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Abstract. In this paper, we introduce some new generalizations of the Vieta-Pell 

polynomial, which is called the Vieta-Pell-Like polynomial. We also give the generating 

function, the Binet's formula, the sum formula, and some well-known identities for this Vieta 

polynomial. Furthermore, the relations between the Vieta-Pell-Like polynomial and the 

previously well-known identities are presented. 
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1. INTRODUCTION  

 

 

The Vieta polynomials were first introduced in 1991 by Robbins [1]. After that, in 

2002, Horadam [2] introduced and studied the Vieta-Fibonacci polynomial   ( ) and Vieta- 

Lucas polynomials   ( ). These polynomials are defined respectively by 

 

  ( )      ( )       ( )       ( )      ( )  for     

and 

   ( )      ( )       ( )       ( )      ( )  for    . 
 

The Vieta-Pell polynomials   ( ) and Vieta-Pell-Lucas polynomials   ( ) were 

studied in 2013 by Tasci and Yalcin [3]. They defined these polynomials for | |    by 

 

  ( )      ( )       ( )        ( )      ( )  for     

and 

   ( )      ( )        ( )        ( )      ( )  for    . 
 

They obtained the Binet form and generating functions of Vieta-Pell and Vieta-Pell-

Lucas polynomials. Also, they received some differentiation rules and the finite summation 

formulas. Moreover, they show that Vieta-Pell and Vieta-Pell-Lucas polynomials are closely 

related to the well-known Chebyshev polynomials of the first kinds   ( ) and the second 

kinds   ( ). The related features of Vieta-Pell, Vieta-Pell-Lucas polynomials, and 

Chebyshev polynomials are given as 
 

  ( )     ( )    
      

    ( )    ( )                                                                                                                            
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For more detail about Vieta-Pell and Vieta-Pell-Lucas polynomials, see [3]. 

Recently, Yalcin et al. [4] introduced the Vieta-Jacobsthal polynomials   ( ) and 

Vieta-Jacobsthal-Lucas polynomials   ( ) which defined respectively by 

 

  ( )      ( )       ( )      ( )        ( )  for     

and 

   ( )      ( )       ( )      ( )        ( )  for    . 
 

Moreover, they introduced the generalization of the Vieta-Jacobsthal and Vieta-

Jacobsthal-Lucas polynomials, and many identities for these polynomials are derived. 

In this paper, we investigated the generalization of the Vieta-Pell polynomials. We 

give the generating function, the Binet formula, and some well-known identities for this 

polynomial. Also, the relations between this polynomial and the Vieta-Pell and Vieta-Pell-

Lucas polynomials are presented. 

 
 

2. MATERIALS AND METHODS 

 

 

This section collects some basic definition and helpful lemmas that we will use in the 

main results. 

 

Definition 2.1. [4] For | |   , the Vieta-Pell polynomials sequence    ( )    
  and Vieta-

Pell-Lucas polynomials sequence    ( )    
  are defined respectively by 

 

   ( )        ( )      ( )          (1) 

 

   ( )        ( )      ( )          (2) 

 

with the initial conditions    ( )       ( )      and    ( )       ( )        
The first few terms of    ( )    

  and    ( )    
  are as follows: 

  ( )   ,    ( )     
  ( )        ( )      
  ( )          ( )         
  ( )              ( )          
  ( )              ( )                 
  ( )                   ( )                 

                   
 

Terms of these sequences are called the Vieta-Pell polynomials and Vieta-Pell-Lucas 

polynomials, respectively. The Binet's formulas for Vieta-Pell and Vieta-Pell-Lucas 

polynomials are given as in the following Lemma. 

 

Lemma 2.2. [4] (Binet's formula). Let     ( )    
  and    ( )    

  be the sequences of 

Vieta-Pell and Vieta-Pell-Lucas polynomials, respectively. Then 

 

  ( )  
  ( )    ( )

 ( )   ( )
  

 

  ( )    ( )    ( )  
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where,  ( )    √     and   ( )    √     are the roots of the characteristic 

equation             
 

The following Lemma is helpful for proof our main result in section 3.2. 

 

Lemma 2.3. [4] Let     ( )    
  be the sequence of Vieta-Pell polynomials and let 

 

  [
    
  

]. Then     [
    ( )    ( )

  ( )      ( )
]. 

 

 

3. MAIN RESULTS  

 

 

3.1. VIETA-PELL-LIKE POLYNOMIALS AND SOME IDENTITIES 

 

 

In this section, we introduce the polynomial sequence with the same recurrence 

relation as the Vieta-Pell polynomials but has different initial conditions as the following 

definition. 

