ORIGINAL PAPER

THE CLP-COMPACT-OPEN TOPOLOGY ON KC(X, Y)

İSMAİL OSMANOĞLU¹

Manuscript received: 09.11.2021; Accepted paper: 16.02.2022; Published online: 30.03.2022.

Abstract. In this paper, we introduce clp-compact-open topology on KC(X,Y) and compare this topology with compact-open topology and the topology of uniform convergence. Then, we examine metrizability, completeness and countability properties of the clp-compact-open topology on KC(X,Y).

Keywords: Function space; set-open topology; metrizable; separability; second countable.

1. INTRODUCTION AND PRELIMINARIES

It is a well-known fact that there are many topologies on C(X, Y) of all continuous functions from a Tychonoff space X to a metric space Y. A number of these natural topologies are the point-open topology, the compact-open topology, the open-cover topology, the uniform topology, the fine topology and the graph topology. The compact-open topology, which was introduced by Fox [1], is one of the commonly used topologies on function spaces, and has many applications in homotopy theory and functional analysis. Later on it was improved by Arens and Dugundji in [2, 3]. Since it is used to study uniformly convergent sequences of functions on compact subsets, it is also called the topology of uniform convergence on compact sets. Kundu and Garg [4] presented some results on the compactopen topology on KC(X), the set of all real-valued functions on X, which are continuous on the compact subsets of X. Clearly KC(X) = C(X) if and only if X is a $k_{\mathbb{R}}$ -space. Therefore, more general and beneficial results can be presented if KC(X) is used instead of C(X).

In the present paper, we introduce clp-compact-open topology on KC(X,Y) and compare this topology with some other known topologies such as the compact-open topology and the uniform topology. We investigate the properties of the clp-compact-open topology on KC(X) such as submetrizability, metrizability, separability, and second countability.

Unless otherwise stated clearly, throughout this paper, all spaces are assumed to be Tychonoff (completely regular Hausdorff).

If X and Y are any two topological spaces with the same underlying set, then we use the notation $X = Y, X \le Y$, and X < Y to indicate, respectively, that X and Y have the same topology, that the topology on Y is finer than or equal to the topology on X, and that the topology on Y is strictly finer than the topology on X. Topological space will be used as space. The topology of the space X will be represented by $\tau(X)$. If $A \subseteq X$ and $f \in C(X)$, then we use the notation $f|_A$ for the restriction of the function f to the set A. We denote by \mathbb{R} the real line with the natural topology. Finally, the constant zero function in C(X) is denoted by f_0 .

¹ Nevşehir Hacı Bektaş Veli University, Faculty of Arts and Sciences, Department of Mathematics, 50300 Nevşehir, Turkey. E-mail: <u>ismailosmanoglu@yahoo.com</u>.

2. THE CLP-COMPACT-OPEN TOPOLOGY

In this section, we define the clp-compact-open topology on KC(X, Y) and also give some equivalent definitions. Then we compare the clp-compact-open topology with the compact-open topology and the topology of uniform convergence.

A topological space X is clp-compact if every cover consisting of clopen (both open and closed) sets has a nite subcover [5]. The motivation for this fact that it is a generalization of both compact spaces and connected spaces. Clp-compactness is preserved by taking clopen subsets and continuous images. For details see [5] and [6].

A function $f: X \to Y$ is called compact-continuous [7] if restriction function $f|_A: X \to Y$ is continuous whenever A is a compact subspace of X. Let KC(X, Y) denote the set of all compact-continuous functions from X to Y. Since the restriction function of every continuous function is also continuous, every continuous function is compact-continuous. Therefore, it is seen that $C(X, Y) \subseteq KC(X, Y)$.

A space X is a $k_{\mathbb{R}}$ -space if it is a Tychonoff space and if every mapping $f: X \to \mathbb{R}$, whose restriction to every compact set $K \subset X$ is continuous, is continuous on X [8].

Recall that C(X) = KC(X) if and only if the space X is $k_{\mathbb{R}}$ -space. Also submetrizable space is a $k_{\mathbb{R}}$ -space. It is clearly seen that for compact space X, C(X) = KC(X).

