THE RELATION BETWEEN FRENET FRAME OF THE NATURAL LIFT CURVE AND BISHOP FRAME OF THE CURVE

EVREN ERGÜN ${ }^{1}$

Manuscript received: 16.10.2021;. Accepted paper: 03.12.2021; Published online: 30.12.2021.

Abstract

In this study, the relation between Frenet Frame of the natural lift curve $\bar{\gamma}$ of the curve γ and Bishop Frame vectors of γ is given in IR^{3} and IR_{1}^{3}.

Keywords: Natural lift curve; Bishop Frame; Frenet Frame.

1. INTRODUCTION

R. L. Bishop [1], put forward the best answer to this as "there are 3 more than one way to crack a curve". Bishop observed that parallel vector fields on a C^{2} regular curve form a 3dimensional vector space. He revealed the equations of the Bishop roof, which is named after him; hence it is sometimes referred to as the Relatively Parallel Adapted Frame (Bishop, [1])

Fenchel W. [2], stated that a point $\gamma(t)$ on a curve, when plotting the curve, the Frenet vectors $\{T, N, B\}$ change and thus spherical signs are formed.

Thorpe J.A. [3], together with the geodesic spray concepts, gave the theorem that "for a curve γ to be an integral curve for the geodesic spray \mathbf{X} of the natural lift γ, and only if γ is a geodesic over " M. Çalışkan, Sivridağ and Hacısalihoğlu [4], using these concepts and theorem given by [3] in E^{3}, have given that the curve should be a curve when the natural lift curve of the spherical indicators of a curve is an integral curve of the geodesic spray. Ergün and Çalışkan [5], defined the concepts of the natural lift curve and geodesic spray in Minkowski 3-space.The anologue of the theorem of Thorpe was given in Minkowski 3-space by Ergün and Çalişkan [5].

Walrave [6], gave Frenet formulas of timelike, spacelike and null curves in $\operatorname{IR}_{1}^{3}$ 3dimensional Minkowski space and characterized curves of constant curvature.

Let $\quad \gamma: I \rightarrow \mathbb{R}^{3}$ be a parametrized curve. We denote by $\{T(s), N(s), B(s)\}$ the moving Frenet frame along the curve γ, where T, N and B are the tangent, the principal normal and the binormal vector fields of the curve γ, respectively.

Let γ be a reguler curve in IR^{3}. Then

$$
T=\frac{\gamma^{\prime}}{\left\|\gamma^{\prime}\right\|}, N=B \times T, B=\frac{\gamma^{\prime} \times \gamma^{\prime \prime}}{\left\|\gamma^{\prime} \times \gamma^{\prime \prime}\right\|^{\prime}},
$$

[^0]If γ is a unit speed curve, then

$$
T=\gamma^{\prime}, N=\frac{\gamma}{\left\|\gamma^{\prime}\right\|}, B=T \times N, .
$$

Let γ be a unit speed space curve with curvature κ and torsion τ. Let Frenet vector fields of γ be $\{T, N, B\}$. Then, Frenet formulas are given by

$$
T^{\prime}=\kappa N, N^{\prime}=-\kappa T+\tau B, B^{\prime}=-\tau N
$$

where $\kappa=\left\langle T^{\prime}, N\right\rangle$ and $\tau=\left\langle N^{\prime}, B\right\rangle$. For any unit speed curev $\gamma: I \rightarrow \mathbb{R}^{3}$, we call $W(s)=\tau T(s)+\kappa B(s)$ the Darboux vector field of $\gamma . \theta$ being an angle between B and the Frenet instantaneous rotation vector W, we can write

$$
\kappa=\|W\| \cos \theta, \tau=\|W\| \sin \theta
$$

Definition 1: Let $\gamma: I \rightarrow \mathbb{R}^{3}$ be a unit curve. Let $T=\dot{\gamma}$ be the tangent vector defined at each point of the curve. In this case, M_{1} and M_{2} vectors are perpendicular to the tangent vector T at each point and any two vector fields in the normal plane, on the curve γ, $\{T, N, B\}$, there is always a frame $\left\{T, M_{1}, M_{2}\right\}$, as an alternative to the moving frame. $\left\{T, M_{1}, M_{2}\right\}$ is Bishop frame to this alternative frame. Then, Frenet formulas are given by [1],