 

Definition 3.1. For | |   , the Vieta-Pell-Like polynomials sequence    ( )    
  is defined 

by 

  ( )        ( )      ( )                                                     (3) 

 

with the initial conditions    ( )       ( )       
The first few terms of    ( )    

  are as follows: 

  ( )        

  ( )      

  ( )           

  ( )             

  ( )               

  ( )                 

                        

Terms of the Vieta-Pell-Like polynomial sequence are called Vieta-Pell-Like 

polynomial. 

The characteristic equation of (3) is also            and the roots of this 

equation are  ( )    √     and   ( )    √    .  

 
We first give the generating function for this Vieta-Pell-Like polynomials sequence. 

 

Theorem 3.2. (The generating function). Let  (   )   ∑   ( ) 
  

     be the generating 

function of the Vieta-Pell-Like polynomials sequence. Then 

 

 (   )  
     

        
   (4) 

 

 

 

We note that  ( ) +  ( ) = 2 ,  ( ) ( ) = 1, and  ( )   ( ) = 2√ 2  1. 
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Proof: Consider, 

 (   )  ∑  ( ) 
 

 

   

   ( )    ( )    ( ) 
      ( ) 

      

 

Then we get that 

 

      (   )      ( )      ( ) 
      ( ) 

          ( ) 
    

    (   )    ( ) 
    ( ) 

    ( ) 
        ( ) 

      
 

Thus,  

 

 (   )(        )

   ( )  (  ( )      ( ))  ∑(  ( )             ( )) 
 

 

   

 

     ( )  (  ( )      ( ))  

         
 

It implies that  

 

 (   )  
     

        
                                                                                    

           

Next, we give Binet's formula for this Vieta-Pell-Like polynomials as follows. 

 

Theorem 3.3. (Binet's formula). Let     ( )    
  be the sequence of Vieta-Pell-Like 

polynomials. Then  

 

  ( )      ( )      ( )  (5) 

 

where ,   
    ( )

 ( )  ( )
,   

  ( )  

 ( )  ( )
, and  ( ),  ( ) are the roots of the characteristics 

equation           . 

 

Proof: Since the roots of the characteristic equation            are distinct, we get that  

 

  ( )      ( )      ( )                    

 

for some real numbers           Taking           and then solving the system of linear 

equations, we obtain 

 

  ( )  
    ( )

 ( )   ( )
   ( )  

  ( )   

 ( )   ( )
   ( ) 

 

Setting   
    ( )

 ( )  ( )
  and   

  ( )  

 ( )  ( )
, then we get the result.                                  □  
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We note that  

        
 

    
   

 ( )   ( )
   

 

   
     

( ( )   ( ))
    

 

 (  ( )   )  
     

 ( )   ( )
  (    ( ))   

     
  ( )    ( )    . 

  

Using Binet's formula, we obtained some well-known identities and the sum formula 

for the Vieta-Pell-Like polynomials, and we begin with the following Lemma. 

 

Lemma 3.4. Let    ( )    
  be the sequence of Vieta-Pell-Like polynomials. Then 

 
     ( )     ( )

     
 
  ( )    ( )

 ( )   ( )
  

 

where  ( )  and  ( )   are the roots of the characteristic equation           . 

 

Proof: By using Binet's formula (5), we obtain 

 

 
By using Binet's formula (5) and Lemma 3.4, we obtain the Catalan identity.  

 

Theorem 3.5. (Catalan's identity).  Let    ( )    
  be the sequence of Vieta-Pell-Like 

polynomials. Then 

 

  
 ( )      ( )    ( )  

 

     
(     ( )     ( ))

 
   

          

(6) 

 

Proof: By using Binet's formula, we obtain 

 

2  +1( )     ( )

3 2  4
=

1

3 2  4
 2(   +1( ) +    +1( ))   (   ( ) +    ( ))  

=
1

3 2  4
   ( ) (2 ( )   )    ( ) (  2 ( ))  

=
1

3 2  4
 
  ( )(3 2  4)

 ( )   ( )
 
  ( )(3 2  4)

 ( )   ( )
  

=
  ( )    ( )

 ( )   ( )
.                                                                                      
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This completes the proof.                                                                                                 

 Take     in Catalan identity (6), we obtain Cassini's identity as the following 

Corollary. 