Let α be a nonempty family of subsets of a space X. For $A \in \alpha$ and $V \in \tau(Y)$, set-open topology on KC(X, Y) denoted by $KC_{\alpha}(X, Y)$ has a subbase consisting of the sets

$$S(A,V) = \{ f \in KC(X,Y) \colon f(A) \subseteq V \}.$$

If we take all compact subsets of X as the family, we get the compact-open topology and denote it by $KC_k(X,Y)$. If all clp-compact subsets of X are taken as the family, the obtained topology is called the clp-compact-open topology and denoted by $KC_{clp}(X,Y)$.

The topology of uniform convergence on members of α has as base at each point $f \in KC(X, Y)$ the family of all sets of the form

$$B_{A}(f,\varepsilon) = \{g \in KC(X,Y): d(f(x),g(x)) < \varepsilon, \forall x \in A\}$$

where $A \in \alpha$ and $\varepsilon > 0$. The space KC(X, Y) having the topology of uniform convergence on is denoted by $KC_{\alpha,u}(X, Y)$. In the case that $\alpha = \{X\}$, the topology on KC(X, Y) is called the topology of uniform convergence or uniform topology and denoted by $KC_u(X, Y)$.

Now, we can compare the topologies. Since every compact space is clp-compact, the following result can be obtained immediately.

Theorem 1. For any space X and any metric space Y, $KC_k(X, Y) \leq KC_{clp}(X, Y)$.

A space X is said to have nontrivial path if there are distinct points x_1 and x_2 in X, and a continuous function $p: [0; 1] \rightarrow X$ such that $p(0) = x_1$ and $p(1) = x_2$.

Theorem 2. For any space X and any metric space Y contains a nontrivial path, $KC_k(X, Y) = KC_{clp}(X, Y)$, if and only if every closed clp-compact subset of X is compact.

Proof: If every closed clp-compact subset of X is compact, then $KC_{clp}(X,Y) \leq KC_k(X,Y)$. Thus, we have $KC_k(X,Y) = KC_{clp}(X,Y)$.

Conversely, let $KC_k(X, Y) = KC_{clp}(X, Y)$ and let *A* be any closed clp-compact subset of *X*. Let $p: [0; 1] \to Y$, be a nontrivial path such that $p(0) \neq p(1)$. Let $h \in KC(X, Y)$ be defined as h(x) = p(0) for all $x \in X$. Choose an $\varepsilon > 0$ such that $\varepsilon < d(p(0), p(1))$. Then, there should exist a compact subset *F* of *X* and $\delta > 0$ such that $B_F(h, \delta) \subseteq B_A(h, \varepsilon)$. Choose $x_0 \in A \setminus F$. Since X is Tychonoff, there exists a continuous function $\phi: X \to [0; 1]$ such that $\phi(F) = \{0\}$ and $\phi(x_0) = 1$. Then, the function $g = \phi \circ p \in B_F(h, \delta) \setminus B_A(h, \varepsilon)$, a contradiction.

Corollary 1. If X is a compact space, then for any metric space Y, $KC_k(X,Y) = KC_{clp}(X,Y) = KC_u(X,Y)$.

We recall that in a zero-dimensional space, i.e. a space with a base of clopen sets, the notions of compactness and clp-compactness coincide (See [5, Proposition 1.12]). Then we obtain the following result.

Corollary 2. If X is a zero-dimensional space, then for any metric space Y, $KC_k(X,Y) = KC_{clp}(X,Y) \le KC_u(X,Y)$.

Note that any countable regular space is zero-dimensional and consequently any countable compact Hausdorff space is zero-dimensional. Thus we can give the following result.

Corollary 3. If *X* is a countable space, then for any metric space *Y*,

$$KC_k(X,Y) = KC_{clp}(X,Y).$$

We recall that a non-empty subspace $Y \subseteq \mathbb{R}$ is zero-dimensional if and only if it does not contain any interval (see page 11 in [9]). Then, a subspace $Y \subseteq \mathbb{R}$ is zero-dimensional if and only if $\mathbb{R}\setminus Y$ is dense. It follows that the rational numbers \mathbb{Q} , the irrational numbers \mathbb{P} , and the Cantor set *C* are zero-dimensional.

