NEIGHBORHOOD PROPERTIES OF CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS DEFINED BY GENERALIZED MITTAGLEFFLER FUNCTION

MURAT ÇAĞLAR ${ }^{1}$, ELİF KAYA BÜYÜKYURT ${ }^{1}$
Manuscript received: 06.11.2021; Accepted paper: 01.03.2022;
Published online: 30.03.2022.

Abstract

In this paper, we introduce new subclasses $\mathcal{M}_{\lambda, \mu}^{n}(\alpha, \beta, \gamma)$ and $\mathcal{R}_{\lambda, \mu}^{n}(\alpha, \beta, \gamma ; \vartheta)$ of analytic functions in the open unit disk \mathcal{U} with negative coefficients defined by generalized Mittag-Leffler function. The object of the present paper is to determine coefficient inequalities, inclusion relations and neighborhoods properties for functions $f(z)$ belonging to these subclasses.

Keywords: Analytic function; starlike and convex functions; Mittag-Leffler function; neighborhoods; coefficient inequality.

1. INTRODUCTION

Let \mathcal{A} be a class of functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

that are analytic in the open unit disk $\mathcal{U}=\{z:|z|<1\}$. Denote by $\mathrm{T}(n)$ the class of functions consisting of functions f of the form

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, \quad\left(a_{n} \geq 0\right) \tag{2}
\end{equation*}
$$

which are analytic in \mathcal{U}.
We recall that the convolution (or Hadamard product) of two functions

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \text { and } g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}
$$

is given by

$$
(f * g)(z):=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}=:(g * f)(z), \quad(z \in \mathcal{U})
$$

[^0]Note that $f * g \in \mathcal{A}$.
Next, following the earlier investigations by Altıntaș et al. [1, 2], Goodman [3], Ruscheweyh [4], Silverman [5], and Srivastava and Bulut [6] (see also [7-17]), we define the (n, δ)-neighborhood of a function $f \in \mathrm{~T}(n)$ by

$$
\begin{equation*}
\mathcal{N}_{n, \delta}(f)=\left\{g \in \mathrm{~T}(n): g(z)=z-\sum_{n=2}^{\infty} b_{n} z^{n} \text { and } \sum_{n=2}^{\infty} n\left|a_{n}-b_{n}\right| \leq \delta\right\} . \tag{3}
\end{equation*}
$$

For $e(z)=z$, we have

$$
\begin{equation*}
\mathcal{N}_{n, \delta}(e)=\left\{g \in \mathrm{~T}(n): g(z)=z-\sum_{n=2}^{\infty} b_{n} z^{n} \text { and } \sum_{n=2}^{\infty} n\left|b_{n}\right| \leq \delta\right\} . \tag{4}
\end{equation*}
$$

A function $f \in \mathrm{~T}(n)$ is α-starlike of complex order γ, denoted by $f \in \mathcal{S}_{n}^{*}(\alpha, \gamma)$ if it satisfies the following condition

$$
\operatorname{Re}\left\{1+\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)\right\}>\alpha, \quad(\gamma \in \mathbb{C} \backslash\{0\}, 0 \leq \alpha<1, z \in \mathcal{U})
$$

and a function $f \in \mathrm{~T}(n)$ is α-convex of complex order γ, denoted by $f \in \mathcal{C}_{n}(\alpha, \gamma)$ if it satisfies the following condition

$$
\operatorname{Re}\left\{1+\frac{1}{\gamma} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha, \quad(\gamma \in \mathbb{C} \backslash\{0\}, 0 \leq \alpha<1, z \in \mathcal{U})
$$

The Mittag-Leffler [18] function $E_{\lambda}(z)$, defined by

$$
\begin{equation*}
E_{\lambda}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma(\lambda n+1)}, \quad(\lambda \in \mathbb{C}, \operatorname{Re}(\lambda)>0, z \in \mathcal{U}) \tag{5}
\end{equation*}
$$