$$
\begin{aligned}
T & =k_{1} M_{1}+k_{2} M_{2}, \\
M_{1} & =k_{1} T, \\
\dot{M}_{2} & =k_{2} T, \\
\kappa(t) & =\sqrt{k_{1}^{2}+k_{2}^{2}}, \phi(t)=\arctan \left(\frac{k_{1}}{k_{2}}\right), \tau(t)=\dot{\phi}, \\
k_{1} & =\kappa \cos \phi, k_{2}=\kappa \sin \phi, \\
T & =T, \\
M_{1} & =\cos \phi N-\sin \phi B, \\
M_{2} & =\sin \phi N+\cos \phi B
\end{aligned}
$$

where the differentiable functions k_{1} and k_{2} are the Bishop curvatures.
Definition 2: Let M be a hypersurface in IR^{3} and let $\gamma: I \rightarrow M$ be a parametrized curve. γ is called an integral curve of X if

$$
\frac{d}{d s}(\gamma(s))=X(\gamma(s))(\text { for all } t \in I),[3]
$$

where X is a smooth tangent vector field on M. We have

$$
T M=\bigcup_{P \in M} T_{P} M=\chi(M)
$$

where $T_{P} M$ is the tangent space of M at P and $\quad \chi(M)$ is the space of vector fields on M.

Definition 3: For any parametrized curve $\gamma: I \rightarrow M, \bar{\gamma}: I \rightarrow T M$ given by

$$
\bar{\gamma}(s)=(\gamma(s), \dot{\gamma}(s))=\left.\dot{\gamma}(s)\right|_{\gamma(s)},
$$

is called the natural lift of γ on TM. Thus, we can write

$$
\frac{d \bar{\gamma}}{d s}=\frac{d}{d s}\left(\left.\dot{\gamma}(s)\right|_{\gamma(s)}\right)=D_{\dot{\gamma}(s)} \dot{\gamma}(s)
$$

where D is the Levi-Civita connection on IR^{3}, [3].

Definition 4: $A \quad X \in \chi(T M)$ is called a geodesic spray if for $V \in T M$

$$
X(V)=-\langle S(V), V\rangle N,[3] .
$$

Theorem 5: The natural lift $\bar{\gamma}$ of the curve γ is an integral curve of geodesic spray $\quad X$ if and only if γ is a geodesic on M, [3].

We denote by $\{\bar{T}(s), \bar{N}(s), \bar{B}(s)\}$ the moving Frenet frame along the curve $\bar{\gamma}$, where \bar{T}, \bar{N} and \bar{B} are the tangent, the principal normal and the binormal vector of the curve $\bar{\gamma}$, respectively.

Corollary 6: Let $\bar{\gamma}$ be the natural lift of γ in IR^{3} and be a reguler curve. Then

$$
\begin{aligned}
& \bar{T}(s)=N(s) \\
& \bar{N}(s)=-\cos \theta T(s)+\sin \theta B(s) \\
& \bar{B}(s)=\sin \theta T(s)+\cos \theta B(s),[7] .
\end{aligned}
$$

Corollary 7: Let $\bar{\gamma}$ be the natural lift of γ with curvature $\bar{\kappa}$ and torsion $\bar{\tau}$. Then

$$
\bar{\kappa}(s)=\frac{1}{\cos \theta}, \bar{\tau}(s)=\frac{\theta}{\|W\| \cos \theta},[7] .
$$

Let Minkowski 3-space \mathbb{R}_{1}^{3} be the vector space IR^{3} equipped with the Lorentzian inner product g given by

$$
g(X, X)=-x_{1}^{2}+x_{2}^{2}+x_{3}^{2},
$$

where $X=\left(x_{1}, x_{2}, x_{3}\right) \in \operatorname{RR}^{3}$.
A vector $X=\left(x_{1}, x_{2}, x_{3}\right) \in \operatorname{IR}^{3}$ is said to be timelike if $g(X, X)<0$, spacelike if $g(X, X)>0$ and lightlike (or null) if $g(X, X)=0$. Similarly, an arbitrary curve $\gamma=\gamma(t)$ in IR_{1}^{3} where t is a pseudo-arclength parameter, can be locally timelike, spacelike or null (lightlike), if all of its velocity vectors $\gamma(t)$ are respectively timelike, spacelike or null (lightlike), for every $t \in I \subset \mathrm{IR}$. A lightlike vector X is said to be positive (resp. negative) if and only if $x_{1}>0 \quad\left(\right.$ resp. $\left.x_{1}<0\right)$ and a timelike vector X is said to be positive (resp. negative) if and only if $x_{1}>0$ (resp. $x_{1}<0$). The norm of a vector X is defined by [8].

