VIETA-PELL-LIKE POLYNOMIALS AND SOME IDENTITIES

WANNA SRIPRAD ${ }^{1}$, SOMNUK SRISAWAT ${ }^{1}$, KANTIDA TUITAKU ${ }^{1}$

Manuscript received: 10.09.2021; Accepted paper: 13.11.2021;
Published online: 30.12.2021.

Abstract

In this paper, we introduce some new generalizations of the Vieta-Pell polynomial, which is called the Vieta-Pell-Like polynomial. We also give the generating function, the Binet's formula, the sum formula, and some well-known identities for this Vieta polynomial. Furthermore, the relations between the Vieta-Pell-Like polynomial and the previously well-known identities are presented.

Keywords: Vieta-Pell polynomials; Vieta-Pell-Lucas polynomials; Vieta-Pell-Like polynomial.

1. INTRODUCTION

The Vieta polynomials were first introduced in 1991 by Robbins [1]. After that, in 2002, Horadam [2] introduced and studied the Vieta-Fibonacci polynomial $V_{n}(x)$ and VietaLucas polynomials $v_{n}(x)$. These polynomials are defined respectively by

$$
V_{0}(x)=0, V_{1}(x)=1, V_{n}(x)=x V_{n-1}(x)-V_{n-2}(x), \text { for } n \geq 2
$$

and

$$
v_{0}(x)=2, v_{1}(x)=x, V_{n}(x)=x v_{n-1}(x)-v_{n-2}(x), \text { for } n \geq 2 .
$$

The Vieta-Pell polynomials $t_{n}(x)$ and Vieta-Pell-Lucas polynomials $s_{n}(x)$ were studied in 2013 by Tasci and Yalcin [3]. They defined these polynomials for $|x|>1$ by

$$
t_{0}(x)=0, t_{1}(x)=1, t_{n}(x)=2 x t_{n-1}(x)-t_{n-2}(x), \text { for } n \geq 2
$$

and

$$
s_{0}(x)=2, s_{1}(x)=2 x, s_{n}(x)=2 x s_{n-1}(x)-s_{n-2}(x), \text { for } n \geq 2 .
$$

They obtained the Binet form and generating functions of Vieta-Pell and Vieta-PellLucas polynomials. Also, they received some differentiation rules and the finite summation formulas. Moreover, they show that Vieta-Pell and Vieta-Pell-Lucas polynomials are closely related to the well-known Chebyshev polynomials of the first kinds $T_{n}(x)$ and the second kinds $U_{n}(x)$. The related features of Vieta-Pell, Vieta-Pell-Lucas polynomials, and Chebyshev polynomials are given as

$$
s_{n}(x)=2 T_{n}(x),
$$

and

$$
t_{n+1}(x)=U_{n}(x) .
$$

[^0]For more detail about Vieta-Pell and Vieta-Pell-Lucas polynomials, see [3].
Recently, Yalcin et al. [4] introduced the Vieta-Jacobsthal polynomials $G_{n}(x)$ and Vieta-Jacobsthal-Lucas polynomials $g_{n}(x)$ which defined respectively by

$$
G_{0}(x)=0, G_{1}(x)=1, G_{n}(x)=G_{n-1}(x)-2 x G_{n-2}(x), \text { for } n \geq 2
$$

and

$$
g_{0}(x)=2, g_{1}(x)=1, g_{n}(x)=g_{n-1}(x)-2 x g_{n-2}(x), \text { for } n \geq 2
$$

Moreover, they introduced the generalization of the Vieta-Jacobsthal and Vieta-Jacobsthal-Lucas polynomials, and many identities for these polynomials are derived.

In this paper, we investigated the generalization of the Vieta-Pell polynomials. We give the generating function, the Binet formula, and some well-known identities for this polynomial. Also, the relations between this polynomial and the Vieta-Pell and Vieta-PellLucas polynomials are presented.

2. MATERIALS AND METHODS

This section collects some basic definition and helpful lemmas that we will use in the main results.