 

Corollary 3.6. (Cassini's identity). Let    ( )    
 be the sequence of Vieta-Pell-Like 

polynomials. Then 

 

  
 ( )      ( )    ( )                 

Proof: Take     in Catalan's identity (6), we obtain the result.                                              

 

Theorem 3.7. (d'Ocagne's identity).  Let    ( )    
  be the sequence of Vieta-Pell-Like 

polynomials. Then 

 

 
 

Proof: By using Binet's formula and Lemma 3.4, we obtain 

 

 
 

This completes the proof.                                                                                                                                                                                                                       

Next, we give the finite sum formula for the Vieta-Pell-Like polynomials sequence. 

 

Theorem 3.8. (The Sum formula).  Let    ( )    
  be the sequence of Vieta-Pell-Like 

polynomials. Then 

 

∑  ( )  
       ( )      ( )

 (   )

   

   

   

 𝓃
2 ( )   𝓃+𝓇( ) 𝓃 𝓇( ) 

= (   ( ) +    ( ))
2
 (   + ( ) +    + ( ))(     ( ) +      ( )) 

=    ( ( ) ( ))
   

(  ( )    ( ))
2
 

=  
3 2  4

( ( )   ( ))
2 ( 

 ( )    ( ))
2
 

=  (3 2  4)  
  ( )    ( )

 ( )   ( )
 

2

 

=
1

4  3 2
(2  +1( )     ( ))

2
 

 𝑚( )  +1( )   𝑚+1( )  ( ) =  2 𝑚  +1( ) +   𝑚  ( ),  for  𝑚    1. 

 𝑚( )  +1( )   𝑚+1( )  ( ) 

= (  𝑚( ) +   𝑚( ))(   +1( ) +    +1( )) 

 (  𝑚+1( ) +   𝑚+1( ))(   ( ) +    ( )) 

=    ( ( ) ( ))
 
( ( )   ( ))( 𝑚  ( )   𝑚  ( )) 

=  (3 2  4)  
 𝑚  ( )   𝑚  ( )

 ( )   ( )
  

=  (3 2  4)  
2 𝑚  +1( )    𝑚  ( )

3 2  4
  

=  2 𝑚  +1( ) +   𝑚  ( ) 
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Proof: By using Binet's formula, we obtain 

 

∑  ( )

   

   

 ∑    ( )     ( ) 

   

   

 

 

  
    ( )

   ( )
  

    ( )

   ( )
 

 

 
    (  ( )    ( ))  (   ( )     ( ))  (     ( )       ( ))

  ( ( )   ( ))   ( ) ( )
 

 

 
       ( )      ( )

 (   )
 

 

This completes the proof.                                                                                                 

Again, by using Binet's formula, we derive the relation between the Vieta-Pell-Like 

polynomials, Vieta-Pell polynomials, and Vieta-Pell-Lucas polynomials. 

 

Theorem 3.9. Let    ( )    
     ( )    

         ( )    
  be the sequences of Vieta-Pell-

Like, Vieta-Pell, and Vieta-Pell-Lucas polynomials, respectively. Then 

 

 
 

Proof: The results (1)-(14) are easily obtained by using Binet's formula (5).                              

 

  

(1)    ( )     ( ) =   ( ),  for    0, 

(2)     ( )  2   1( ) =   ( ),  for    1, 

(3)  2  +1( )  3   ( ) =   ( ),  for    0, 

(4)    +1( ) +  𝓃( ) =
3

2
  ( ),  for   0, 

(5)   4𝓃( )    4 ( )  2 = 4( 2  1) 2 
2 ( ),  for    0, 

(6)  2 𝓃+1( )    𝓃( ) = (3 2  4)  ( ),  for    0, 

(7)    ( )  ( )  2 =  2 ( ) for    0, 

(8)    ( )  ( ) +   2 ( )  2 =  2 ( ),  for    0, 

(9)   𝓃( )  ( ) + 2 2  1( )  2 =   2 ( ),  for    1, 

(10)  𝑚 ( )  ( )   𝑚( )  ( ) =  2  𝑚  ( ),  for  𝑚    0, 

(11)  𝑚 ( )  ( )   𝑚( )  ( ) =  2 𝑚  ( ),  for  𝑚    0, 

(12)   ( )  ( ) +    
2( ) =  2 ( ),  for    0, 

(13)   +1( )  ( )    +1( )  ( ) =  2 ,  for    0, 

(14)   +1( )  ( )    +1( )  ( ) =  2,  for    0. 
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3.2. SOME IDENTITIES OF THE VIETA-PELL-LIKE POLYNOMIALS BY MATRIX 

METHODS 

 

 

In this section, we establish some identities of the Vieta Pell-Like and Vieta-Pell 

polynomials by using elementary matrix methods.  