Prabhakar [19] considered a new Mittag-Leffler type function $E_{\lambda, \mu}^{\beta}(z)$ of the form

$$
\begin{equation*}
E_{\lambda, \mu}^{\beta}(z)=\sum_{n=0}^{\infty} \frac{(\beta)_{n}}{\Gamma(\lambda n+\mu)} \frac{z^{n}}{n!},(z \in \mathcal{U}) \tag{6}
\end{equation*}
$$

where $\lambda, \mu, \beta \in \mathbb{C}, \operatorname{Re}(\lambda)>0, \operatorname{Re}(\mu)>0, \operatorname{Re}(\beta)>0$ and

$$
(\beta)_{n}= \begin{cases}1, & n=0 \\ \beta(\beta+1) \cdots(\beta+n-1), & n \in \mathbb{N}\end{cases}
$$

is the well-known Pochhammer symbol.
Note that $E_{\lambda}(z)=E_{\lambda, 1}^{1}(z)$ and $E_{\lambda, \mu}(z)=E_{\lambda, \mu}^{1}(z)$.
The generalized Mittag-Leffler function $E_{\lambda, \mu}^{\beta}(z)$ does not belong to the class \mathcal{A}. Therefore, we consider the following normalization for the function $E_{\lambda, \mu}^{\beta}(z)$:

$$
\begin{equation*}
\tilde{E}_{\lambda, \mu}^{\beta}(z)=\Gamma(\mu) z E_{\lambda, \mu}^{\beta}(z)=z+\sum_{n=1}^{\infty} \frac{\Gamma(\mu)(\beta)_{n}}{\Gamma(\lambda n+\mu)} \frac{z^{n+1}}{n!},(z \in \mathcal{U}) . \tag{7}
\end{equation*}
$$

In terms of Hadamard product and $E_{\lambda, \mu}^{\beta}(z)$ given by (1.7), a new operator $\varepsilon_{\lambda, \mu}^{\beta}: \mathcal{A} \rightarrow \mathcal{A}$ can be defined as follows:

$$
\begin{equation*}
\varepsilon_{\lambda, \mu}^{\beta} f(z)=\left(\tilde{E}_{\lambda, \mu}^{\beta} * f\right)(z)=z+\sum_{n=1}^{\infty} \frac{\Gamma(\mu)(\beta)_{n} a_{n+1}}{\Gamma(\lambda n+\mu)} \frac{z^{n+1}}{n!},(z \in \mathcal{U}) . \tag{8}
\end{equation*}
$$

If $f \in \mathrm{~T}(n)$ is given by (1.2), then we have

$$
\begin{equation*}
\varepsilon_{\lambda, \mu}^{\beta} f(z)=z-\sum_{n=1}^{\infty} \frac{\Gamma(\mu)(\beta)_{n} a_{n+1}}{\Gamma(\lambda n+\mu)} \frac{z^{n+1}}{n!},(z \in \mathcal{U}) \tag{9}
\end{equation*}
$$

Finally, by using the differential operator defined by (1.9), we investigate the subclasses $\mathcal{M}_{\lambda, \mu}^{n}(\alpha, \beta, \gamma)$ and $\mathcal{R}_{\lambda, \mu}^{n}(\alpha, \beta, \gamma ; \vartheta)$ of $\mathrm{T}(n)$ consisting of functions f as the followings:

However, throughout this paper, we restrict our attention to the case real-valued λ, μ, β with $\lambda>0, \mu>0$ and $\beta>0$.

Definition 1.1 The subclass $\mathcal{M}_{\lambda, \mu}^{n}(\alpha, \beta, \gamma)$ of $\mathrm{T}(n)$ is defined as the class of functions f such that

$$
\begin{equation*}
\left|\frac{1}{\gamma}\left(\frac{z\left[\varepsilon_{\lambda, \mu}^{\beta} f(z)\right]^{\prime}}{\varepsilon_{\lambda, \mu}^{\beta} f(z)}-1\right)\right|<\alpha,(z \in \mathcal{U}) \tag{10}
\end{equation*}
$$

where $\gamma \in \mathbb{C} \backslash\{0\}$ and $0 \leq \alpha<1$.
Definition 1.2 Let $\mathcal{R}_{\lambda, \mu}^{n}(\alpha, \beta, \gamma ; \vartheta)$ denote the subclass of $\mathrm{T}(n)$ consisting of f which satisfy the inequality

$$
\begin{equation*}
\left|\frac{1}{\gamma}\left[(1-\vartheta) \frac{\varepsilon_{\lambda, \mu}^{\beta} f(z)}{z}+\vartheta\left(\varepsilon_{\lambda, \mu}^{\beta} f(z)\right)^{\prime}-1\right]\right|<\alpha \tag{11}
\end{equation*}
$$

where $\gamma \in \mathbb{C} \backslash\{0\}, 0 \leq \alpha<1$ and $0 \leq \vartheta \leq 1$.
In this paper, we obtain the coefficient inequalities, inclusion relations and neighborhood properties of the subclasses $\mathcal{M}_{\lambda, \mu}^{n}(\alpha, \beta, \gamma)$ and $\mathcal{R}_{\lambda, \mu}^{n}(\alpha, \beta, \gamma ; \vartheta)$.

