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Abstract. In this paper, we introduce new subclasses M, («,fB,y) and
:Rj{‘#(a, B,v;9) of analytic functions in the open unit disk U with negative coefficients defined
by generalized Mittag-Leffler function. The object of the present paper is to determine

coefficient inequalities, inclusion relations and neighborhoods properties for functions f(z)
belonging to these subclasses.
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1. INTRODUCTION

Let A be a class of functions fof the form

f(z2)=z+ Z a,z" Q)
n=2

that are analytic in the open unit disk U = {z: |z| < 1}. Denote by T(n) the class of functions
consisting of functions f of the form

o)

f@=2-) 2" (a2 0) @
n=2

which are analytic in U.

We recall that the convolution (or Hadamard product) of two functions

f(z)=z+ Z a,z" and g(z) =z + Z b,z"
n=2 n=2

is given by

fD@i=2+ ) apbyz" =i (g« (), €W
n=2
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Note that f * g € A.

Next, following the earlier investigations by Altintas et al. [1, 2], Goodman [3],
Ruscheweyh [4], Silverman [5], and Srivastava and Bulut [6] (see also [7-17]), we define the
(n, 8) —neighborhood of a function f € T(n) by

Nps(f) = {g €ET(n):g(z) =z — b,z™ and nla, — b,| < 5}. 3)
For e(z) = z, we have
Nps(e) = {g ET(n):g(z) =z — b,z™ and nlb,| < 8}. (4)

A function f € T(n) is a —starlike of complex order y, denoted by f € S, («,y) if it
satisfies the following condition

1(2f'(2)
Re{1+;<f(z) —1>}>a, rec\{0},0<a<1l,zelU)

and a function f € T(n) is a —convex of complex order y, denoted by f € C,(a,y) if it
satisfies the following condition

Re {1 + %Zj{’lég)} >a, (eC\{0},0<a<1lzelU).

The Mittag-Leffler [18] function E,(z), defined by
oo Zn
EA(Z) = Z m, (/1 € C, RB(A) >0,z€ U) (5)
n=0
Prabhakar [19] considered a new Mittag-Leffler type function Efu (z) of the form

D= ) o €W, ©)

where A, u, 8 € C, Re(1) > 0, Re(u) > 0, Re(B) > 0 and

1, n=20
B =l + 1y @ n-1), meN

is the well-known Pochhammer symbol.

Note that E; (2) = Ej;,(2) and Ey ,(2) = E} ,(2).

The generalized Mittag-Leffler function Efﬂ(z) does not belong to the class A.
Therefore, we consider the following normalization for the function Efu(z):
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F(W)(B)n 2™
F(An+pu) n!

B () = T(zEl (2) = 2 + z ,(z € W). (7)

In terms of Hadamard product and Efu (z) given by (1.7), a new operator efu: A->A
can be defined as follows:

: S D) (B) sy 2
e,{fuf(z) = (Efu*f)(z) =z+; fn+n)  n ,(z € W). (8)

If f € T(n) is given by (1.2), then we have

o)

B - F(ﬂ)(ﬁ)nan+1zn+1
e f(2) =2z Z Gt €W, ©)

Finally, by using the differential operator defined by (1.9), we investigate the
subclasses My, (a,B,y) and R}, (a,B,y;¥) of T(n) consisting of functions f as the

followings:
However, throughout this paper, we restrict our attention to the case real-valued 4, u, 8
withA>0,u>0and g > 0.

Definition 1.1 The subclass M}’, (@, 8,y) of T(n) is defined as the class of functions
f such that

el f@)] .,

1
— <a (zeU), (20)
|4 ef WS (2)

wherey € C\{0}and 0 < a < 1.

Definition 1.2 Let R}, (a, B, y; ¥) denote the subclass of T(n) consisting of f which
satisfy the inequality

1
2 <a, (11)
Y

&1,/ () :
%Jrﬁ(efﬂf(z)) ~1

[(1 —9)

wherey € C\{0},0 <a<land0 <9 <1

In this paper, we obtain the coefficient inequalities, inclusion relations and
neighborhood properties of the subclasses M}, (a, B,v) and R}, (a, B,v; V).
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2. COEFFICIENT INEQUALITIES FOR M7} ,(a, B,v) AND R} ,(a,B,v;¥9)

Theorem 2.1 Let f € T(n). Then f € My, (a,B,y) if and only if

F(ﬂ) (,B)n—l

L TAMm =1 +mm—1)! [n—1+alylla, < aly| (12)

fory e C\{0}and 0 < a < 1.

Proof: Let f € T(n). Then, by (1.10) we can write

!

z|f f (2]
o J A5 D]

—1;>—alyl,(z €W). (13)
&1 f(2)
Using (1.2) and (1.9), we have,
oo F(H)(ﬁ)n_l
~2n=2 FOm = D) + =1~ U
o R 7]/ R S 49

Cen=2TAMm - 1) +wn — 1)!