$$
\|X\|_{L L}=\sqrt{|g(X, X)|}
$$

Lemma 8: Let X and Y be nonzero Lorentz orthogonal vectors in $\operatorname{IR}_{1}^{3}$. If X is timelike, then Y is spacelike [9].

Lemma 9: Let X and Y be pozitive (negative) timelike vectors in IR_{1}^{3}. Then

$$
g(X, Y) \leq\|X\|\|Y\|
$$

whit equality if and only if X and Y are linearly dependent [9].
Lemma 10: i) Let X and Y be pozitive (negative) timelike vectors in \mathbb{R}_{1}^{3}. By the Lemma 9, there is unique nonnegative real number $\phi(X, Y)$ such that

$$
g(X, Y)=\|X\|\|Y\| \cosh \phi(X, Y)
$$

the Lorentzian timelike angle between X and Y is defined to be $\phi(X, Y)$.
ii) Let X and Y be spacelike vektors in IR_{1}^{3} that span a spacelike vector subspace. Then we have

$$
|g(X, Y)| \leq\|X\|\|Y\|
$$

Hence, there is a unique real number $\phi(X, Y)$ between 0 and π such that

$$
g(X, Y)=\|X\|\|Y\| \cos \phi(X, Y)
$$

the Lorentzian spacelike angle between X and Y is defined to be $\phi(X, Y)$.
iii) Let X and Y be spacelike vectors in IR_{1}^{3} that span a timelike vector subspace. Then we have

$$
g(X, Y)>\|X\|\|Y\| .
$$

Hence, there is a unique pozitive real number $\phi(X, Y)$ between 0 and π such that

$$
|g(X, Y)|=\|X\|\|Y\| \cosh \phi(X, Y)
$$

the Lorentzian timelike angle between X and Y is defined to be $\phi(X, Y)$
iv) Let X be a spacelike vector and Y be a pozitive timelike vector in IR_{1}^{3}. Then there is a unique nonnegative reel number $\phi(X, Y)$ such that

$$
|g(X, Y)|=\|X\|\|Y\| \sinh \phi(X, Y)
$$

the Lorentzian timelike angle between X and Y is defined to be $\phi(X, Y)$, [9].
We denote the moving Frenet frame along the curve γ by $\{T(t), N(t), B(t)\}$, where T, N and B are the tangent, the principal normal and the binormal vector of the curve γ, respectively.
i) Let γ be a unit speed timelike space curve with curvature $\&$ and torsion d and Frenet vector fields of γ be $\{T, N, B\}$. In this trihedron, T is a timelike vector field, N and B are spacelike vector fields. Then, Frenet formulas are given by [6],

$$
\begin{aligned}
T & =\kappa N, \\
\dot{N} & =\kappa T+\tau B, \\
\dot{B} & =-\tau N .
\end{aligned}
$$

ii) Let γ be a unit speed spacelike space curve with a spacelike binormal. For the Frenet vector fields we assume that T and B are spacelike vector fields and N is a timelike vector field. Then, Frenet formulas are given by [6],

$$
\begin{aligned}
T & =\kappa N, \\
\dot{N} & =\kappa T+\tau B, \\
\dot{B} & =\tau N .
\end{aligned}
$$

iii) Let γ be a unit speed spacelike space curve with a timelike binormal. We assume that T and N are spacelike vector fields and B is a timelike vector field. Then, Frenet formulas are given by [6],

$$
\begin{aligned}
\dot{T} & =\kappa N, \\
\dot{N} & =-\kappa T+\tau B, \\
\dot{B} & =\tau N .
\end{aligned}
$$

Definition 11: Let $\gamma: I \rightarrow \mathbb{R}_{1}^{3}$ be a unit speed spacelike or timelik space curve. Let $T=\gamma$ be the tangent vector defined at each point of the curve. In this case, M_{1} and M_{2} vectors are perpendicular to the tangent vector T at each point and any two vector fields in the normal plane, on the curve $\gamma,\{T, N, B\}$, there is always a frame $\left\{T, M_{1}, M_{2}\right\}$, as an alternative to the moving frame. $\left\{T, M_{1}, M_{2}\right\}$ is Bishop frame to this alternative frame [10].