Definition 2.1. [4] For $|x|>1$, the Vieta-Pell polynomials sequence $\left\{t_{n}(x)\right\}_{n=0}^{\infty}$ and Vieta-Pell-Lucas polynomials sequence $\left\{s_{n}(x)\right\}_{n=0}^{\infty}$ are defined respectively by

$$
\begin{align*}
& t_{n}(x)=2 x t_{n-1}(x)-t_{n-2}(x), \text { for } n \geq 2, \tag{1}\\
& s_{n}(x)=2 x s_{n-1}(x)-s_{n-2}(x), \text { for } n \geq 2, \tag{2}
\end{align*}
$$

with the initial conditions $t_{0}(x)=0, t_{1}(x)=1$, and $s_{0}(x)=2, s_{1}(x)=2 x$.
The first few terms of $\left\{t_{n}(x)\right\}_{n=0}^{\infty}$ and $\left\{s_{n}(x)\right\}_{n=0}^{\infty}$ are as follows:

$$
\begin{array}{ll}
t_{0}(x)=0, & s_{0}(x)=2 \\
t_{1}(x)=1, & s_{1}(x)=2 x, \\
t_{2}(x)=2 x, & s_{2}(x)=4 x^{2}-2, \\
t_{3}(x)=4 x^{2}-1, & s_{3}(x)=8 x^{3}-6 x, \\
t_{4}(x)=8 x^{3}-4 x, & s_{4}(x)=16 x^{4}-16 x^{2}+2, \\
t_{5}(x)=16 x^{4}-12 x^{2}+1, & s_{5}(x)=32 x^{5}-40 x^{3}+10 x,
\end{array}
$$

Terms of these sequences are called the Vieta-Pell polynomials and Vieta-Pell-Lucas polynomials, respectively. The Binet's formulas for Vieta-Pell and Vieta-Pell-Lucas polynomials are given as in the following Lemma.

Lemma 2.2. [4] (Binet's formula). Let $\left\{t_{n}(x)\right\}_{n=0}^{\infty}$ and $\left\{s_{n}(x)\right\}_{n=0}^{\infty}$ be the sequences of Vieta-Pell and Vieta-Pell-Lucas polynomials, respectively. Then

$$
\begin{aligned}
& t_{n}(x)=\frac{\alpha^{n}(x)-\beta^{n}(x)}{\alpha(x)-\beta(x)}, \\
& s_{n}(x)=\alpha^{n}(x)+\beta^{n}(x),
\end{aligned}
$$

where, $\alpha(x)=x+\sqrt{x^{2}-1}$ and $\beta(x)=x-\sqrt{x^{2}-1}$ are the roots of the characteristic equation $r^{2}-2 x r+1=0$.

The following Lemma is helpful for proof our main result in section 3.2.
Lemma 2.3. [4] Let $\left\{t_{n}(x)\right\}_{n=0}^{\infty}$ be the sequence of Vieta-Pell polynomials and let

$$
V=\left[\begin{array}{cc}
2 x & -1 \\
1 & 0
\end{array}\right] \text {. Then } V^{n}=\left[\begin{array}{cc}
t_{n+1}(x) & -t_{n}(x) \\
t_{n}(x) & -t_{n-1}(x)
\end{array}\right] .
$$

3. MAIN RESULTS

3.1. VIETA-PELL-LIKE POLYNOMIALS AND SOME IDENTITIES

In this section, we introduce the polynomial sequence with the same recurrence relation as the Vieta-Pell polynomials but has different initial conditions as the following definition.

Definition 3.1. For $|x|>1$, the Vieta-Pell-Like polynomials sequence $\left\{\mathcal{R}_{n}(x)\right\}_{n=0}^{\infty}$ is defined by

$$
\begin{equation*}
\mathcal{R}_{\mathrm{n}}(\mathrm{x})=2 \mathrm{x} \mathcal{R}_{\mathrm{n}-1}(\mathrm{x})-\mathcal{R}_{\mathrm{n}-2}(\mathrm{x}), \quad \text { for } \mathrm{n} \geq 2 \tag{3}
\end{equation*}
$$