Considering Theorem 4.1 and Theorem 4.5 in [10], it is clear that $KC_{clp}(X,Y) \neq KC_{clp,u}(X,Y)$. Therefore we will consider the clp-compact-open topology on KC(X,Y) where Y is a zero-dimensional metric space contains a nontrivial path. The results to be obtained are clearly provided for $KC^*(X)$ the set of all bounded continuous real-valued functions on X, which are continuous on the compact subsets of X.

Theorem 3. For any space X and zero-dimensional metric space Y, the clp-compact-open topology on KC(X, Y) is the same as the topology of uniform convergence on the clp-compact subsets of X, that is, $KC_{clp}(X, Y) = KC_{clp,u}(X, Y)$.

Proof: Assume that S(A, V) is a subbasic open set in $KC_{clp}(X, Y)$ and $f \in S(A, V)$. Since f(A) is compact and $f(A) \subseteq V$, then there exists $\varepsilon > 0$ such that $B(f(A), \varepsilon) \subseteq V$ [11, Corollary 4.1.14]. If $g \in B_A(f, \varepsilon)$ and $x \in A$, then we obtain $g(x) \in B(f(x), \varepsilon)$. Hence, we find $g(A) \subseteq V$, i.e. $g \in S(A, V)$. It follows that $B_A(f, \varepsilon) \subseteq S(A, V)$. Consequently, $KC_{clp}(X, Y) \leq KC_{clp,u}(X, Y)$.

Now, let $B_A(f,\varepsilon)$ be a basic neighborhood of f in $KC_{clp,u}(X,Y)$. Then, there exist $f(x_1), f(x_2), \dots, f(x_n)$ such that $f(A) \subseteq \bigcup_{i=1}^n B(f(x_i), \varepsilon/3)$ since f(A) is compact. If we take $V_i = B(f(x_i), \varepsilon/3)$ and $W_i = B(f(x_i), 2\varepsilon/3)$, we find $\overline{V_i} \subseteq W_i$. Also $f(A) \subseteq \bigcup_{i=1}^n V_i \subseteq \bigcup_{i=1}^n \overline{V_i}$. Let $A_i = A \cap f^{-1}(\overline{V_i})$, where each A_i is clp-compact. We have $f(A_i) \subseteq \overline{V_i} \subseteq W_i$ and so $f \in \bigcap_{i=1}^n S(A_i, W_i)$. Now we need to show that $\bigcap_{i=1}^n S(A_i, W_i) \subseteq B_A(f, \varepsilon)$. Suppose that $g \in \bigcap_{i=1}^n S(A_i, W_i)$ and $x \in \bigcup_{i=1}^n A_i$. Thus, there exists an i such that $x \in A_i$ and consequently, $f(x) \in \overline{V_i}$ and $g(x) \in W_i$. Since $d(f(x), g(x)) \leq d(f(x), f(x_i)) + d(f(x_i), g(x)) < \frac{\varepsilon}{3} + \frac{2\varepsilon}{3} = \varepsilon$, then $g \in B_A(f, \varepsilon)$. Hence, $KC_{clp,u}(X, Y) \leq KC_{clp}(X, Y)$.

İsmail Osmanoğlu

Corollary 4. For any space X and zero-dimensional metric space Y, $KC_k(X,Y) \le KC_{clp}(X,Y) = KC_{clp,u}(X,Y) \le KC_u(X,Y)$.