2. COEFFICIENT INEQUALITIES FOR $\mathcal{M}_{\lambda, \mu}^{n}(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma})$ AND $\mathcal{R}_{\lambda, \mu}^{n}(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma} ; \boldsymbol{\vartheta})$

Theorem 2.1 Let $f \in \mathrm{~T}(n)$. Then $f \in \mathcal{M}_{\lambda, \mu}^{n}(\alpha, \beta, \gamma)$ if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{\Gamma(\mu)(\beta)_{n-1}}{\Gamma(\lambda(n-1)+\mu)(n-1)!}[n-1+\alpha|\gamma|] a_{n} \leq \alpha|\gamma| \tag{12}
\end{equation*}
$$

for $\gamma \in \mathbb{C} \backslash\{0\}$ and $0 \leq \alpha<1$.
Proof: Let $f \in \mathrm{~T}(n)$. Then, by (1.10) we can write

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left[\varepsilon_{\lambda, \mu}^{\beta} f(z)\right]^{\prime}}{\varepsilon_{\lambda, \mu}^{\beta} f(z)}-1\right\}>-\alpha|\gamma|,(z \in \mathcal{U}) \tag{13}
\end{equation*}
$$

Using (1.2) and (1.9), we have,

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{-\sum_{n=2}^{\infty} \frac{\Gamma(\mu)(\beta)_{n-1}}{\Gamma(\lambda(n-1)+\mu)(n-1)!}[n-1] a_{n} z^{n}}{z-\sum_{n=2}^{\infty} \frac{\Gamma(\mu)(\beta)_{n-1}}{\Gamma(\lambda(n-1)+\mu)(n-1)!} a_{n} z^{n}}\right\}>-\alpha|\gamma|,(z \in \mathcal{U}) \tag{14}
\end{equation*}
$$

Since (2.3) is true for all $z \in \mathcal{U}$, choose values of z on the real axis. Letting $z \rightarrow 1$, through the real values, the inequality (2.3) yields the desired inequality

$$
\sum_{n=2}^{\infty} \frac{\Gamma(\mu)(\beta)_{n-1}}{\Gamma(\lambda(n-1)+\mu)(n-1)!}[n-1+\alpha|\gamma|] a_{n} \leq \alpha|\gamma|
$$

Conversely, supposed that the inequality (2.1) holds true and $|z|=1$, then we obtain

$$
\begin{aligned}
\left|\frac{z\left[\varepsilon_{\lambda, \mu}^{\beta} f(z)\right]^{\prime}}{\varepsilon_{\lambda, \mu}^{\beta} f(z)}-1\right| & \leq\left|\frac{\sum_{n=2}^{\infty} \frac{\Gamma(\mu)(\beta)_{n-1}}{\Gamma(\lambda(n-1)+\mu)(n-1)!}[n-1] a_{n} z^{n}}{z-\sum_{n=2}^{\infty} \frac{\Gamma(\mu)(\beta)_{n-1}}{\Gamma(\lambda(n-1)+\mu)(n-1)!} a_{n} z^{n}}\right| \\
& \leq \frac{\sum_{n=2}^{\infty} \frac{\Gamma(\mu)(\beta)_{n-1}}{\Gamma(\lambda(n-1)+\mu)(n-1)!}[n-1] a_{n}}{1-\sum_{n=2}^{\infty} \frac{\Gamma(\mu)(\beta)_{n-1}}{\Gamma(\lambda(n-1)+\mu)(n-1)!} a_{n}} \\
& \leq \alpha|\gamma| .
\end{aligned}
$$

Hence, by the maximum modulus theorem, we have $f(z) \in \mathcal{M}_{\lambda, \mu}^{n}(\alpha, \beta, \gamma)$, which establishes the required result.