with the initial conditions $\mathcal{R}_{0}(x)=2, \mathcal{R}_{1}(x)=x$.
The first few terms of $\left\{\mathcal{R}_{n}(x)\right\}_{n=0}^{\infty}$ are as follows:
$\mathcal{R}_{0}(x)=2$,
$\mathcal{R}_{1}(x)=x$,
$\mathcal{R}_{2}(x)=2 x^{2}-2$,
$\mathcal{R}_{3}(x)=4 x^{3}-5 \mathrm{x}$,
$\mathcal{R}_{4}(x)=8 x^{4}-12 x^{2}+2$,
$\mathcal{R}_{5}(x)=16 x^{5}-28 x^{3}+9 x$,
:
Terms of the Vieta-Pell-Like polynomial sequence are called Vieta-Pell-Like polynomial.

The characteristic equation of (3) is also $r^{2}-2 x r+1=0$ and the roots of this equation are $\alpha(x)=x+\sqrt{x^{2}-1}$ and $\beta(x)=x-\sqrt{x^{2}-1}$.

We note that $\alpha(x)+\beta(x)=2 x, \alpha(x) \beta(x)=1$, and $\alpha(x)-\beta(x)=2 \sqrt{x^{2}-1}$.
We first give the generating function for this Vieta-Pell-Like polynomials sequence.
Theorem 3.2. (The generating function). Let $g(x, t)=\sum_{n=0}^{\infty} \mathcal{R}_{n}(x) t^{n}$ be the generating function of the Vieta-Pell-Like polynomials sequence. Then

$$
\begin{equation*}
g(x, t)=\frac{2-3 x t}{1-t+2 x t^{2}} \tag{4}
\end{equation*}
$$

Proof: Consider,

$$
g(x, t)=\sum_{n=0}^{\infty} \mathcal{R}_{n}(x) t^{n}=\mathcal{R}_{0}(x)+\mathcal{R}_{1}(x) t+\mathcal{R}_{2}(x) t^{2}+\cdots+\mathcal{R}_{n}(x) t^{n}+\cdots
$$

Then we get that

$$
\begin{aligned}
& 2 x \operatorname{tg}(x, t)=2 x \mathcal{R}_{0}(x) t+2 x \mathcal{R}_{1}(x) t^{2}+2 x \mathcal{R}_{2}(x) t^{3}+\cdots+2 x \mathcal{R}_{n-1}(x) t^{n}+\cdots \\
& t^{2} g(x, t)=\mathcal{R}_{0}(x) t^{2}+\mathcal{R}_{1}(x) t^{3}+\mathcal{R}_{2}(x) t^{4}+\cdots+\mathcal{R}_{n-2}(x) t^{n}+\cdots
\end{aligned}
$$

Thus,

$$
\begin{aligned}
g(x, t)(1-2 x t & \left.+t^{2}\right) \\
= & \mathcal{R}_{0}(x)+\left(\mathcal{R}_{1}(x)-2 x \mathcal{R}_{0}(x)\right) t+\sum_{n=2}^{\infty}\left(\mathcal{R}_{n}(x)-2 x \mathcal{R}_{n-1}+\mathcal{R}_{n-2}(x)\right) t^{n} \\
= & \mathcal{R}_{0}(x)+\left(\mathcal{R}_{1}(x)-2 x \mathcal{R}_{0}(x)\right) t \\
= & 2-3 x t .
\end{aligned}
$$

It implies that

$$
g(x, t)=\frac{2-3 x t}{1-2 x t+t^{2}}
$$

Next, we give Binet's formula for this Vieta-Pell-Like polynomials as follows.
Theorem 3.3. (Binet's formula). Let $\left\{\mathcal{R}_{n}(x)\right\}_{n=0}^{\infty}$ be the sequence of Vieta-Pell-Like polynomials. Then

$$
\begin{equation*}
\mathcal{R}_{n}(x)=A \alpha^{n}(x)+B \beta^{n}(x) \tag{5}
\end{equation*}
$$

where, $A=\frac{\alpha-2 \beta(x)}{\alpha(x)-\beta(x)}, B=\frac{2 \alpha(x)-x}{\alpha(x)-\beta(x)}$, and $\alpha(x), \beta(x)$ are the roots of the characteristics equation $r^{2}-2 x r+1=0$.