Let γ be a unit speed timelike space curve. In this trihedron, T is a timelike vector field, M_{1} and M_{2} are spacelike vector fields. Then, Frenet formulas are given by [10],

$$
\begin{aligned}
T & =k_{1} M_{1}+k_{2} M_{2}, \\
\dot{M} & =k_{1} T \\
\dot{M_{2}} & =k_{2} T \\
\kappa(t) & =\sqrt{\left|k_{1}^{2}+k_{2}^{2}\right|}, \phi(t)=\arctan \left(\frac{k_{1}}{k_{2}}\right), \tau(t)=\dot{\phi}, \\
k_{1} & =\kappa \cos \phi, k_{2}=\kappa \sin \phi \\
T & =T \\
M_{1} & =\cos \phi N-\sin \phi B \\
M_{2} & =\sin \phi N+\cos \phi B
\end{aligned}
$$

where the differentiable functions k_{1} and k_{2} are the Bishop curvatures.
Let γ be a unit speed spacelike space curve with a spacelike binormal. In this trihedron, M_{1} is a timelike vector field, T and M_{2} are spacelike vector fields. Then, Frenet formulas are given by [10],

$$
\begin{aligned}
\quad \dot{T} & =k_{1} M_{1}-k_{2} M_{2} \\
M_{1} & =k_{1} T \\
\dot{M_{2}} & =k_{2} T \\
\kappa(t) & =\sqrt{\left|k_{1}^{2}-k_{2}^{2}\right|}, \phi(t)=\arg \tanh \left(\frac{k_{1}}{k_{2}}\right), \tau(t)=\dot{\phi} \\
k_{1} & =\kappa \cosh \phi, k_{2}=\kappa \sinh \phi \\
T & =T \\
M_{1} & =\cosh \phi N-\sinh \phi B \\
M_{2} & =-\sinh \phi N+\cosh \phi B
\end{aligned}
$$

where the differentiable functions k_{1} and k_{2} are the Bishop curvatures.
Let γ be a unit speed spacelike space curve with a timelike binormal. In this trihedron, M_{2} is a timelike vector field, T and M_{1} are spacelike vector fields. Then, Frenet formulas are given by [10],

$$
\begin{aligned}
T & =k_{1} M_{1}-k_{2} M_{2} \\
\dot{M} & =-k_{1} T \\
\dot{M_{2}} & =-k_{2} T \\
\kappa(t) & =\sqrt{\left|k_{1}^{2}-k_{2}^{2}\right|}, \phi(t)=\arg \tanh \left(\frac{k_{1}}{k_{2}}\right), \tau(t)=\dot{\phi}, \\
k_{1} & =\kappa \cosh \phi, k_{2}=\kappa \sinh \phi, \\
T & =T, \\
M_{1} & =\cosh \phi N-\sinh \phi B, \\
M_{2} & =-\sinh \phi N+\cosh \phi B
\end{aligned}
$$

where the differentiable functions k_{1} and k_{2} are the Bishop curvatures.
Definition 12: Let M be a hypersurface in IR_{1}^{3} and let $\gamma: I \rightarrow M$ be a parametrized curve. γ is called an integral curve of X if

$$
\frac{d}{d t}(\gamma(t))=X(\gamma(t))(\text { for all } t \in I)
$$

where X is a smooth tangent vector field on M [8]. We have

$$
T M=\bigcup_{P \in M} T_{P} M=\chi(M)
$$

where $T_{P} M$ is the tangent space of M at P and $\chi(M)$ is the space of vector fields of M.

