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Abstract. In this study, we consider the existence of multiple weak solutions to a class
of Dirichlet type problem involving p(.)-triharmonic

{—Af,(.)u = Aul|?02y inn,
u=Au=A~A%u=0 ondf,

under some suitable conditions.
Keywords: p(.)-triharmonic operator; Variational methods; Fountain Theorem.

1. INTRODUCTION

In this paper, we discuss the sixth-order nonlinear problem

—A3 u = AMu|?0 2y inn,
{ p() (1)

u=Au=A24%1=0 onadQ,

where Q c RN (N > 3) is a bounded domain with smooth boundary 0Q, p, geC(Q) with
inf gp(x) > 1, A = div(A(|VAu|)P@~2VAu) is the p(.)-triharmonic operator of sixth
order, A >0 is a real number.

In recent years, variational mathematical problems with p(.)-growth have been
studied in several topics, such as electrorheological fluids, image processing, elastic
mechanics, fluid dynamics and calculus of variations [1-5]. Moreover, using compact
embedding theorems and equivalent norms in variable exponent Sobolev spaces (weighted or
unweighted) give good results to find weak solutions for elliptic and parabolic problems
involving p(.)-Laplacian operator [3, 6-11].

In 2019, Rahal [12] investigate the existence of weak solutions to a class of nonlinear
elliptic Navier boundary value problem involving the p(.)-Kirchhoff type triharmonic
operator using Ekeland’s variational principle and Mountain Pass Theorem. In addition,
Shokooh [13] study infinitely many weak solutions for the nonlinear elliptic problem with
p(.)-triharmonic operator. Since the problem (1) is the special case of the problem (1.1) in
Rahal [12], we give only multiple solutions of (1) using Fountain Theorem.
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2. NOTATION AND PRELIMINARIES

To obtain the weak solutions of the p(x)-triharmonic problem (1), we give some basic

properties of the variable exponent Lebesgue and Sobolev spaces LPG) () and W*PO Q).
Let

C.(Q) = {peC(Q):inf  gp(x) > 1},
and
p~ = essinfyeqp(x) and p* = esssup,cqp(x)

for peC,(Q). Define the space
LPOQ) = {ulu: Q - Ris measurable and [ [u(x)[P@dx < oo},

with the (Luxemburg) norm

lullygy = inf {8 > 0]ppe, (5) < 1}
where

Py 1) = fﬂ ()P dx

forpeC,(Q)and 1 < p~ < p* < 0.
Let keZ™*. Then, the space W*?\) (Q) is defined by

WkPO(Q) = {uelPO(Q): D*uelPV(Q),0 < a < k},

. .. |al
where aeNY is a multi-index, |a| = a; + a, + -+ ay and D% = a“fW' Hence W*P0(Q)

x1 9%y

is a separable and reflexive Banach space equipped with the norm
lullpy = ZosasillD ullpy-
The space W,"*(Q) is the closure of C&°() in W*P0)(Q). We denote by

X =w,;"Y@) nw3rO(Q),
and define a norm ||. || x by

lullx = llullipey + llullzpe + llullspe -
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Moreover, the norms ||ul|x and ||[VAu]|,, are equivalent on X (see [12, 13]). Let

f ’VAu
Q u

for any u € X. Hence, we see that [[u|| is equivalent to the norms ||ully and [|VAu/l,, in X
(see [12]). Throughout the paper, we take the norm [|u|| on the space X.

p(x)

||lul| = inf {y >0 dx < 1}

Proposition 2.1. ([12], Proposition 2.3) Let qeC,(Q) satisfying q(x) < p*(x) on Q. Then,
there exists a compact embedding X < L3¢ (Q), where

Np(x)
N—3p(x) ) p(x) <

o ,plx)=

p*(x) =

wl=z w|=z

3. MAIN RESULTS

We say that ueX is a weak solution of the problem (1) if

j |VAU|P®)=2VAuVAvdx — A J |u|9)~2ypdx = 0
Q Q

forallv € X.
Let us introduce the energy functional ¢;: X — R defined by

¢hr(w) =f L|VAu|7"(")alx—,1J L|u|q(x)dx
a P(X) q 900

for any A > 0. It is easy to see that ¢, is sequentially weakly lower semicontinuous, ¢, €
C'(X,R), and its Gateaux derivative ¢p; at u € X is given by

< ¢pj(u),v >= f |VAu|P®)-2yAuVAvdx — /1] |u |9 =2y pdx
Q Q

forall v € X.
Set

PpoW) = jﬂ [VAuP®dx

for any u € X. Then, we have
lull < 1= J[ullP” < Wy @) < lJullP”
and

lull = 1= [[ullP” < Wpo ) < [lullP”
(see [9)]).
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For the multiple solutions of the problem (1), we need the following well-known
Lemmas.

Lemma 3.1. (see [9]) Let X be a reflexive and separable Banach space. Then there exists
{ej} c X and {e/} c X* such that

X = span{ej:j = 1,2,---}, X' = span{ej*:jz 1,2, }
and

1,i=j

where <.,.> denotes the duality product between X and X*.
For convenience, we write X; = spanfe;}, Y, =@, X;, Z, =B, X;.

Lemma 3.2. Let qeC, (Q) satisfying q(x) < p*(x) on Q. If the set a, is defined by
ay = sup{llullyo: llull = L,u € Z,.},
then limk_)oo ay = 0.

Proof: Using the continuous embedding X < L10(Q) by Proposition 2.1 and the method in
Lemma 4.9 in [9], then we have lim;,_,,, @; = 0.

Theorem 3.3. Let p™ < g~. There are infinite many pairs of solutions of the problem (1),
i.e., the functional ¢, has a sequence of critical points {u,,} such that ¢, (u,,) — oo.

Proof: The functional ¢, is an even functional and fulfills the (PS) condition (see [12]). We
show that

(A1) by = inf{ga(:u € Zy, |lull =y, } > 0ask » oo
and
(42) ax =max{p(W:u €Yy, llull =m } < 0
for the reel numbers y;, and n,, such that n,, > y; > 0 when k is large enough.

(A,) Forany u € Z, such that ||u|| = y, > 1, we have
A (x)
$a(uw) > —¥Y, o) — e |u|9%dx
Q

A
W00 (@) = Z=max {Ilulll, ulld))

A
> lhullP” = 2= max {Ilulld, Ielid;,}
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1 —
P =4 llullg < 1

= 1 p~ q+ q+
p—+IIUII = Aoy |ull?, [lullgy > 1
1 p- q*
p—+||u|| —Mk ||l
1 p- qt. qt
2p—+yk —Aay v, .

1

If we take y;, = (Aq+a2+)p_’q+, then we obtain

D +
\p=—aF + \p=—aF
Pa(u) = — (/1q al )p T — da}l (Aq+a,‘z )p 1
_(Lr_1 +,a" p‘p—q+
=@ el ) e
as k — oo because p* < g and a;, - 0.

(A,) Letu € Yy, be such that ||u|]| = n, > yx > 1. Then, we get
1 A
#200 < =l = 5 [l
p a’ Jg

1 A
< =l = Zmin {Jlull g, lulld, )

Since the space Y, has finite dimension, the norms ||ul| and ||ull,4(, are equivalent.
Finally,
$a(u) » —oas Jlull » +o, u €Yy

due to p* < g~ by the Fountain Theorem ([14], Theorem 3.6).
4. CONCLUSION

In this paper, we discuss the existence of multiple weak solutions to a class of
Dirichlet type problem (1) involving p(.)-triharmonic. Using compact embeddings of the
space X, variational methods and Fountain Theorem, we get infinite many pairs of solutions
of the problem (1).
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