Proof: Since the roots of the characteristic equation $r^{2}-2 x r+1=0$ are distinct, we get that

$$
\mathcal{R}_{n}(x)=c \alpha^{n}(x)+d \beta^{n}(x), \quad \text { for all } n \geq 0
$$

for some real numbers c, and d. Taking $n=0, n=1$, and then solving the system of linear equations, we obtain

$$
\mathcal{R}_{n}(x)=\frac{\alpha-2 \beta(x)}{\alpha(x)-\beta(x)} \alpha^{n}(x)+\frac{2 \alpha(x)-x}{\alpha(x)-\beta(x)} \beta^{n}(x)
$$

Setting $A=\frac{\alpha-2 \beta(x)}{\alpha(x)-\beta(x)}$ and $B=\frac{2 \alpha(x)-x}{\alpha(x)-\beta(x)}$, then we get the result.

We note that

$$
\begin{gathered}
A+B=2 \\
A-B=\frac{-2 x}{\alpha(x)-\beta(x)^{\prime}} \\
A B=\frac{3 x^{2}-4}{(\alpha(x)-\beta(x))^{2}}, \\
A(2 \alpha(x)-x)=\frac{3 x^{2}-4}{\alpha(x)-\beta(x)}=B(x-2 \beta(x)),
\end{gathered}
$$

and

$$
A \beta(x)+B \alpha(x)=3 x
$$

Using Binet's formula, we obtained some well-known identities and the sum formula for the Vieta-Pell-Like polynomials, and we begin with the following Lemma.

Lemma 3.4. Let $\left\{\mathcal{R}_{n}(x)\right\}_{n=0}^{\infty}$ be the sequence of Vieta-Pell-Like polynomials. Then

$$
\frac{2 \mathcal{R}_{n+1}(x)-x \mathcal{R}_{n}(x)}{3 x^{2}-4}=\frac{\alpha^{n}(x)-\beta^{n}(x)}{\alpha(x)-\beta(x)}
$$

where $\alpha(x)$ and $\beta(x)$ are the roots of the characteristic equation $r^{2}-2 x r+1=0$.
Proof: By using Binet's formula (5), we obtain

$$
\begin{aligned}
\frac{2 \mathcal{R}_{n+1}(x)-x \mathcal{R}_{n}(x)}{3 x^{2}-4} & =\frac{1}{3 x^{2}-4}\left(2\left(A \alpha^{n+1}(x)+B \beta^{n+1}(x)\right)-x\left(A \alpha^{n}(x)+B \beta^{n}(x)\right)\right) \\
& =\frac{1}{3 x^{2}-4}\left(\alpha^{n}(x) A(2 \alpha(x)-x)-\beta^{n}(x) B(x-2 \beta(x))\right) \\
& =\frac{1}{3 x^{2}-4}\left(\frac{\alpha^{n}(x)\left(3 x^{2}-4\right)}{\alpha(x)-\beta(x)}-\frac{\beta^{n}(x)\left(3 x^{2}-4\right)}{\alpha(x)-\beta(x)}\right) \\
& =\frac{\alpha^{n}(x)-\beta^{n}(x)}{\alpha(x)-\beta(x)} .
\end{aligned}
$$

By using Binet's formula (5) and Lemma 3.4, we obtain the Catalan identity.
Theorem 3.5. (Catalan's identity). Let $\left\{\mathcal{R}_{n}(x)\right\}_{n=0}^{\infty}$ be the sequence of Vieta-Pell-Like polynomials. Then

$$
\begin{gather*}
\mathcal{R}_{n}^{2}(x)-\mathcal{R}_{n+r}(x) \mathcal{R}_{n-r}(x)=\frac{1}{4-3 x^{2}}\left(2 \mathcal{R}_{r+1}(x)-x \mathcal{R}_{r}(x)\right)^{2} \tag{6}\\
\text { for } n \geq r \geq 1
\end{gather*}
$$