By Theorem 3, it is seen that the weak clp-compact-open topology on KC(X, Y) can be achieved another way. For each clp-compact subset A of X and $\varepsilon > 0$, we define the seminorm p_A on KC(X, Y) and $V_{A,\varepsilon}$, as follow: $p_A = \sup\{|f(x)|: x \in A\}$ and $V_{A,\varepsilon} = \{f \in KC(X, Y): p_A(f) < \varepsilon\}$. Let $\mathcal{V} = \{V_{A,\varepsilon}: A \text{ is clp-compact in } X, \varepsilon > 0\}$. Then for each $f \in KC(X, Y), f + \mathcal{V} = \{f + V: V \in \mathcal{V}\}$ forms a neighborhood base at f. Since it is generated by a collections of seminorms this topology is locally convex and it is same as the clp-compactopen topology on KC(X, Y). It is also easy to see that this topology is Hausdorff. Recall that if the topology of a locally convex Hausdorff space is generated by a countable family of seminorms, then it is metrizable (see page 119 in [12]).

Theorem 4. For any space X and zero-dimensional metric space Y contains a nontrivial path, $KC_{clp}(X,Y) = KC_u(X,Y)$ if and only if X is clp-compact.

Proof: Let $KC_{clp}(X,Y) = KC_u(X,Y)$. Let $p : [0; 1] \to Y$ be a continuous function such that $p(0) \neq p(1)$. Define $g: X \to Y$ by g(x) = p(0) for all $x \in X$ and consider the basic open set $B_X(g,\varepsilon)$ in $KC_u(X,Y)$, where $\varepsilon = d(p(0), p(1))$. We show that $B_X(g,\varepsilon)$ is not open in $KC_{clp}(X,Y)$. Consider any clp-compact subset A of X. Since X is not clp-compact, there exists $x_0 \in X \setminus \overline{A}$. Since X is Tychonoff, there exist a continuous function $\phi : X \to [0; 1]$ such that $\phi(\overline{A}) = 0$ and $\phi(x_0) = 1$. Let $h = p \circ \phi \in KC(X,Y)$. Then $h \in B_A(g,\delta)$ for any $\delta > 0$, because for any $x \in A$, $d(h(x), g(x)) = d(p(\phi(x)), p(0)) = d(p(0), p(0)) = 0 < \delta$. But $h \notin B_X(g,\varepsilon)$ as $d(g(x_0), h(x_0)) = d(p(0), p(1)) = \varepsilon$. So $B_A(g,\delta) \notin B_X(g,\varepsilon)$ for any clp-compact subset A of X. This shows that $B_X(g,\varepsilon)$ is not open in $KC_{clp}(X,Y)$. So we arrive at a contradiction. Hence X is clp-compact.

Conversely, suppose that X is clp-compact. It follows that for each $f \in KC(X, Y)$ and each $\varepsilon > 0$, $B_X(f, \varepsilon)$ is an open set in $KC_{clp,u}(X, Y) = KC_{clp}(X, Y)$ (see Theorem 3). Consequently, $KC_{clp}(X, Y) = KC_u(X, Y)$.

Example 1. \mathbb{R} is clp-compact because the only clopen subsets of \mathbb{R} are \mathbb{R} and \emptyset . Then for any metric space, we have $KC_k(\mathbb{R}, Y) \leq KC_{clp}(\mathbb{R}, Y) = KC_u(\mathbb{R}, Y)$.

Example 2. Let X be connected space which is not compact. Then the space X is clpcompact. Hence for any metric space Y, we have $KC_k(X,Y) \le KC_{clp}(X,Y) = KC_u(X,Y)$.

Example 3. The space of rational numbers $\mathbb{Q} \subseteq \mathbb{R}$ is zero-dimensional, but not compact [13, Example 30]. Also \mathbb{Q} is not clp-compact. If \mathbb{Q} is clp-compact, then \mathbb{Q} , being zero-dimensional, is compact. This leads to a contradiction Thus for any metric space *Y*, we obtain $KC_k(X,Y) = KC_{clp}(X,Y) \leq KC_u(X,Y)$.

Example 4. Let $X = [0, \omega_1)$ be the space of countable ordinals with the order topology [13, Example 42]. The space X is zero-dimensional, but not compact. Also X is not clp-compact. Hence for any metric space Y, we obtain $KC_k(X,Y) = KC_{clp}(X,Y) \le KC_u(X,Y)$.

3. SOME TOPOLOGICAL PROPERTIES OF $KC^*_{clp}(X)$

In this section, we study the submetrizability, metrizability, first countability, complete metrizability, \aleph_0 -space, cosmic, separability and second countability of $KC^*_{clp}(X)$.