Definition 13: For any parametrized curve $\gamma: I \rightarrow M, \bar{\gamma}: I \rightarrow T M$ given by

$$
\bar{\gamma}(t)=(\gamma(t), \dot{\gamma}(t))=\left.\dot{\gamma}(t)\right|_{\gamma(t)}
$$

is called the natural lift of γ on TM, [5]. Thus, we can write

$$
\frac{d \bar{\gamma}}{d t}=\frac{d}{d t}\left(\left.\dot{\gamma}(t)\right|_{\gamma(t)}\right)=\nabla_{\dot{\gamma}(t)} \dot{\gamma}(t)
$$

where ∇ is the Levi-Civita connection on IR_{1}^{3}.

Definition 14: $A \quad X \in \chi(T M)$ is called a geodesic spray if for $V \in T M$

$$
X(V)=\varepsilon g(S(V), V) N, \varepsilon=g(N, N),[5] .
$$

Theorem 15: The natural lift $\bar{\gamma}$ of the curve γ is an integral curve of geodesic spray $\quad X$ if and only if γ is a geodesic on M, [5].

We denote by $\{\bar{T}(s), \bar{N}(s), \bar{B}(s)\}$ the moving Frenet frame along the curve $\bar{\gamma}$, where \bar{T}, \bar{N} and \bar{B} are the tangent, the principal normal and the binormal vector of the curve $\bar{\gamma}$, respectively.

Corollary 16: Let γ be a unit speed timelike space curve and $\bar{\gamma}$ be the natural lift of γ If W is a spacelike vector field, then

$$
\begin{aligned}
& \bar{T}(s)=N(s) \\
& \bar{N}(s)=-\cosh \theta T(s)-\sinh \theta B(s) \\
& \bar{B}(s)=-\sinh \theta T(s)-\cosh \theta B(s),[7]
\end{aligned}
$$

Corollary 17: Let γ be a unit speed timelike space curve and the natural lift $\bar{\gamma}$ of the curve γ be a space curve with curvature $\bar{\kappa}$ and torsion $\bar{\tau}$. If W is a spacelike vector field,then

$$
\bar{\kappa}(s)=\frac{1}{\cosh \theta}, \bar{\tau}(s)=-\frac{\dot{\theta}}{\|W\| \cosh \theta},[7]
$$

Corollary 18: Let γ be a unit speed timelike space curve and $\bar{\gamma}$ be the natural lift of γ If W is a timelike vector field, then

$$
\begin{aligned}
& \bar{T}(s)=N(s) \\
& \bar{N}(s)=-\sinh \theta T(s)-\cosh \theta B(s) \\
& \bar{B}(s)=-\cosh \theta T(s)-\sinh \theta B(s),[7]
\end{aligned}
$$

Corollary 19: Let γ be a unit speed timelike space curve and the natural lift $\bar{\gamma}$ of the curve γ be a space curve with curvature $\bar{\kappa}$ and torsion $\bar{\tau}$. If W is a timelike vector field, then

$$
\bar{\kappa}(s)=\frac{1}{\sinh \theta}, \bar{\tau}(s)=\frac{\dot{\theta}}{\|W\| \sinh \theta},[7]
$$

Corollary 20: Let γ be a unit speed spacelike space curve with a spacelike binormal and $\bar{\gamma}$ be the natural lift of γ. Then

$$
\begin{aligned}
& \bar{T}(s)=N(s) \\
& \bar{N}(s)=\cos \theta T(s)+\sin \theta B(s) \\
& \bar{B}(s)=\sin \theta T(s)-\cos \theta B(s),[7] .
\end{aligned}
$$

Corollary 21: Let γ be a unit speed spacelike space curve with a spacelike binormal and the natural lift $\bar{\gamma}$ of the curve γ be a space curve with curvature $\bar{\kappa}$ and torsion $\bar{\tau}$. Then

$$
\bar{\kappa}(s)=\frac{1}{\cos \theta}, \bar{\tau}(s)=-\frac{\theta}{\|W\| \cos \theta},[7] .
$$

Corollary 22: Let γ be a unit speed spacelike space curve with a timelike binormal and $\bar{\gamma}$ be the natural lift of γ. If W is a spacelike vector field, then

$$
\begin{aligned}
& \bar{T}(s)=N(s) \\
& \bar{N}(s)=\sinh \theta T(s)-\cosh \theta B(s) \\
& \bar{B}(s)=\cosh \theta T(s)-\sinh \theta B(s),[7] .
\end{aligned}
$$