Proof: By using Binet's formula, we obtain

$$
\begin{aligned}
\mathcal{R}_{n}^{2}(x)- & \mathcal{R}_{n+r}(x) \mathcal{R}_{n-r}(x) \\
& =\left(A \alpha^{n}(x)+B \beta^{n}(x)\right)^{2}-\left(A \alpha^{n+r}(x)+B \beta^{n+r}(x)\right)\left(A \alpha^{n-r}(x)+B \beta^{n-r}(x)\right) \\
& =-A B(\alpha(x) \beta(x))^{n-r}\left(\alpha^{r}(x)-\beta^{r}(x)\right)^{2} \\
& =-\frac{3 x^{2}-4}{(\alpha(x)-\beta(x))^{2}}\left(\alpha^{r}(x)-\beta^{r}(x)\right)^{2} \\
& =-\left(3 x^{2}-4\right)\left(\frac{\alpha^{r}(x)-\beta^{r}(x)}{\alpha(x)-\beta(x)}\right)^{2} \\
& =\frac{1}{4-3 x^{2}}\left(2 \mathcal{R}_{r+1}(x)-x \mathcal{R}_{r}(x)\right)^{2}
\end{aligned}
$$

This completes the proof.
Take $r=1$ in Catalan identity (6), we obtain Cassini's identity as the following Corollary.

Corollary 3.6. (Cassini's identity). Let $\left\{\mathcal{R}_{n}(x)\right\}_{n=0}^{\infty}$ be the sequence of Vieta-Pell-Like polynomials. Then

$$
\mathcal{R}_{n}^{2}(x)-\mathcal{R}_{n+r}(x) \mathcal{R}_{n-r}(x)=4-3 x^{2}, \quad \text { for } n \geq 1
$$

Proof: Take $r=1$ in Catalan's identity (6), we obtain the result.
Theorem 3.7. (d'Ocagne's identity). Let $\left\{\mathcal{R}_{n}(x)\right\}_{n=0}^{\infty}$ be the sequence of Vieta-Pell-Like polynomials. Then

$$
\mathcal{R}_{m}(x) \mathcal{R}_{n+1}(x)-\mathcal{R}_{m+1}(x) \mathcal{R}_{n}(x)=-2 \mathcal{R}_{m-n+1}(x)+x \mathcal{R}_{m-n}(x), \quad \text { for } m \geq n \geq 1
$$

Proof: By using Binet's formula and Lemma 3.4, we obtain

$$
\begin{aligned}
\mathcal{R}_{m}(x) \mathcal{R}_{n+1}(x)- & \mathcal{R}_{m+1}(x) \mathcal{R}_{n}(x) \\
= & \left(A \alpha^{m}(x)+B \beta^{m}(x)\right)\left(A \alpha^{n+1}(x)+B \beta^{n+1}(x)\right) \\
& -\left(A \alpha^{m+1}(x)+B \beta^{m+1}(x)\right)\left(A \alpha^{n}(x)+B \beta^{n}(x)\right) \\
= & -A B(\alpha(x) \beta(x))^{n}(\alpha(x)-\beta(x))\left(\alpha^{m-n}(x)-\beta^{m-n}(x)\right) \\
= & -\left(3 x^{2}-4\right)\left(\frac{\alpha^{m-n}(x)-\beta^{m-n}(x)}{\alpha(x)-\beta(x)}\right) \\
= & -\left(3 x^{2}-4\right)\left(\frac{2 \mathcal{R}_{m-n+1}(x)-x \mathcal{R}_{m-n}(x)}{3 x^{2}-4}\right) \\
= & -2 \mathcal{R}_{m-n+1}(x)+x \mathcal{R}_{m-n}(x)
\end{aligned}
$$

This completes the proof.
Next, we give the finite sum formula for the Vieta-Pell-Like polynomials sequence.
Theorem 3.8. (The Sum formula). Let $\left\{\mathcal{R}_{n}(x)\right\}_{n=0}^{\infty}$ be the sequence of Vieta-Pell-Like polynomials. Then

$$
\sum_{k=0}^{n-1} \mathcal{R}_{k}(x)=\frac{2-3 x-\mathcal{R}_{n}(x)+\mathcal{R}_{n-1}(x)}{2(1-x)}
$$

