ORIGINAL PAPER

THE RELATION BETWEEN FRENET FRAME OF THE NATURAL LIFT CURVE AND BISHOP FRAME OF THE CURVE

EVREN ERGÜN¹

Manuscript received: 16.10.2021; Accepted paper: 03.12.2021; Published online: 30.12.2021.

Abstract. In this study, the relation between Frenet Frame of the natural lift curve $\overline{\gamma}$ of the curve γ and Bishop Frame vectors of γ is given in IR^3 and IR^3_1 . **Keywords:** Natural lift curve; Bishop Frame; Frenet Frame.

1. INTRODUCTION

R. L. Bishop [1], put forward the best answer to this as "there are 3 more than one way to crack a curve". Bishop observed that parallel vector fields on a C^2 regular curve form a 3-dimensional vector space. He revealed the equations of the Bishop roof, which is named after him; hence it is sometimes referred to as the Relatively Parallel Adapted Frame (Bishop, [1])

Fenchel W. [2], stated that a point $\gamma(t)$ on a curve, when plotting the curve, the Frenet vectors $\{T, N, B\}$ change and thus spherical signs are formed.

Thorpe J.A. [3], together with the geodesic spray concepts, gave the theorem that "for a curve γ to be an integral curve for the geodesic spray X of the natural lift γ , and only if γ is a geodesic over " M. Çalışkan, Sivridağ and Hacısalihoğlu [4], using these concepts and theorem given by [3] in E^3 , have given that the curve should be a curve when the natural lift curve of the spherical indicators of a curve is an integral curve of the geodesic spray. Ergün and Çalışkan [5], defined the concepts of the natural lift curve and geodesic spray in Minkowski 3-space. The anologue of the theorem of Thorpe was given in Minkowski 3-space by Ergün and Çalışkan [5].

Walrave [6], gave Frenet formulas of timelike, spacelike and null curves in IR_1^3 3dimensional Minkowski space and characterized curves of constant curvature.

Let $\gamma: I \to \mathrm{IR}^3$ be a parametrized curve. We denote by $\{T(s), N(s), B(s)\}$ the moving Frenet frame along the curve γ , where T, N and B are the tangent, the principal normal and the binormal vector fields of the curve γ , respectively.

Let γ be a reguler curve in IR³. Then

$$T = \frac{\gamma}{\left\|\gamma\right\|}, \ N = B \times T, \ B = \frac{\gamma \times \gamma}{\left\|\gamma \times \gamma\right\|},$$

¹ Ondokuz Mays University, Çarşamba Chamber of Commerce Vocational School, Çarşamba, Samsun, Turkey. E-mail: <u>eergun@omu.edu.tr</u>

If γ is a unit speed curve, then

$$T = \gamma', N = \frac{\gamma}{\left\|\gamma''\right\|}, B = T \times N,$$

Let γ be a unit speed space curve with curvature κ and torsion τ . Let Frenet vector fields of γ be $\{T, N, B\}$. Then, Frenet formulas are given by

$$T = \kappa N, N = -\kappa T + \tau B, B = -\tau N,$$

where $\kappa = \langle T, N \rangle$ and $\tau = \langle N, B \rangle$. For any unit speed curve $\gamma : I \to \mathbb{IR}^3$, we call $W(s) = \tau T(s) + \kappa B(s)$ the Darboux vector field of γ . θ being an angle between *B* and the Frenet instantaneous rotation vector *W*, we can write

$$\kappa = \|W\|\cos\theta, \tau = \|W\|\sin\theta.$$

Definition 1: Let $\gamma : I \to \mathbb{R}^3$ be a unit curve. Let $T = \gamma$ be the tangent vector defined at each point of the curve. In this case, M_1 and M_2 vectors are perpendicular to the tangent vector T at each point and any two vector fields in the normal plane, on the curve γ , $\{T, N, B\}$, there is always a frame $\{T, M_1, M_2\}$, as an alternative to the moving frame. $\{T, M_1, M_2\}$ is Bishop frame to this alternative frame. Then, Frenet formulas are given by [1],

$$T = k_1 M_1 + k_2 M_2,$$

$$M_1 = k_1 T,$$

$$M_2 = k_2 T,$$

$$\kappa(t) = \sqrt{k_1^2 + k_2^2}, \ \phi(t) = \arctan\left(\frac{k_1}{k_2}\right), \ \tau(t) = \phi,$$

$$k_1 = \kappa \cos \phi, \ k_2 = \kappa \sin \phi,$$

$$T = T,$$

$$M_1 = \cos \phi N - \sin \phi B,$$

$$M_2 = \sin \phi N + \cos \phi B$$

where the differentiable functions k_1 and k_2 are the Bishop curvatures.