Corollary 23: Let γ be a unit speed spacelike space curve with a timelike binormal and the natural lift $\bar{\gamma}$ of the curve γ be a space curve with curvature $\bar{\kappa}$ and torsion $\bar{\tau}$. If W is a spacelike vector field, then

$$
\bar{\kappa}(s)=\frac{1}{\sinh \theta}, \bar{\tau}(s)=-\frac{\dot{\theta}}{\|W\| \sinh \theta},[7]
$$

Corollary 24: Let γ be a unit speed spacelike space curve with a timelike binormal and $\bar{\gamma}$ be the natural lift of γ If W is a timelike vector field, then

$$
\begin{aligned}
& \bar{T}(s)=N(s) \\
& \bar{N}(s)=\cosh \theta T(s)-\sinh \theta B(s) \\
& \bar{B}(s)=\sinh \theta T(s)-\cosh \theta B(s),[7] .
\end{aligned}
$$

Corollary 25: Let γ be a unit speed spacelike space curve with a timelike binormal and the natural lift $\bar{\gamma}$ of the curve γ be a space curve with curvature $\bar{\kappa}$ and torsion $\bar{\tau}$. If W is a timelike vector field, then

$$
\bar{\kappa}(s)=\frac{1}{\cosh \theta}, \bar{\tau}(s)=\frac{\dot{\theta}}{\|W\| \cosh \theta},[7]
$$

2. THE RELATION BETWEEN FRENET FRAME OF THE NATURAL LIFT CURVE AND BISHOP FRAME OF THE CURVE

In this section, the relations between the two frames are given.

Corollary 26: Let $\bar{\gamma}$ be the natural lift of γ in \mathbb{R}^{3} and be a reguler curve. The relation between the $\{\bar{T}(s), \bar{N}(s), \bar{B}(s)\}$ and the $\left\{T(s), M_{1}(s), M_{2}(s)\right\}$ of is as follows.

$$
\begin{aligned}
& \bar{T}(s)=\cos \theta M_{1}+\sin \theta M_{2} \\
& \bar{N}(s)=-\cos \phi T(s)-\sin \phi \sin \theta M_{1}+\sin \phi \cos \theta M_{2} \\
& \bar{B}(s)=\sin \phi T(s)-\cos \phi \sin \theta M_{1}+\cos \phi \cos \theta M_{2} .
\end{aligned}
$$

Corollary 27: Let γ be a unit speed timelike space curve and $\bar{\gamma}$ be the natural lift of γ. If $\bar{\gamma}$ is a spacelike space curve with a timelike binormal and W is a spacelike vector field. The relation between the $\{\bar{T}(s), \bar{N}(s), \bar{B}(s)\}$ and the $\left\{T(s), M_{1}(s), M_{2}(s)\right\}$ of is as follows,

$$
\begin{aligned}
& \bar{T}(s)=\cos \theta M_{1}+\sin \theta M_{2} \\
& \bar{N}(s)=\cosh \phi T(s)-\sinh \phi \sin \theta M_{1}+\sinh \phi \cos \theta M_{2} \\
& \bar{B}(s)=\sinh \phi T(s)-\cosh \phi \sin \theta M_{1}+\cosh \phi \cos \theta M_{2} .
\end{aligned}
$$

Corollary 28: Let γ be a unit speed timelike space curve and $\bar{\gamma}$ be the natural lift of γ. If $\bar{\gamma}$ is a spacelike space curve with a timelike binormal and W is a timelike vector field. The relation between the $\{\bar{T}(s), \bar{N}(s), \bar{B}(s)\}$ and the $\left\{T(s), M_{1}(s), M_{2}(s)\right\}$ of is as follows,

$$
\begin{aligned}
& \bar{T}(s)=\cos \theta M_{1}+\sin \theta M_{2} \\
& \bar{N}(s)=\sinh \phi T(s)-\cosh \phi \sin \theta M_{1}+\cosh \phi \cos \theta M_{2} \\
& \bar{B}(s)=\cosh \phi T(s)-\sinh \phi \sin \theta M_{1}+\sinh \phi \cos \theta M_{2} .
\end{aligned}
$$

