartheta)\sum_{n=2}^{\infty}a_n\leq\alpha|\gamma|$$

so that

$$\sum_{n=2}^{\infty} a_n \le \frac{\alpha |\gamma|}{\frac{\beta \Gamma(\mu)}{\Gamma(\lambda + \mu)} (1 + \vartheta)}.$$
(19)

Thus, using (2.4) along with (3.4), we also get

$$\begin{split} \vartheta \frac{\beta \Gamma(\mu)}{\Gamma(\lambda + \mu)} \sum_{n=2}^{\infty} n a_n &\leq \alpha |\gamma| + (\vartheta - 1) \frac{\Gamma(\mu)(\beta)}{\Gamma(\lambda + \mu)} \sum_{n=2}^{\infty} a_n \\ &\leq \alpha |\gamma| + \frac{\beta (\vartheta - 1) \Gamma(\mu)}{\Gamma(\lambda + \mu)} \frac{\alpha |\gamma| \Gamma(\lambda + \mu)}{\beta (\vartheta + 1) \Gamma(\mu)} \\ &\leq \frac{2\alpha |\gamma|}{(1 + \vartheta)} = \delta. \end{split}$$

Hence,

$$\sum_{n=2}^{\infty} n a_n \le \frac{2\alpha |\gamma|}{\frac{\beta \Gamma(\mu)}{\Gamma(\lambda + \mu)} (1 + \vartheta)} = \delta$$

which in view of (1.4), completes the proof of theorem.

4. NEIGHBORHOOD PROPERTIES FOR THE CLASSES $\mathcal{M}^{\eta}_{\lambda,\mu}(\alpha,\beta,\gamma)$ AND $\mathcal{R}^{\eta}_{\lambda,\mu}(\alpha,\beta,\gamma;\vartheta)$

Definition 4.1 For $0 \le \eta < 1$ and $z \in \mathcal{U}$, a function $f(z) \in \mathcal{M}_{\lambda,\mu}^{\eta}(\alpha,\beta,\gamma)$ if there exists a function $g(z) \in \mathcal{M}_{\lambda,\mu}^{\eta}(\alpha,\beta,\gamma)$ such that

$$\left| \frac{f(z)}{g(z)} - 1 \right| < 1 - \eta. \tag{20}$$

For $0 \le \eta < 1$ and $z \in \mathcal{U}$, a function $f(z) \in \mathcal{R}^{\eta}_{\lambda,\mu}(\alpha,\beta,\gamma;\vartheta)$ if there exists a function $g(z) \in \mathcal{R}^{\eta}_{\lambda,\mu}(\alpha,\beta,\gamma;\vartheta)$ such that the inequality (4.1) holds true.

Theorem 4.1 If $g(z) \in \mathcal{M}^{\eta}_{\lambda,\mu}(\alpha,\beta,\gamma)$ and

$$\eta = 1 - \frac{\beta \delta(1 + \alpha |\gamma|) \Gamma(\mu)}{2[\beta(1 + \alpha |\gamma|) \Gamma(\mu) - \alpha |\gamma| \Gamma(\lambda + \mu)]},$$
(21)

then $\mathcal{N}_{n,\delta}(g) \subset \mathcal{M}_{\lambda,\mu}^{\eta}(\alpha,\beta,\gamma)$.

Proof: Let $f(z) \in \mathcal{N}_{n,\delta}(g)$. Then,

$$\sum_{n=2}^{\infty} n|a_n - b_n| \le \delta,\tag{22}$$

which yields the coefficient inequality

$$\sum_{n=2}^{\infty} |a_n - b_n| \le \frac{\delta}{2}, \quad (n \in \mathbb{N}).$$