A space X is said to be submetrizable if it has a weaker metrizable topology, equivalently if there exists a metrizable space Y and a continuous bijection $f: X \to Y$ from the space X onto Y.

Remark 1. (1) For any space X, if the set $\{(x, x): x \in X\}$ is G_{δ} -set (resp. Zero-set) in the product space $X \times X$, then X is said to have a G_{δ} -diagonal (resp. zero-set diagonal). Every submetrizable space X has a zero-set diagonal. Consequently, every submetrizable space X has a G_{δ} -diagonal since a zero-set is a G_{δ} -set [14].

(2) A space X is called an E_0 -space if every point in the space is a G_{δ} -set. The submetrizable spaces are E_0 -spaces [14].

Finally, recall that in submetrizable space, the notions of compactness, countably compactness and pseudocompactness coincide. By using this fact we obtain the following result.

Theorem 5. For any space *X*, the following are equivalent.

- (1) $KC^*_{clp}(X)$ is submetrizable.
- (2) Every pseudocompact subset of $KC^*_{clp}(X)$ is a G_{δ} -set in $KC^*_{clp}(X)$.
- (3) Every countably compact subset of $KC^*_{clp}(X)$ is a G_{δ} -set in $KC^*_{clp}(X)$.
- (4) Every compact subset of $KC^*_{clp}(X)$ is a G_{δ} -set in $KC^*_{clp}(X)$.
- (5) $KC^*_{clp}(X)$ is an E_0 -space.
- (6) $KC^*_{clp}(X)$ has a zero-set-diagonal.
- (7) $KC^*_{clp}(X)$ has a G_{δ} -diagonal.

Proof: $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$ and $(1) \Rightarrow (6) \Rightarrow (7) \Rightarrow (5)$ are all immediate.

 $(5) \Rightarrow (1)$ Let $X = \bigcup_{n=1}^{\infty} A_n$ where each A_n is clp-compact. Let $S = \bigoplus \{A_n : n \in \mathbb{N}\}$ be the topological sum of the A_n and let $\phi: S \to X$ be the natural function. Then the induced function $\phi^*: KC^*_{clp}(X) \to KC^*_{clp}(S)$ defined by $\phi^*(f) = f \circ \phi$ is continuous. Now we shall show that ϕ^* is one-to-one. Let $\phi^*(g_1) = \phi^*(g_2)$. Then g_1 and g_2 are equal on $\bigcup_{n=1}^{\infty} A_n$. So $g_1 - g_2 \in \bigcap_{n=1}^{\infty} B_{A_n}(0, \varepsilon_n) = \{0\}$. Thus $g_1 = g_2$ and consequently ϕ^* is one-to-one. By Theorem 2.2 and Theorem 2.3 in [4], $KC^*_{clp}(\bigoplus \{A_n : n \in \mathbb{N}\})$ is homeomorphic to $\prod \{KC^*_{clp}(A_n) : n \in \mathbb{N}\}$. But each $KC^*_{clp}(A_n) = C^*_{clp}(A_n)$ is metrizable by Theorem 2.8 in [15]. Since $KC^*_{clp}(S)$ is metrizable and ϕ^* is continuous injection, $KC^*_{clp}(X)$ is submetrizable.

A topological space is said to be hemiclp-compact if there exists a sequence of clpcompact sets $\{A_n\}$ in X such that for any clp-compact subset A of X, $A \subseteq A_n$ holds for some n.

Theorem 6. $KC^*_{clp}(X)$ is first countable if and only if X is hemiclp-compact.