Corollary 29: Let γ be a unit speed timelike space curve and $\bar{\gamma}$ be the natural lift of γ. If $\bar{\gamma}$ is a spacelike space curve with a spacelike binormal and W is a spacelike vector field. The relation between the $\{\bar{T}(s), \bar{N}(s), \bar{B}(s)\}$ and the $\left\{T(s), M_{1}(s), M_{2}(s)\right\}$ of is as follows,

$$
\begin{aligned}
& \bar{T}(s)=\cos \theta M_{1}+\sin \theta M_{2} \\
& \bar{N}(s)=\cosh \phi T(s)-\sinh \phi \sin \theta M_{1}+\sinh \phi \cos \theta M_{2} \\
& \bar{B}(s)=-\sinh \phi T(s)-\cosh \phi \sin \theta M_{1}+\cosh \phi \cos \theta M_{2} .
\end{aligned}
$$

Corollary 30: Let γ be a unit speed timelike space curve and $\bar{\gamma}$ be the natural lift of γ. If $\bar{\gamma}$ is a spacelike space curve with a spacelike binormal and W is a timelike vector field. The relation between the $\{\bar{T}(s), \bar{N}(s), \bar{B}(s)\}$ and the $\left\{T(s), M_{1}(s), M_{2}(s)\right\}$ of is as follows,

$$
\begin{aligned}
& \bar{T}(s)=\cos \theta M_{1}+\sin \theta M_{2} \\
& \bar{N}(s)=\sinh \phi T(s)-\cosh \phi \sin \theta M_{1}+\cosh \phi \cos \theta M_{2} \\
& \bar{B}(s)=-\cosh \phi T(s)+\sinh \phi \sin \theta M_{1}-\sinh \phi \cos \theta M_{2} .
\end{aligned}
$$

Corollary 31: Let γ be a unit speed spacelike space curve with a spacelike binormal and $\bar{\gamma}$ be the natural lift of γ. The relation between the $\{\bar{T}(s), \bar{N}(s), \bar{B}(s)\}$ and the $\left\{T(s), M_{1}(s), M_{2}(s)\right\}$ of is as follows,

$$
\begin{aligned}
& \bar{T}(s)=\cosh \theta M_{1}+\sinh \theta M_{2} \\
& \bar{N}(s)=\cos \phi T(s)+\sin \phi \sinh \theta M_{1}+\sin \phi \cosh \theta M_{2} \\
& \bar{B}(s)=\sin \phi T(s)-\cos \phi \sinh \theta M_{1}-\cos \phi \cosh \theta M_{2} .
\end{aligned}
$$

Corollary 32: Let γ be a unit speed spacelike space curve with a timelike binormal and $\bar{\gamma}$ be the natural lift of γ. If $\bar{\gamma}$ is a spacelike space curve with a timelike binormal and W is a spacelike vector field. The relation between the $\{\bar{T}(s), \bar{N}(s), \bar{B}(s)\}$ and the $\left\{T(s), M_{1}(s), M_{2}(s)\right\}$ of is as follows,

$$
\begin{aligned}
& \bar{T}(s)=\cosh \theta M_{1}+\sinh \theta M_{2} \\
& \bar{N}(s)=-\sinh \phi T(s)+\cosh \phi \sinh \theta M_{1}+\cosh \phi \cosh \theta M_{2} \\
& \bar{B}(s)=-\cosh \phi T(s)+\sinh \phi \sinh \theta M_{1}+\sinh \phi \cosh \theta M_{2} .
\end{aligned}
$$

Corollary 33: Let γ be a unit speed spacelike space curve with a timelike binormal and $\bar{\gamma}$ be the natural lift of γ. If $\bar{\gamma}$ is a spacelike space curve with a timelike binormal and W is a timelike vector field. The relation between the $\{\bar{T}(s), \bar{N}(s), \bar{B}(s)\}$ and the $\left\{T(s), M_{1}(s), M_{2}(s)\right\}$ of is as follows,

$$
\begin{aligned}
& \bar{T}(s)=\cosh \theta M_{1}+\sinh \theta M_{2} \\
& \bar{N}(s)=-\cosh \phi T(s)+\sinh \phi \sinh \theta M_{1}+\sinh \phi \cosh \theta M_{2} \\
& \bar{B}(s)=-\sinh \phi T(s)+\cosh \phi \sinh \theta M_{1}+\cosh \phi \cosh \theta M_{2} .
\end{aligned}
$$