Proof: By using Binet's formula, we obtain

$$
\begin{aligned}
\sum_{k=0}^{n-1} \mathcal{R}_{k}(x) & =\sum_{k=0}^{n-1}\left(A \alpha^{k}(x)+B \beta^{k}(x)\right) \\
& =A \frac{1-\alpha^{n}(x)}{1-\alpha(x)}+B \frac{1-\beta^{n}(x)}{1-\beta(x)} \\
& =\frac{A+B-(A \beta(x)+B \alpha(x))-\left(A \alpha^{n}(x)+B \beta^{n}(x)\right)+\left(A \alpha^{n-1}(x)+B \beta^{n-1}(x)\right)}{1-(\alpha(x)+\beta(x))+\alpha(x) \beta(x)} \\
& =\frac{2-3 x-\mathcal{R}_{n}(x)+\mathcal{R}_{n-1}(x)}{2(1-x)}
\end{aligned}
$$

This completes the proof.
Again, by using Binet's formula, we derive the relation between the Vieta-Pell-Like polynomials, Vieta-Pell polynomials, and Vieta-Pell-Lucas polynomials.

Theorem 3.9. Let $\left\{\mathcal{R}_{n}(x)\right\}_{n=0}^{\infty},\left\{t_{n}(x)\right\}_{n=0}^{\infty}$, and $\left\{s_{n}(x)\right\}_{n=0}^{\infty}$ be the sequences of Vieta-PellLike, Vieta-Pell, and Vieta-Pell-Lucas polynomials, respectively. Then
(1) $s_{n}(x)-x t_{n}(x)=\mathcal{R}_{n}(x), \quad$ for $n \geq 0$,
(2) $x t_{n}(x)-2 t_{n-1}(x)=\mathcal{R}_{n}(x)$, for $n \geq 1$,
(3) $2 t_{n+1}(x)-3 x t_{n}(x)=\mathcal{R}_{n}(x)$, for $n \geq 0$,
(4) $t_{n+1}(x)+\mathcal{R}_{n}(x)=\frac{3}{2} s_{n}(x)$, for ≥ 0,
(5) $\mathcal{R}_{4 n}(x)-x t_{4 n}(x)-2=4\left(x^{2}-1\right) t_{2 n}^{2}(x)$, for $n \geq 0$,
(6) $2 \mathcal{R}_{n+1}(x)-x \mathcal{R}_{n}(x)=\left(3 x^{2}-4\right) t_{n}(x)$, for $n \geq 0$,
(7) $\mathcal{R}_{n}(x) s_{n}(x)-2=\mathcal{R}_{2 n}(x)$ for $n \geq 0$,
(8) $\mathcal{R}_{n}(x) s_{n}(x)+x t_{2 n}(x)-2=s_{2 n}(x)$, for $n \geq 0$,
(9) $\mathcal{R}_{n}(x) s_{n}(x)+2 t_{2 n-1}(x)-2=x t_{2 n}(x)$, for $n \geq 1$,
(10) $\mathcal{R}_{m}(x) s_{n}(x)-s_{m}(x) \mathcal{R}_{n}(x)=-2 x t_{m-n}(x), \quad$ for $m \geq n \geq 0$,
(11) $\mathcal{R}_{m}(x) t_{n}(x)-t_{m}(x) \mathcal{R}_{n}(x)=-2 t_{m-n}(x), \quad$ for $m \geq n \geq 0$,
(12) $t_{n}(x) \mathcal{R}_{n}(x)+x t_{n}^{2}(x)=t_{2 n}(x)$, for $n \geq 0$,
(13) $\mathcal{R}_{n+1}(x) s_{n}(x)-s_{n+1}(x) \mathcal{R}_{n}(x)=-2 x, \quad$ for $n \geq 0$,
(14) $\mathcal{R}_{n+1}(x) t_{n}(x)-t_{n+1}(x) \mathcal{R}_{n}(x)=-2$, for $n \geq 0$.