Since (2.3) is true for all z € U, choose values of z on the real axis. Letting z - 1,
through the real values, the inequality (2.3) yields the desired inequality

[n—1+alylla, < alyl.

i O
P rAn—=10+wmnh-1)!

Conversely, supposed that the inequality (2.1) holds true and |z| = 1, then we obtain

W (Bn-1

M_ 1| < Zin=2 rdn=-1)+wmn-1)! [n—1]a,z"
B ) o F @By -
Exl,uf(z) Z = Ln=2 r(n—-1)+ ,U)(ln —1)! anz
0 () (Bn-1
3 Xn=2 T =1) + W=D "~ Uan
1oy FG) By

T An=2 T — 1) + w(n— 1)1 o
< alyl.

Hence, by the maximum modulus theorem, we have f(z) € M}, (, B,y), Which
establishes the required result.
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Theorem 2.2 Let f € T(n). Then f € R} ,(a, B,y;9) if and only if

rw)(B)n-1

F(A(Tl _ 1) + ,u)(n _ 1)! [1 + 19(” - 1)]an < alYl (15)

fory e C\{0},0<a<land0 <9 < 1.

Proof: We omit the proofs since it is similar to Theorem 2.1.

3. INCLUSION RELATIONS INVOLVING N,s(e) OF M%,(aB,y) AND
in(@ B v:9)

Theorem 3.1 If

_ 2alylr@+u)
B+ alyDI(w)’

then er,l/,t (a' ﬁ' ]/) c Nn,S (e)

Iyl < D), (16)

Proof: Let f(z) € My, (a, B,v)- By Theorem 2.1, we have

o (1 + aly) Z @, < alyl,
which implies
i al an
,fg’{ L+ alyD)

Using (2.1) and (3.2), we get

BI (w) BI(w)
e 2, M Syl 4 s (- a|y|>nZZ an
2alyl
(1 +alyD
That is,
Z na 2alyl = 4.
= F‘gﬂ‘)) 1+ alyD

Thus, by the definition given by (1.4), f(z) € NV, s(e), which completes the proof.

Theorem 3.2 If
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_ 2alyll(A+w)

A+ ()’
then R}, (@, B,v;9) € Ny s(e).

Syl < D), (18)

Proof: For f(z) € R} ,(a, B,y;9) and making use of the condition (2.4), we obtain

BI (1)
Fa+ )(1+19)z a, < aly|
so that
2 alyl 19)
T pruw '
n=z A+ p 1+9)

Thus, using (2.4) along with (3.4), we also get

Br(w) < L TWB) X
mnzz nanSa|y|+(19 1)—1_,(&_{_#)”:2 a,

BW — DI (W) alyll' A+ p)

=W+ o+ Draw

2aly|

<d+o %
Hence,
N 2aly|
na, < =04
"Z; rg Ef )) 1 +9)

which in view of (1.4), completes the proof of theorem.

4. NEIGHBORHOOD PROPERTIES FOR THE CLASSES Mg‘u(a, B.v) AND
R} (@, B,y:9)

Definition 4.1 For 0 <n < 1land z € U, a function f(z) € MA’?M(a,ﬁ,y) if there exists a
function g(z) € M7, (a, B,y) such that

f(2)
g9(2)

—1|<1—n- (20)

For 0 <n <1andze€U,afunction f(z) € joﬂ(a, B,v;9) if there exists a function
g(2) € RZ#(a,B,y; 9J) such that the inequality (4.1) holds true.

Theorem 4.1 If g(z) € M, (a,8,y) and
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B8 + alyDI(w)

=1 2BA F aly DTG — aly It + T &)

then Nn,5(g) C M,{?H(a' ,8, V)

Proof: Let f(z) € NV, s(g). Then,

o

Z nla, — b, < 6, 22)

n=2

which yields the coefficient inequality

[ee]

)
Dlan-bl <z, (meN).

n=2

Since g(z) € My, (a, B,v) by (3.2), we have

a
b, < V4

. Ff{—%m +alyl)

NgE

(23)

n

and so

@) | Zia loa =

9(z) 1= 2n=2 bn
Br(w)
s l"(/l—-l—u)(l + alyl)
zrg_%(l +aly]) - alyl
=1-7.

Thus, by definition, f(z) € M}, (a,8,y) for n given by (4.2), which establishes the
desired result.

Theorem 4.2 If g(z) € R} ,(a,B,v;9) and

B8+ 9w

=1 BA T OT @ — ay TG + 0T 24

then IV, s(g) C R;"u((x,ﬂ, v;9).

Proof: We omit the proofs since it is similar to Theorem 4.1.
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5. CONCLUSION

In this study, we obtain the coefficient inequalities, inclusion relations and

neighborhood properties of the subclasses M}, (a, B,v) and R}, (a, B,v; V).
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