Proof: Let $KC_{clp}^*(X)$ be rst countable. So f_0 has a countable base $\{W_n\}$, where each $W_n = S(A_{n1}, V_{n1}) \cap S(A_{n2}, V_{n2}) \cap ... \cap S(A_{nk_n}, V_{nk_n})$. Choose $A_n = \bigcup_{i=1}^{k_n} A_{ni}$. If A is any clp-compact subset of X, we need to show that $A \subseteq A_n$ for some $n \in \mathbb{N}$. Let V = (0,1) and so S(A, V) is a neighborhood of f_0 . Then there exists W_n such that $W_n \subseteq S(A, V)$ for some $n \in \mathbb{N}$. Suppose that there exists $x \in A \setminus A_n$. Since X is Tychonoff, there exists $f \in KC^*(X)$ such

that f(x) = 1 and $f(A_n) = \{0\}$. Then $f \notin S(A, V)$ but $f \in W_n$. This contradicts our supposition. Thus $A \subseteq A_n$ and hence X is hemiclp-compact.

Conversely, let $\{A_n\}$ be a sequence of clp-compact sets in X such that every clpcompact set in X is contained in A_n for some $n \in \mathbb{N}$, $\mathcal{K} = \{K_n : n \in \mathbb{N}\}$ and \mathcal{V} be a countable local base at $x \in \mathbb{R}$. Let $\bigcap_{i=1}^n S(A_i, W_i)$ be any open set in $KC^*_{clp}(X)$ containing f and $f(x) \in$ W_i . So there exist $K_{k_i} \in \mathcal{K}$ and $V_{k_i} \in \mathcal{V}$ such that $A_i \subseteq K_{k_i}$ and $V_{k_i} \subseteq W_i$, for $1 \le i \le n$. Clearly $f \in \bigcap_{i=1}^n S(K_{k_i}, V_{k_i}) \subseteq S(A_i, W_i)$. Hence, $KC^*_{clp}(X)$ is first countable since it has countable local base at f.

It is well known that a locally convex Hausdorff space is metrizable if and only if it is rst countable. Then the following result is obvious.

Corollary 5. $KC^*_{clp}(X)$ is metrizable if and only if X is hemiclp-compact.

Now, we show that even some properties of $KC^*_{clp}(X)$ weaker than first count-ability are equivalent to the metrizability of $KC^*_{clp}(X)$. So we begin with reminder of the definitions of these properties.

A subset *S* of a space *X* is said to have countable character if there exists a sequence $\{W_n : n \in \mathbb{N}\}$ of open subsets in *X* such that $S \subseteq W_n$ for each *n* and if *W* is any open set containing *S*, then $W_n \subseteq W$ for some *n*.

A space X is said to be of (pointwise) countable type if each (point) compact set is contained in a compact set having countable character. A space X is a q-space if for each point $x \in X$, there exists a sequence $\{U_n : n \in \mathbb{N}\}$ of neighborhoods of x such that if $x_n \in U_n$ for each n, then $\{x_n : n \in \mathbb{N}\}$ has a cluster point. Another property stronger than being a qspace is that of being an M-space, which can be characterized as a space that can be mapped onto a metric space by a quasi-perfect map (a continuous closed map in which inverse images of points are countably compact). Both a space of pointwise countable type and an M-space are q-spaces.

Theorem 7. For any space *X*, the following are equivalent.

- (1) $KC^*_{clp}(X)$ is metrizable.
- (2) $KC^*_{cln}(X)$ is first countable.
- (3) $KC^*_{clp}(X)$ is of pointwise countable type.
- (4) $KC^*_{clp}(X)$ is *M*-space.
- (5) $KC^*_{clp}(X)$ is q-space.
- (6) X is hemiclp-compact.

Proof: From the earlier discussions, we have $(1) \Rightarrow (3) \Rightarrow (4) \Rightarrow (6)$, $(1) \Rightarrow (5) \Rightarrow (6)$ and $(2) \Rightarrow (6)$. Also by Theorem 6, $(1) \Leftrightarrow (2) \Leftrightarrow (7)$.

(6) \Rightarrow (7) Suppose that $KC^*_{clp}(X)$ is a *q*-space. Hence, there exists a sequence $\{U_n : n \in \mathbb{N}\}$ of neighborhoods of the zero function f_0 in $KC^*_{clp}(X)$ such that if for each $n, f_n \in U_n$ then $\{f_n : n \in \mathbb{N}\}$ has a cluster point in $KC^*_{clp}(X)$. Now for each n, there exist a clp-compact subset A_n of X and $\varepsilon_n > 0$ such that $f_0 \in B_{A_n}(f_0, \varepsilon_n) \subseteq U_n$.