Proof: The results (1)-(14) are easily obtained by using Binet's formula (5).

3.2. SOME IDENTITIES OF THE VIETA-PELL-LIKE POLYNOMIALS BY MATRIX METHODS

In this section, we establish some identities of the Vieta Pell-Like and Vieta-Pell polynomials by using elementary matrix methods.

Let $Q_{\mathcal{R}}$ be 2×2 matrix defined by

$$
Q_{\mathcal{R}}=\left[\begin{array}{ll}
x & -2 \tag{7}\\
2 & -3
\end{array}\right]
$$

Then by using this matrix and matrix V in Lemma 2.3, we can deduce some identities of Vieta-Pell-Like and Vieta Pell polynomials.

Theorem 3.10. Let $\left\{\mathcal{R}_{n}(x)\right\}_{n=0}^{\infty}$ be the sequence of Vieta-Pell-Like polynomials, let $Q_{\mathcal{R}}$ be $2 \times$ 2 matrix defined by (7), and let V be 2×2 matrix as in Lemma 2.3, then

$$
Q_{\mathcal{R}} V^{n}=\left[\begin{array}{cc}
\mathcal{R}_{n+1}(x) & -\mathcal{R}_{n}(x) \\
\mathcal{R}_{n}(x) & -\mathcal{R}_{n-1}(x)
\end{array}\right] \text {, for all } n \geq 1
$$

Proof: From Lemma 2.3, we get

$$
V^{n}=\left[\begin{array}{cc}
t_{n+1}(x) & -t_{n}(x) \\
t_{n}(x) & -t_{n-1}(x)
\end{array}\right] .
$$

Thus,

$$
\begin{gathered}
Q_{\mathcal{R}} V^{n}=\left[\begin{array}{ll}
x & -2 \\
2 & -3
\end{array}\right]\left[\begin{array}{cc}
t_{n+1}(x) & -t_{n}(x) \\
t_{n}(x) & -t_{n-1}(x)
\end{array}\right] \\
=\left[\begin{array}{cc}
x t_{n+1}(x)-2 t_{n}(x) & -x t_{n}(x)+2 t_{n-1}(x) \\
2 x t_{n+1}(x)-3 t_{n}(x) & -2 t_{n}(x)+3 t_{n-1}(x)
\end{array}\right]
\end{gathered}
$$

By Theorem 3.9 (2) and (3), we obtain

$$
Q_{\mathcal{R}} V^{n}=\left[\begin{array}{cc}
\mathcal{R}_{n+1}(x) & -\mathcal{R}_{n}(x) \\
\mathcal{R}_{n}(x) & -\mathcal{R}_{n-1}(x)
\end{array}\right] .
$$

This completes the proof.
From Theorem 3.10, Lemma 2.3, and the properties of the power matrix, we obtain many identities of the Vieta Pell-Like and Vieta-Pell polynomials.

Corollary 3.11. Let $\left\{\mathcal{R}_{n}(x)\right\}_{n=1}^{\infty}$ and $\left\{t_{n}(x)\right\}_{n=0}^{\infty}$ be the sequences of Vieta-Pell-Like and Vieta-Pell polynomials, respectively. Then for all integers $n>m \geq 1$, the following statements hold:
(1) $\mathcal{R}_{n+1}(x)=\mathcal{R}_{(n-m)+1}(x) t_{m+1}(x)-\mathcal{R}_{n-m}(x) t_{m}(x)$,
(2) $\mathcal{R}_{n}(x)=\mathcal{R}_{(n-m)+1}(x) t_{m}(x)-\mathcal{R}_{n-m}(x) t_{m-1}(x)$,
(3) $\mathcal{R}_{n}(x)=\mathcal{R}_{n-m}(x) t_{m+1}(x)-\mathcal{R}_{(n-m)-1}(x) t_{m}(x)$,
(4) $\mathcal{R}_{n-1}(x)=\mathcal{R}_{n-m}(x) t_{m}(x)-\mathcal{R}_{(n-m)-1}(x) t_{m-1}(x)$.