Theorem 2.2 Let $f \in \mathrm{~T}(n)$. Then $f \in \mathcal{R}_{\lambda, \mu}^{n}(\alpha, \beta, \gamma ; \vartheta)$ if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{\Gamma(\mu)(\beta)_{n-1}}{\Gamma(\lambda(n-1)+\mu)(n-1)!}[1+\vartheta(n-1)] a_{n} \leq \alpha|\gamma| \tag{15}
\end{equation*}
$$

for $\gamma \in \mathbb{C} \backslash\{0\}, 0 \leq \alpha<1$ and $0 \leq \vartheta \leq 1$.
Proof: We omit the proofs since it is similar to Theorem 2.1.

3. INCLUSION RELATIONS INVOLVING $\mathcal{N}_{n, \delta}(\boldsymbol{e})$ OF $\mathcal{M}_{\lambda, \mu}^{n}(\alpha, \beta, \gamma) \quad$ AND $\mathcal{R}_{\lambda, \mu}^{n}(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma} ; \boldsymbol{\vartheta})$

Theorem 3.1 If

$$
\begin{equation*}
\delta=\frac{2 \alpha|\gamma| \Gamma(\lambda+\mu)}{\beta(1+\alpha|\gamma|) \Gamma(\mu)},(|\gamma|<1) \tag{16}
\end{equation*}
$$

then $\mathcal{M}_{\lambda, \mu}^{n}(\alpha, \beta, \gamma) \subset \mathcal{N}_{n, \delta}(e)$.
Proof: Let $f(z) \in \mathcal{M}_{\lambda, \mu}^{n}(\alpha, \beta, \gamma)$. By Theorem 2.1, we have

$$
\frac{\beta \Gamma(\mu)}{\Gamma(\lambda+\mu)}(1+\alpha|\gamma|) \sum_{n=2}^{\infty} a_{n} \leq \alpha|\gamma|
$$

which implies

$$
\begin{equation*}
\sum_{n=2}^{\infty} a_{n} \leq \frac{\alpha|\gamma|}{\frac{\beta \Gamma(\mu)}{\Gamma(\lambda+\mu)}(1+\alpha|\gamma|)} \tag{17}
\end{equation*}
$$

Using (2.1) and (3.2), we get

$$
\begin{aligned}
\frac{\beta \Gamma(\mu)}{\Gamma(\lambda+\mu)} \sum_{n=2}^{\infty} n a_{n} & \leq \alpha|\gamma|+\frac{\beta \Gamma(\mu)}{\Gamma(\lambda+\mu)}(1-\alpha|\gamma|) \sum_{n=2}^{\infty} a_{n} \\
& \leq \frac{2 \alpha|\gamma|}{(1+\alpha|\gamma|)}=\delta
\end{aligned}
$$

That is,

$$
\sum_{n=2}^{\infty} n a_{n} \leq \frac{2 \alpha|\gamma|}{\frac{\beta \Gamma(\mu)}{\Gamma(\lambda+\mu)}(1+\alpha|\gamma|)}=\delta
$$

Thus, by the definition given by (1.4), $f(z) \in \mathcal{N}_{n, \delta}(e)$, which completes the proof.

$$
\begin{equation*}
\delta=\frac{2 \alpha|\gamma| \Gamma(\lambda+\mu)}{\beta(1+\vartheta) \Gamma(\mu)},(|\gamma|<1) \tag{18}
\end{equation*}
$$

then $\mathcal{R}_{\lambda, \mu}^{n}(\alpha, \beta, \gamma ; \vartheta) \subset \mathcal{N}_{n, \delta}(e)$.
Proof: For $f(z) \in \mathcal{R}_{\lambda, \mu}^{n}(\alpha, \beta, \gamma ; \vartheta)$ and making use of the condition (2.4), we obtain

$$
\frac{\beta \Gamma(\mu)}{\Gamma(\lambda+\mu)}(1+\vartheta) \sum_{n=2}^{\infty} a_{n} \leq \alpha|\gamma|
$$

so that

$$
\begin{equation*}
\sum_{n=2}^{\infty} a_{n} \leq \frac{\alpha|\gamma|}{\frac{\beta \Gamma(\mu)}{\Gamma(\lambda+\mu)}(1+\vartheta)} \tag{19}
\end{equation*}
$$