Let A be a clp-compact subset of X. Suppose that A is not a subset of A_n for any $n \in \mathbb{N}$. Then for each $n \in \mathbb{N}$, there exists $a_n \in A \setminus A_n$. So for each $n \in \mathbb{N}$ there exists a continuous function $f_n: X \to [0, n]$ such that $f_n(a_n) = n$ and $f_n(x) = 0$ for all $x \in A_n$. It is clear that $f_n \in B_{A_n}(f_0, \varepsilon_n)$. But the sequence $\{f_n\}_{n \in \mathbb{N}}$ does not have a cluster point in $KC^*_{clp}(X)$. Suppose that this sequence has a cluster point f in $KC^*_{clp}(X)$. Then for each $k \in \mathbb{N}$, there exists a positive integer $n_k > k$ such that $f_{n_k} \in B_A(f, 1)$. Thus, for all $k \in \mathbb{N}$, $f(a_{n_k}) > k$

 $f_{n_k}(a_{n_k}) - 1 = n_k - 1 \ge k$. But this means that f is unbounded on the clp-compact set A. Hence, the sequence $\{f_n\}_{n \in \mathbb{N}}$ cannot have a cluster point in $KC^*_{clp}(X)$ and consequently, $KC^*_{clp}(X)$ fails to be a q-space. Thus, X must be hemiclp-compact.

The topology of uniform convergence on the clp-compact subsets of X is actually generated by the uniformity of uniform convergence on these subsets. When this uniformity is complete, $KC^*_{clp}(X)$ is said to be uniformly complete. Recall that a uniform space X with an uniformity U is called uniformly complete if the uniformity U is complete. We say that the uniformity \mathcal{U} on X is complete if every Cauchy net in X converges.

A space X is called Cech-complete if X is a G_{δ} -set in βX , the Stone-Cech compactication of X. A space X is called locally Cech-complete if every point $x \in X$ has a Cech-complete neighborhood.

Theorem 8. For any space *X*, $KC^*_{clp}(X)$ is uniformly complete.

Proof: Let (f_n) be a Cauchy net in $KC^*_{clp}(X)$. If A is a compact subset of X, then the net $(f_n|_A)$ is Cauchy in $KC^*_{clp}(A) = C^*_{clp}(A)$. But since $C^*_{clp}(A)$ is uniformly complete [15, Theorem 3.9], the net $(f_n|_A)$ converges to some f_A in $C^*_{clp}(A)$. Define $f: X \to \mathbb{R}$ by $f(x) = f_A(x)$ if $x \in A$. It can easily be seen that f is well defined and $f|_A = f_A$ for A for each compact subset A of X. Clearly $f \in KC(X)$. Also it is easy to see that (f_n) converges to f.

The following results gives a characterization of complete metrizable of the space $KC^*_{clv}(X)$.

Corollary 6. For any space X, the following are equivalent.

- (1) $KC^*_{clp}(X)$ is complete metrizable.
- (2) $KC^*_{clp}(X)$ is Cech-complete.
- (3) $KC^*_{clp}(X)$ is locally Cech-complete.
- (4) $KC^*_{clp}(X)$ is an open continuous image of Cech-complete space.
- (5) $KC^*_{clp}(X)$ is metrizable.
- (6) *X* is hemiclp-compact.

Since for a $k_{\mathbb{R}}$ -space X, $C^*_{clp^*}(X)$ is complete by Theorem 3.9 in [15], then the following results can be given.

Corollary 7. For any space *X*, the following are equivalent.

- (1) $C^*_{clp^*}(X)$ is complete metrizable.
- (2) $C^*_{clp^*}(X)$ is Cech-complete.
- (3) $C^*_{clp^*}(X)$ is locally Cech-complete.
- (4) $C^*_{clp^*}(X)$ is an open continuous image of Cech-complete space.
- (5) $C^*_{clp^*}(X)$ is metrizable.
- (6) *X* is hemiclp-compact $k_{\mathbb{R}}$ -space.