Proof: By Theorem 3.10, Lemma 2.3 and the property of the power matrix $Q_{\mathcal{R}} V^{n}=$ $Q_{\mathcal{R}} V^{n-m} V^{m}$, we obtained the results.

Corollary 3.12. Let $\left\{\mathcal{R}_{n}(x)\right\}_{n=1}^{\infty}$ and $\left\{t_{n}(x)\right\}_{n=0}^{\infty}$ be the sequences of Vieta-Pell-Like and Vieta-Pell polynomials, respectively. Then for all integers $n>m \geq 1$, the following statements hold:
(1) $\mathcal{R}_{(m+n)+1}(x)=\mathcal{R}_{m+1}(x) t_{n+1}(x)-\mathcal{R}_{m}(x) t_{n}(x)$,
(2) $\mathcal{R}_{m+n}(x)=\mathcal{R}_{m+1}(x) t_{n}(x)-\mathcal{R}_{m}(x) t_{n-1}(x)$,
(3) $\mathcal{R}_{m+n}(x)=\mathcal{R}_{m}(x) t_{n+1}(x)-\mathcal{R}_{m-1}(x) t_{n}(x)$,
(4) $\mathcal{R}_{(m+n)-1}(x)=\mathcal{R}_{m}(x) t_{n}(x)-\mathcal{R}_{m-1}(x) t_{n-1}(x)$.

Proof: By Theorem 3.10, Lemma 2.3 and the property of the power matrix $Q_{\mathcal{R}} V^{m+n}=$ $Q_{\mathcal{R}} V^{m} V^{n}$, we obtained the results.

Corollary 3.13. Let $\left\{\mathcal{R}_{n}(x)\right\}_{n=1}^{\infty}$ and $\left\{t_{n}(x)\right\}_{n=0}^{\infty}$ be the sequences of Vieta-Pell-Like and Vieta-Pell polynomials, respectively. Then for all integers $n>m \geq 1$, the following statements hold:
(1) $\mathcal{R}_{(m-n)+1}(x)=-\mathcal{R}_{m+1}(x) t_{n-1}(x)-\mathcal{R}_{m}(x) t_{n}(x)$,
(2) $\mathcal{R}_{m-n}(x)=-\mathcal{R}_{m+1}(x) t_{n}(x)+\mathcal{R}_{m}(x) t_{n+1}(x)$,
(3) $\mathcal{R}_{m-n}(x)=-\mathcal{R}_{m}(x) t_{n-1}(x)-\mathcal{R}_{m-1}(x) t_{n}(x)$,
(4) $\mathcal{R}_{(m-n)-1}(x)=-\mathcal{R}_{m}(x) t_{n}(x)-\mathcal{R}_{m-1}(x) t_{n+1}(x)$.

Proof: By Theorem 3.10, Lemma 2.3 and the property of the power matrix $Q_{\mathcal{R}} V^{m-n}=$ $Q_{\mathcal{R}} V^{m} V^{-n}$, we obtained the results.

4. CONCLUSION

In this paper, the Vieta-Pell-Like polynomial is introduced, and the generating function, Binet's formula, some well-known identities, and the sum formula for this polynomial are established. Moreover, the relations between the Vieta-Pell-Like, Vieta-Pell, and Vieta-Pell-Lucas polynomials are presented in this study.

REFERENCES

[1] Robbins, N., Int. J. Math. Math. Sci. 14, 239, 1991.
[2] Horadam, AF., Fibonacci Q., 40 (3), 223, 2002.
[3] Tasci, D., Yalcin, F., Adv. Difference Equ, 224, 1, 2013.
[4] Erkus-Duman, E., Tasci, D., Yalcin, F., Mathematical Communications, 20, 241, 2015.

[^0]: ${ }^{1}$ Rajamangala University of Technology Thanyaburi, Faculty of Science and Technology, Department of Mathematics, 12110 Pathum Thani, Thailand. E-mail: wanna_sriprad@rmutt.ac.th; somnuk_s@rmutt.ac.th; 1160109010166@mail.rmutt.ac.th.