Let    be 2 x 2 matrix defined by 

 

   [
   
   

] (7) 

 

Then by using this matrix and matrix   in Lemma 2.3, we can deduce some identities 

of Vieta-Pell-Like and Vieta Pell polynomials.  

 

Theorem 3.10. Let    ( )    
  be the sequence of Vieta-Pell-Like polynomials, let    be 2   

2 matrix defined by (7), and let V be 2   2 matrix as in Lemma 2.3, then 

 

   
  [

    ( )    ( )

  ( )      ( )
]              

 

Proof: From Lemma 2.3, we get 

 

   [
    ( )    ( )

  ( )      ( )
]  

 

Thus, 

 

   
  [

   
   

] [
    ( )    ( )

  ( )      ( )
] 

 

 [
     ( )     ( )     ( )       ( )

      ( )     ( )     ( )       ( )
] 

 

By Theorem 3.9 (2) and (3), we obtain  

 

   
  [

    ( )    ( )

  ( )      ( )
]  

 

This completes the proof.                                                                                                 

From Theorem 3.10, Lemma 2.3, and the properties of the power matrix, we obtain 

many identities of the Vieta Pell-Like and Vieta-Pell polynomials. 

 

Corollary 3.11. Let    ( )    
         ( )    

  be the sequences of Vieta-Pell-Like and 

Vieta-Pell polynomials, respectively. Then for all integers   𝑚   , the following 

statements hold: 
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Proof: By Theorem 3.10, Lemma 2.3 and the property of the power matrix    
  

   
     , we obt i e  the results.                                                                                        □ 

 

Corollary 3.12. Let    ( )    
         ( )    

  be the sequences of Vieta-Pell-Like and 

Vieta-Pell polynomials, respectively. Then for all integers   𝑚   , the following 

statements hold: 

 
 

Proof: By Theorem 3.10, Lemma 2.3 and the property of the power matrix    
    

   
   , we obtained the results.                                                                                             □        

  

Corollary 3.13. Let    ( )    
         ( )    

  be the sequences of Vieta-Pell-Like and 

Vieta-Pell polynomials, respectively. Then for all integers   𝑚   , the following 

statements hold: 

 

 
 

Proof: By Theorem 3.10, Lemma 2.3 and the property of the power matrix    
    

   
    , we obtained the results.                                                                                           □         

                                                                                                                      

 

4. CONCLUSION 

 

 

In this paper, the Vieta-Pell-Like polynomial is introduced, and the generating 

function, Binet's formula, some well-known identities, and the sum formula for this 

polynomial are established. Moreover, the relations between the Vieta-Pell-Like, Vieta-Pell, 

and Vieta-Pell-Lucas polynomials are presented in this study. 

 

 

  

(1)   +1( ) =  (  𝑚)+1( ) 𝑚+1( )     𝑚( ) 𝑚( ), 

(2)   ( ) =  (  𝑚)+1( ) 𝑚( )     𝑚( ) 𝑚 1( ), 

(3)   ( ) =    𝑚( ) 𝑚+1( )   (  𝑚) 1( ) 𝑚( ), 

(4)    1( ) =    𝑚( ) 𝑚( )   (  𝑚) 1( ) 𝑚 1( ). 

(1)  (𝑚+ )+1( ) =  𝑚+1( )  +1( )   𝑚 ( )  ( ), 

(2)  𝑚+ ( ) =  𝓂+1( )  ( )   𝑚 ( )   1( ), 

(3)  𝑚+ ( ) =  𝑚( )  +1( )   𝑚 1( )  ( ), 

(4)  (𝑚+ ) 1( ) =  𝑚 ( )  ( )   𝓂 1( )   1( ). 

(1)  (𝑚  )+1( ) =   𝑚+1( )   1( )   𝑚 ( )  ( ), 

(2)  𝑚  ( ) =   𝑚+1( )  ( ) +  𝑚( )  +1( ), 

(3)  𝑚  ( ) =   𝑚( )   1( )   𝑚 1( )  ( ), 

(4)  (𝑚  ) 1( ) =   𝑚 ( )  ( )   𝑚 1( )  +1( ). 

(1)  (𝑚  )+1( ) =   𝑚+1( )   1( )   𝑚 ( )  ( ), 

(2)  𝑚  ( ) =   𝑚+1( )  ( ) +  𝑚( )  +1( ), 

(3)  𝑚  ( ) =   𝑚( )   1( )   𝑚 1( )  ( ), 

(4)  (𝑚  ) 1( ) =   𝑚 ( )  ( )   𝑚 1( )  +1( ). 
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