Definition 2: Let *M* be a hypersurface in \mathbb{IR}^3 and let $\gamma : I \to M$ be a parametrized curve. γ is called an integral curve of *X* if

$$\frac{d}{ds}(\gamma(s)) = X(\gamma(s)) \text{ (for all } t \in I), [3].$$

where X is a smooth tangent vector field on M. We have

$$TM = \bigcup_{P \in M} T_P M = \chi(M)$$

where T_PM is the tangent space of M at P and $\chi(M)$ is the space of vector fields on M.

Definition 3: For any parametrized curve $\gamma : I \to M$, $\overline{\gamma} : I \to TM$ given by

$$\overline{\gamma}(s) = \left(\gamma(s), \gamma(s)\right) = \gamma(s)|_{\gamma(s)}$$

is called the natural lift of γ on TM. Thus, we can write

$$\frac{d\overline{\gamma}}{ds} = \frac{d}{ds} \left(\gamma(s) |_{\gamma(s)} \right) = D_{\gamma(s)} \gamma(s)$$

where *D* is the Levi-Civita connection on \mathbb{IR}^3 , [3].

Definition 4: A $X \in \chi(TM)$ is called a geodesic spray if for $V \in TM$

$$X(V) = -\langle S(V), V \rangle N, [3]$$

Theorem 5: The natural lift γ of the curve γ is an integral curve of geodesic spray X if and only if γ is a geodesic on M, [3].

We denote by $\{\overline{T}(s), \overline{N}(s), \overline{B}(s)\}\$ the moving Frenet frame along the curve $\overline{\gamma}$, where $\overline{T}, \overline{N}$ and \overline{B} are the tangent, the principal normal and the binormal vector of the curve $\overline{\gamma}$, respectively.

Corollary 6: Let
$$\gamma$$
 be the natural lift of γ in \mathbb{IR}^3 and be a reguler curve. Then
 $\overline{T}(s) = N(s)$
 $\overline{N}(s) = -\cos\theta T(s) + \sin\theta B(s)$
 $\overline{B}(s) = \sin\theta T(s) + \cos\theta B(s), [7].$

Corollary 7: Let $\overline{\gamma}$ be the natural lift of γ with curvature $\overline{\kappa}$ and torsion $\overline{\tau}$. Then

$$\overline{\kappa}(s) = \frac{1}{\cos\theta}, \overline{\tau}(s) = \frac{\theta}{\|W\|\cos\theta}, [7].$$

Let Minkowski 3-space \mathbb{IR}_1^3 be the vector space \mathbb{IR}^3 equipped with the Lorentzian inner product g given by

Evren Ergün

$$g(X,X) = -x_1^2 + x_2^2 + x_3^2,$$

where $X = (x_1, x_2, x_3) \in \mathbb{IR}^3$.

A vector $X = (x_1, x_2, x_3) \in \mathbb{R}^3$ is said to be timelike if g(X, X) < 0, spacelike if g(X, X) > 0 and lightlike (or null) if g(X, X) = 0. Similarly, an arbitrary curve $\gamma = \gamma(t)$ in \mathbb{R}^3_1 where t is a pseudo-arclength parameter, can be locally timelike, spacelike or null (lightlike), if all of its velocity vectors $\gamma(t)$ are respectively timelike, spacelike or null (lightlike), for every $t \in I \subset \mathbb{R}$. A lightlike vector X is said to be positive (resp. negative) if and only if $x_1 > 0$ (resp. $x_1 < 0$) and a timelike vector X is said to be positive (resp. negative) [8].

$$\left\|X\right\|_{IL} = \sqrt{\left|g\left(X,X\right)\right|}.$$

Lemma 8: Let X and Y be nonzero Lorentz orthogonal vectors in \mathbb{IR}_1^3 . If X is timelike, then Y is spacelike [9].

Lemma 9: Let X and Y be pozitive (negative) timelike vectors in \mathbb{IR}_1^3 . Then

$$g(X,Y) \leq \|X\| \|Y\|$$

whit equality if and only if X and Y are linearly dependent [9].

Lemma 10: i) Let X and Y be positive (negative) timelike vectors in \mathbb{IR}_1^3 . By the Lemma 9, there is unique nonnegative real number $\phi(X,Y)$ such that

$$g(X,Y) = ||X|| ||Y|| \cosh \phi(X,Y)$$

the Lorentzian timelike angle between X and Y is defined to be $\phi(X,Y)$.

ii) Let X and Y be spacelike vectors in \mathbb{IR}_1^3 that span a spacelike vector subspace. Then we have

$$\left|g\left(X,Y\right)\right| \leq \left\|X\right\| \left\|Y\right\|$$

Hence, there is a unique real number $\phi(X,Y)$ between 0 and π such that

$$g(X,Y) = ||X|| ||Y|| \cos \phi(X,Y)$$

the Lorentzian spacelike angle between X and Y is defined to be $\phi(X,Y)$.

