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Abstract. In this study, we consider the existence of multiple weak solutions to a class 

of Dirichlet type problem involving  ( )-triharmonic  

 

{
   ( )

    | | ( )          

                    
 

 

under some suitable conditions.  
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1. INTRODUCTION  

 

 

In this paper, we discuss the sixth-order nonlinear problem 

 

                                       {
   ( )

    | | ( )          

                    
                                               (1) 

 

where      (   ) is a bounded domain with smooth boundary   ,      ( ) with 

       ( )   ,   ( )
     ( (|   |) ( )     ) is the  ( )-triharmonic operator of sixth 

order, λ >0 is a real number.  

            In recent years, variational mathematical problems with  ( )-growth have been 

studied in several topics, such as electrorheological fluids, image processing, elastic 

mechanics, fluid dynamics and calculus of variations [1-5]. Moreover, using compact 

embedding theorems and equivalent norms in variable exponent Sobolev spaces (weighted or 

unweighted) give good results to find weak solutions for elliptic and parabolic problems 

involving  ( )-Laplacian operator [3, 6-11]. 

            In 2019, Rahal [12] investigate the existence of weak solutions to a class of nonlinear 

elliptic Navier boundary value problem involving the  ( )-Kirchhoff type triharmonic 

operator using Ekeland’s variational principle and Mountain Pass Theorem. In addition, 

Shokooh [13] study infinitely many weak solutions for the nonlinear elliptic problem with 

 ( )-triharmonic operator. Since the problem (1) is the special case of the problem (1.1) in 

Rahal [12], we give only multiple solutions of (1) using Fountain Theorem. 
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2. NOTATION AND PRELIMINARIES 

 

 

            To obtain the weak solutions of the p(x)-triharmonic problem (1), we give some basic 

properties of the variable exponent Lebesgue and Sobolev spaces   ( )( ) and     ( )( ). 

            Let 

 

  ( )  {   ( )        ( )   }, 

 

and 

 

             ( ) and              ( ) 

 

for     ( ). Define the space 

 

  ( )( )  { |                        ∫ | ( )| ( )    
 

}, 

 

with the (Luxemburg) norm 

 

‖ ‖ ( )     {   |  ( ) (
 

 
)    }, 

 

where 

  ( )( )  ∫ | ( )| ( )  
 

 

 

for     ( ) and          . 

            Let     . Then, the space     ( )( ) is defined by 

 

    ( )( )  {    ( )( )       ( )( )      }, 
 

where     
  is a multi-index, | |             and    

 | |

   

      

  . Hence     ( )( ) 

is a separable and reflexive Banach space equipped with the norm 

 

‖ ‖   ( )  ∑ ‖   ‖ ( )     . 

 

The space   
   ( )( ) is the closure of   

 ( ) in     ( )( ). We denote by  

 

    
   ( )( )       ( )( ), 

and define a norm ‖ ‖  by  

 
‖ ‖   ‖ ‖   ( )  ‖ ‖   ( )  ‖ ‖   ( ) . 
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Moreover, the norms ‖ ‖   and ‖   ‖ ( )  are equivalent on X (see [12, 13]). Let 

 

‖ ‖     {   |∫ |
   

 
|
 ( )

  
 

   } 

 

for any    . Hence, we see that ‖ ‖ is equivalent to the norms ‖ ‖   and ‖   ‖ ( )  in   

(see [12]). Throughout the paper, we take the norm ‖ ‖ on the space  . 

 

Proposition 2.1. ([12], Proposition 2.3) Let     ( ) satisfying  ( )    ( ) on  . Then, 

there exists a compact embedding     ( )( ), where  

 

  ( )  {

  ( )

    ( )
  ( )  

 

 
 

            ( )  
 

 

}. 

 

 

3. MAIN RESULTS  

 

 

            We say that u X is a weak solution of the problem (1) if  

 

∫ |   | ( )          
 

  ∫ | | ( )      
 

   

for all    .  

Let us introduce the energy functional        defined by 

 

  ( )  ∫
 

 ( )
|   | ( )  

 

  ∫
 

 ( )
| | ( )  

 

 

 

for any    . It is easy to see that    is sequentially weakly lower semicontinuous,    
  (   )  and its Gȃteaux derivative   

  at     is given by  

 

   
 ( )    ∫ |   | ( )          

 

  ∫ | | ( )      
 

 

for all    . 

Set 

  ( )( )  ∫ |   | ( )  
 

 

for any    . Then, we have 

 

‖ ‖     ‖ ‖  
   ( )( )  ‖ ‖  

 

 

and 

 

‖ ‖     ‖ ‖  
   ( )( )  ‖ ‖  

 

(see [9]). 
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For the multiple solutions of the problem (1), we need the following well-known 

Lemmas. 

 

Lemma 3.1. (see [9]) Let   be a reflexive and separable Banach space. Then there exists 

{  }     and {  
 }    

  such that  

 

      {           }̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,        {  ́
          }̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

 

and 

   
      {

     
     

, 

 

where       denotes the duality product between   and   . 

For convenience, we write        {  },        
   ,        

   . 

 

Lemma 3.2. Let     ( ) satisfying  ( )    ( ) on  . If the set    is defined by 

 

      {‖ ‖ ( ) ‖ ‖        }, 

 

then           . 

 

Proof: Using the continuous embedding     ( )( ) by Proposition 2.1 and the method in 

Lemma 4.9 in [9], then we have           . 

 

Theorem 3.3. Let       . There are infinite many pairs of solutions of the problem (1), 

i.e., the functional    has a sequence of critical points {  } such that   (  )   . 

 

Proof: The functional    is an even functional and fulfills the (PS) condition (see [12]). We 

show that  

 
(  )         {  ( )      ‖ ‖     }    as     

 

and  

 

(  )         {  ( )      ‖ ‖     }    

 

for the reel numbers    and    such that         when   is large enough. 

 
(  ) For any      such that ‖ ‖      , we have 

 

  ( )  
 

  
  ( )( )  

 

  
∫ | | ( )  
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If we take    (     
  

)

 

     
, then we obtain 

 

  ( )  
 

  
(     

  

)

  

     
    

  

(     
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                                           (
 

   
 

  ) (     
  

)

  

     
   

 

as     because       and     .  

 

 (  ) Let      be such that ‖ ‖         . Then, we get 

 

  ( )  
 

  
‖ ‖  

 
 

  
∫ | | ( )  
 

 

 

                        
 

  
‖ ‖  

 
 

     {‖ ‖ ( )
  

 ‖ ‖ ( )
  

}. 

 

Since the space    has finite dimension, the norms ‖ ‖ and ‖ ‖ ( ) are equivalent. 

Finally, 

  ( )     as ‖ ‖    ,      

 

due to       by the Fountain Theorem ([14], Theorem 3.6). 

 

 

4. CONCLUSION 

 

 

In this paper, we discuss the existence of multiple weak solutions to a class of 

Dirichlet type problem (1) involving  ( )-triharmonic. Using compact embeddings of the 

space  , variational methods and Fountain Theorem, we get infinite many pairs of solutions 

of the problem (1).  
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