Since $g(z) \in \mathcal{M}^{\eta}_{\lambda,\mu}(\alpha,\beta,\gamma)$ by (3.2), we have

$$\sum_{n=2}^{\infty} b_n \le \frac{\alpha |\gamma|}{\frac{\beta \Gamma(\mu)}{\Gamma(\lambda + \mu)} (1 + \alpha |\gamma|)},\tag{23}$$

and so

$$\left| \frac{f(z)}{g(z)} - 1 \right| < \frac{\sum_{n=2}^{\infty} |a_n - b_n|}{1 - \sum_{n=2}^{\infty} b_n}$$

$$\leq \frac{\delta}{2} \frac{\frac{\beta \Gamma(\mu)}{\Gamma(\lambda + \mu)} (1 + \alpha |\gamma|)}{\frac{\beta \Gamma(\mu)}{\Gamma(\lambda + \mu)} (1 + \alpha |\gamma|) - \alpha |\gamma|}$$

$$= 1 - \eta.$$

Thus, by definition, $f(z) \in \mathcal{M}^{\eta}_{\lambda,\mu}(\alpha,\beta,\gamma)$ for η given by (4.2), which establishes the desired result.

Theorem 4.2 If $g(z) \in \mathcal{R}^{\eta}_{\lambda,\mu}(\alpha,\beta,\gamma;\vartheta)$ and

$$\eta = 1 - \frac{\beta \delta(1 + \vartheta) \Gamma(\mu)}{2[\beta(1 + \vartheta) \Gamma(\mu) - \alpha |\gamma| \Gamma(\lambda + \mu)]},$$
(24)

then $\mathcal{N}_{n,\delta}(g) \subset \mathcal{R}^{\eta}_{\lambda,\mu}(\alpha,\beta,\gamma;\vartheta)$.

Proof: We omit the proofs since it is similar to Theorem 4.1.

ISSN: 1844 – 9581 Mathematics Section

5. CONCLUSION

In this study, we obtain the coefficient inequalities, inclusion relations and neighborhood properties of the subclasses $\mathcal{M}_{\lambda,\mu}^n(\alpha,\beta,\gamma)$ and $\mathcal{R}_{\lambda,\mu}^n(\alpha,\beta,\gamma;\vartheta)$.

REFERENCES

- [1] Altıntaş, O., Owa, S., Int. J. Math. and Math. Sci., 19, 797, 1996.
- [2] Altıntaş, O., Özkan, E., Srivastava, H.M., Appl. Math. Let., 13, 63, 2000.
- [3] Goodman, A.W., Proc. Amer. Math. Soc., 8, 598, 1957.
- [4] Ruscheweyh, S., Proc. Amer. Math. Soc., **81**(4), 521, 1981.
- [5] Silverman H., Far East J. Math. Sci., **3**(2), 175, 1995.
- [6] Srivastava, H.M., Bulut, S., Appl. Math. Comput., 218, 6511, 2012.
- [7] Aktas, İ., Orhan, H., Bulletin of the Transilvania University of Brasov. Mathematics, Informatics, Physics, Series III, 8(2), 1, 2015.
- [8] Catas, A., Banach J. Math. Anal., **3**(1), No. 1, 111, 2009.
- [9] Çağlar, M., Deniz, E., Kazımoğlu, S., Turkish Journal of Science, 5(3), 226, 2020.
- [10] Darwish, H.E., Lashin A.Y., Hassan B.F., *Global Journal of Science Frontier Research* (F), **15**(9), 21, 2015.
- [11] Deniz, E., Orhan, H., *Czechoslovak Math. J.*, **60**(135), 699, 2010.
- [12] Elhaddad, S., Aldweby, H., Darus, M., Acta Universitatis Apulensis, 55, 1, 2018.
- [13] Keerthi, B.S., Gangadharan, A., Srivastava, H.M., *Math. Comput. Model.*, **47**, 271, 2008.
- [14] Murugusundaramoorthy, G., Srivastava, H.M., J. Inequal. Pure Appl. Math., 5(2), Art. 24. 8, 2004.
- [15] Orhan, H., Novi Sad J. Math., **37**(1), 17, 2007.
- [16] Owa, S., Sekine, T., Yamakawa, R., Appl. Math. Comput., 187, 356, 2007.
- [17] Toklu, E., Aktas, İ., Sağsöz, F., Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., **68**(1), 776, 2019.
- [18] Mittag-Leffler, G.M., C. R. Acad. Sci. Paris, 137(2), 554, 1903.
- [19] Prabhakar, T.R., Yokohama Math. J., 19, 7, 1997.