Thus, using (2.4) along with (3.4), we also get

$$
\begin{aligned}
\vartheta \frac{\beta \Gamma(\mu)}{\Gamma(\lambda+\mu)} \sum_{n=2}^{\infty} n a_{n} & \leq \alpha|\gamma|+(\vartheta-1) \frac{\Gamma(\mu)(\beta)}{\Gamma(\lambda+\mu)} \sum_{n=2}^{\infty} a_{n} \\
& \leq \alpha|\gamma|+\frac{\beta(\vartheta-1) \Gamma(\mu)}{\Gamma(\lambda+\mu)} \frac{\alpha|\gamma| \Gamma(\lambda+\mu)}{\beta(\vartheta+1) \Gamma(\mu)} \\
& \leq \frac{2 \alpha|\gamma|}{(1+\vartheta)}=\delta .
\end{aligned}
$$

Hence,

$$
\sum_{n=2}^{\infty} n a_{n} \leq \frac{2 \alpha|\gamma|}{\frac{\beta \Gamma(\mu)}{\Gamma(\lambda+\mu)}(1+\vartheta)}=\delta
$$

which in view of (1.4), completes the proof of theorem.

4. NEIGHBORHOOD PROPERTIES FOR THE CLASSES $\mathcal{M}_{\lambda, \mu}^{\eta}(\boldsymbol{\alpha}, \boldsymbol{\beta}, \gamma)$ AND $\mathcal{R}_{\lambda, \mu}^{\eta}(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma} ; \boldsymbol{\vartheta})$

Definition 4.1 For $0 \leq \eta<1$ and $z \in \mathcal{U}$, a function $f(z) \in \mathcal{M}_{\lambda, \mu}^{\eta}(\alpha, \beta, \gamma)$ if there exists a function $g(z) \in \mathcal{M}_{\lambda, \mu}^{n}(\alpha, \beta, \gamma)$ such that

$$
\begin{equation*}
\left|\frac{f(z)}{g(z)}-1\right|<1-\eta . \tag{20}
\end{equation*}
$$

For $0 \leq \eta<1$ and $z \in \mathcal{U}$, a function $f(z) \in \mathcal{R}_{\lambda, \mu}^{\eta}(\alpha, \beta, \gamma ; \vartheta)$ if there exists a function $g(z) \in \mathcal{R}_{\lambda, \mu}^{\eta}(\alpha, \beta, \gamma ; \vartheta)$ such that the inequality (4.1) holds true.

Theorem 4.1 If $g(z) \in \mathcal{M}_{\lambda, \mu}^{\eta}(\alpha, \beta, \gamma)$ and

$$
\begin{equation*}
\eta=1-\frac{\beta \delta(1+\alpha|\gamma|) \Gamma(\mu)}{2[\beta(1+\alpha|\gamma|) \Gamma(\mu)-\alpha|\gamma| \Gamma(\lambda+\mu)]^{\prime}} \tag{21}
\end{equation*}
$$

then $\mathcal{N}_{n, \delta}(g) \subset \mathcal{M}_{\lambda, \mu}^{\eta}(\alpha, \beta, \gamma)$.
Proof: Let $f(z) \in \mathcal{N}_{n, \delta}(g)$. Then,

$$
\begin{equation*}
\sum_{n=2}^{\infty} n\left|a_{n}-b_{n}\right| \leq \delta \tag{22}
\end{equation*}
$$

which yields the coefficient inequality

$$
\sum_{n=2}^{\infty}\left|a_{n}-b_{n}\right| \leq \frac{\delta}{2}, \quad(n \in \mathbb{N})
$$

Since $g(z) \in \mathcal{M}_{\lambda, \mu}^{\eta}(\alpha, \beta, \gamma)$ by (3.2), we have

$$
\begin{equation*}
\sum_{n=2}^{\infty} b_{n} \leq \frac{\alpha|\gamma|}{\frac{\beta \Gamma(\mu)}{\Gamma(\lambda+\mu)}(1+\alpha|\gamma|)} \tag{23}
\end{equation*}
$$

and so

$$
\begin{aligned}
\left|\frac{f(z)}{g(z)}-1\right| & <\frac{\sum_{n=2}^{\infty}\left|a_{n}-b_{n}\right|}{1-\sum_{n=2}^{\infty} b_{n}} \\
& \leq \frac{\delta}{2} \frac{\frac{\beta \Gamma(\mu)}{\Gamma(\lambda+\mu)}(1+\alpha|\gamma|)}{\frac{\beta \Gamma(\mu)}{\Gamma(\lambda+\mu)}(1+\alpha|\gamma|)-\alpha|\gamma|} \\
& =1-\eta .
\end{aligned}
$$