Corollary 34: Let γ be a unit speed spacelike space curve with a timelike binormal and $\bar{\gamma}$ be the natural lift of γ. If $\bar{\gamma}$ is a spacelike space curve with a spacelike binormal and W is a spacelike vector field. The relation between the $\{\bar{T}(s), \bar{N}(s), \bar{B}(s)\}$ and the $\left\{T(s), M_{1}(s), M_{2}(s)\right\}$ of is as follows,

$$
\begin{aligned}
& \bar{T}(s)=\cosh \theta M_{1}+\sinh \theta M_{2} \\
& \bar{N}(s)=-\sinh \phi T(s)+\cosh \phi \sinh \theta M_{1}+\cosh \phi \cosh \theta M_{2} \\
& \bar{B}(s)=\cosh \phi T(s)-\sinh \phi \sinh \theta M_{1}-\sinh \phi \cosh \theta M_{2} .
\end{aligned}
$$

Corollary 35: Let γ be a unit speed spacelike space curve with a timelike binormal and
$\bar{\gamma}$ be the natural lift of γ. If $\bar{\gamma}$ is a spacelike space curve with a spacelike binormal and W is a timelike vector field. The relation between the $\{\bar{T}(s), \bar{N}(s), \bar{B}(s)\}$ and the $\left\{T(s), M_{1}(s), M_{2}(s)\right\} \quad$ of is as follows, $\bar{T}(s)=\cosh \theta M_{1}+\sinh \theta M_{2}$ $\bar{N}(s)=-\cosh \phi T(s)+\sinh \phi \sinh \theta M_{1}+\sinh \phi \cosh \theta M_{2}$ $\bar{B}(s)=\sinh \phi T(s)-\cosh \phi \sinh \theta M_{1}-\cosh \phi \cosh \theta M_{2}$.

3. CONCLUSION

In this article, the relationship between the Bishop Frame of the curve and the Frenet Frame of the natural lift of the curve is given. As a result, the transition matrix between the two frames can also be calculated.

REFERENCES

[1] Bishop, R.L., The American Mathematical Monthly, 3(82), 246, 1975.
[2] Fenchel, W., Bulletin of the American Mathematical Society, 57, 44, 1951.
[3] Thorpe, J.A., Elementary Topics In Differential Geometry,Springer-Verlag, New York, Heidelberg-Berlin, 1979.
[4] Çalışkan, M., Sivridag, A.I., Hacisalihoglu, H.H., Communications Faculty of Sciences University of Ankara, 33, 235, 1984.
[5] Ergün, E., Çalışkan, M, International Journal of Contemporary Mathematical Sciences, 6, 39, 1929, 2011.
[6] Walrave J., PhD. Thesis Curves and surfaces in Minkowski space, , K.U. Leuven, 1995.
[7] Ergün, E., Bilici, M. Çalı̧̧kan, M., Bulletin of Society for Mathematical Services \& Standards, 1(2), 59, 2012.
[8] O'Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
[9] Ratcliffe, J.G., Foundations of Hyperbolic Manifold, Springer-Verlag, New York, 1994.
[10] Bükcü, B., Karacan, M.K., Tamkang Journal of Mathematics, 3(39), 255, 2008.
[11] Silva, L.C.B., PhD Thesis Differential geometry of rotation minimizing frames, spherical curves, and quantum mechanics of a constrained particle, Universidade Federal De Pernambuco, 2017.
[12] Arreaga, G., Capovilla, R., Guven, J., Classical Quantum Gravity, 18(23), 5065, 2001.
[13] Do Carmo, M.P., Differential Geometry of Curves and Surfaces, Pearson Education, 1976.

[^0]: ${ }^{1}$ Ondokuz Mays University, Çarşamba Chamber of Commerce Vocational School, Çarşamba, Samsun, Turkey. E-mail: $\underline{\text { ergun@omu.edu.tr }}$