We now study countability properties of $KC^*_{clp}(X)$ such as \aleph_0 -space, cosmic, separability and second countability.

A *k*-network for a space *X* is a family \mathcal{K} of subsets of *X* such that whenever compact *K* is contained in open *U*, then there is a nite subset $\mathcal{K}_0 \subseteq \mathcal{K}$ such that $K \subseteq \bigcup \mathcal{K}_0 \subseteq \mathcal{K}$. A space *X* is called a \aleph_0 -space [16] if it has a countable *k*-network.

A space X is said to have a countable network if there exists a countable family $\{A_n : n \in \mathbb{N}\}$ of subsets of X such that for each $x \in X$ and for each open set U containing x,

İsmail Osmanoğlu

there exists an A_n such that $x \in A_n \subseteq U$. A space X is called a cosmic space [16] if it has a countable network.

Recall that any \aleph_0 -space is cosmic, any cosmic space is Lindelöf and separable. Also in metrizable space, the notions of second countability, \aleph_0 -space and cosmic property coincide [16].

Theorem 9. For any space *X*, the following are equivalent.

- (1) $KC^*_{clp}(X)$ is \aleph_0 -space.
- (2) $KC^*_{clp}(X)$ is cosmic space.
- (3) $KC^*_{clp}(X)$ is second countable.
- (4) $KC^*_{clp}(X)$ is separable.
- (5) *X* is compact and metrizable.

Proof: $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are all immediate.

(4) \Rightarrow (5) It is easy to see that C(X) is dense in $KC_{clp}(X)$. If $KC^*_{clp}(X)$ is separable, then $C^*_{clp}(X)$ is separable. By Theorem 3.11 in [15], X is compact and metrizable.

 $(5) \Rightarrow (1)$ Let X be compact. Then $KC_k^*(X) = KC_{clp}^*(X) = KC_u^*(X)$ by Corollary 1 and also $KC_k^*(X) = C_k(X)$. Since compact metric space is second countable, X is second countable and so X is \aleph_0 -space. Then $C_k(X)$ is \aleph_0 -space by Corollary 4.1.3 in [17]. Hence $KC_{clp}^*(X)$ is \aleph_0 -space.

REFERENCES

- [1] Fox, R. H., Bull. Amer. Math. Soc., 51, 429, 1945.
- [2] Arens, R. F., Ann. of Math., 47, 480, 1946.
- [3] Arens, R. F., Dugundji, J., *Pacific J. Math.*, **1**, 5, 1951.
- [4] Kundu, S., Garg, P., *Topology and its Applications*, **156**, 686, 2009.
- [5] Sondore, A., Sostak, A, Acta Univ. Latviensis, 595, 123, 1994.
- [6] Sondore, A, Acta Univ. Latviensis, **595**, 143, 1994.
- [7] Guo, Z. F., Peng, L. X., Topology and its Applications 196, 217, 2015.
- [8] Michael, E., Pacific J. Math., 47, 487, 1973.
- [9] Engelking, R., Dimension Theory, North-Holland, Amsterdam, 1978.
- [10] Osipov, A. V., Topology Proc., 37, 205, 2011.
- [11] Engelking, R., *General Topology, revised and completed ed.*, Heldermann Verlag, Berlin, 1989.
- [12] Taylor, A. E., Lay, D. C., Introduction to Functional Analysis, 2nd ed., John Wiley & Sons, New York, 1980.
- [13] Steen, L. A., Seebach, J. A., *Counter Examples in Topology*, Springer Verlag, New York, 1978.
- [14] Gruenhage, G., *Handbook of Set-Theoretic Topology*, Elsevier Science Publishers B.V., 423-501, 1984.
- [15] Osmanoglu, İ., Journal of Advanced Studies in Topology, 8(1), 31, 2017.
- [16] Michael, E., J. Math. Mech, 15, 983, 1966.
- [17] McCoy R. A., Ntantu, İ., *Topological Properties of Spaces of Continuous Functions*, Springer Verlag, Berlin, 1988.