Thus, by definition, $f(z) \in \mathcal{M}_{\lambda, \mu}^{\eta}(\alpha, \beta, \gamma)$ for η given by (4.2), which establishes the desired result.

Theorem 4.2 If $g(z) \in \mathcal{R}_{\lambda, \mu}^{\eta}(\alpha, \beta, \gamma ; \vartheta)$ and

$$
\begin{equation*}
\eta=1-\frac{\beta \delta(1+\vartheta) \Gamma(\mu)}{2[\beta(1+\vartheta) \Gamma(\mu)-\alpha|\gamma| \Gamma(\lambda+\mu)]^{\prime}} \tag{24}
\end{equation*}
$$

then $\mathcal{N}_{n, \delta}(g) \subset \mathcal{R}_{\lambda, \mu}^{\eta}(\alpha, \beta, \gamma ; \vartheta)$.
Proof: We omit the proofs since it is similar to Theorem 4.1.

5. CONCLUSION

In this study, we obtain the coefficient inequalities, inclusion relations and neighborhood properties of the subclasses $\mathcal{M}_{\lambda, \mu}^{n}(\alpha, \beta, \gamma)$ and $\mathcal{R}_{\lambda, \mu}^{n}(\alpha, \beta, \gamma ; \vartheta)$.

REFERENCES

[1] Altıntaş, O., Owa, S., Int. J. Math. and Math. Sci., 19, 797, 1996.
[2] Altıntaş, O., Özkan, E., Srivastava, H.M., Appl. Math. Let., 13, 63, 2000.
[3] Goodman, A.W., Proc. Amer. Math. Soc., 8, 598, 1957.
[4] Ruscheweyh, S., Proc. Amer. Math. Soc., 81(4), 521, 1981.
[5] Silverman H., Far East J. Math. Sci., 3(2), 175, 1995.
[6] Srivastava, H.M., Bulut, S., Appl. Math. Comput., 218, 6511, 2012.
[7] Aktas, İ., Orhan, H., Bulletin of the Transilvania University of Brasov. Mathematics, Informatics, Physics, Series III, 8(2), 1, 2015.
[8] Catas, A., Banach J. Math. Anal., 3(1), No. 1, 111, 2009.
[9] Çağlar, M., Deniz, E., Kazımoğlu, S., Turkish Journal of Science, 5(3), 226, 2020.
[10] Darwish, H.E., Lashin A.Y., Hassan B.F., Global Journal of Science Frontier Research (F), 15(9), 21, 2015.
[11] Deniz, E., Orhan, H., Czechoslovak Math. J., 60(135), 699, 2010.
[12] Elhaddad, S., Aldweby, H., Darus, M., Acta Universitatis Apulensis, 55, 1, 2018.
[13] Keerthi, B.S., Gangadharan, A., Srivastava, H.M., Math. Comput. Model., 47, 271, 2008.
[14] Murugusundaramoorthy, G., Srivastava, H.M., J. Inequal. Pure Appl. Math., 5(2), Art. 24. 8, 2004.
[15] Orhan, H., Novi Sad J. Math., 37(1), 17, 2007.
[16] Owa, S., Sekine, T., Yamakawa, R., Appl. Math. Comput., 187, 356, 2007.
[17] Toklu, E., Aktas, İ., Sağsöz, F., Commun. Fac. Sci. Univ. Ank. Ser. Al Math. Stat., 68(1), 776, 2019.
[18] Mittag-Leffler, G.M., C. R. Acad. Sci. Paris, 137(2), 554, 1903.
[19] Prabhakar, T.R., Yokohama Math. J., 19, 7, 1997.

[^0]: ${ }^{1}$ Erzurum Technical University, Faculty of Science, Department of Mathematics, 25100, Erzurum, Turkey. E-mail: mcaglar25@gmail.com; kayelif@gmail.com.