$$g(X,Y) > ||X|| ||Y||.$$

Hence, there is a unique pozitive real number $\phi(X,Y)$ between 0 and π such that

$$\left|g\left(X,Y\right)\right| = \left\|X\right\| \left\|Y\right\| \cosh\phi\left(X,Y\right)$$

the Lorentzian timelike angle between X and Y is defined to be $\phi(X,Y)$

iv) Let X be a spacelike vector and Y be a pozitive timelike vector in \mathbb{IR}_1^3 . Then there is a unique nonnegative reel number $\phi(X,Y)$ such that

$$\left|g\left(X,Y\right)\right| = \left\|X\right\| \left\|Y\right\| \sinh \phi\left(X,Y\right)$$

the Lorentzian timelike angle between X and Y is defined to be $\phi(X,Y)$, [9].

We denote the moving Frenet frame along the curve γ by $\{T(t), N(t), B(t)\}$, where T, N and B are the tangent, the principal normal and the binormal vector of the curve γ , respectively.

i) Let γ be a unit speed timelike space curve with curvature $\frac{\pi}{2}$ and torsion d and Frenet vector fields of γ be $\{T, N, B\}$. In this trihedron, T is a timelike vector field, N and B are spacelike vector fields. Then, Frenet formulas are given by [6],

$$T = \kappa N,$$

$$N = \kappa T + \tau B,$$

$$B = -\tau N.$$

ii) Let γ be a unit speed spacelike space curve with a spacelike binormal. For the Frenet vector fields we assume that T and B are spacelike vector fields and N is a timelike vector field. Then, Frenet formulas are given by [6],

$$T = \kappa N,$$

$$N = \kappa T + \tau B,$$

$$B = \tau N.$$

iii) Let γ be a unit speed spacelike space curve with a timelike binormal. We assume that T and N are spacelike vector fields and B is a timelike vector field. Then, Frenet formulas are given by [6],

Evren Ergün

$$T = \kappa N,$$

$$N = -\kappa T + \tau B,$$

$$B = \tau N.$$

Definition 11: Let $\gamma : I \to \mathbb{R}^3_1$ be a unit speed spacelike or timelik space curve. Let $T = \gamma$ be the tangent vector defined at each point of the curve. In this case, M_1 and M_2 vectors are perpendicular to the tangent vector T at each point and any two vector fields in the normal plane, on the curve γ , $\{T, N, B\}$, there is always a frame $\{T, M_1, M_2\}$, as an alternative to the moving frame. $\{T, M_1, M_2\}$ is Bishop frame to this alternative frame [10].

Let γ be a unit speed timelike space curve. In this trihedron, T is a timelike vector field, M_1 and M_2 are spacelike vector fields. Then, Frenet formulas are given by [10],

$$T = k_1 M_1 + k_2 M_2,$$

$$M_1 = k_1 T,$$

$$M_2 = k_2 T,$$

$$\kappa(t) = \sqrt{|k_1^2 + k_2^2|}, \ \phi(t) = \arctan\left(\frac{k_1}{k_2}\right), \ \tau(t) = \phi,$$

$$k_1 = \kappa \cos \phi, \ k_2 = \kappa \sin \phi,$$

$$T = T,$$

$$M_1 = \cos \phi N - \sin \phi B,$$

$$M_2 = \sin \phi N + \cos \phi B$$

where the differentiable functions k_1 and k_2 are the Bishop curvatures.

Let γ be a unit speed spacelike space curve with a spacelike binormal. In this trihedron, M_1 is a timelike vector field, T and M_2 are spacelike vector fields. Then, Frenet formulas are given by [10],

$$T = k_1 M_1 - k_2 M_2$$

$$M_1 = k_1 T$$

$$M_2 = k_2 T$$

$$\kappa(t) = \sqrt{\left|k_1^2 - k_2^2\right|}, \ \phi(t) = \arg \tanh\left(\frac{k_1}{k_2}\right), \ \tau(t) = \phi,$$

$$k_1 = \kappa \cosh \phi, \ k_2 = \kappa \sinh \phi,$$

$$T = T,$$

$$M_1 = \cosh \phi N - \sinh \phi B,$$

$$M_2 = -\sinh \phi N + \cosh \phi B$$

where the differentiable functions k_1 and k_2 are the Bishop curvatures.

Let γ be a unit speed spacelike space curve with a timelike binormal. In this trihedron, M_2 is a timelike vector field, T and M_1 are spacelike vector fields. Then, Frenet formulas are given by [10],

$$T = k_1 M_1 - k_2 M_2$$

$$M_1 = -k_1 T$$

$$M_2 = -k_2 T$$

$$\kappa(t) = \sqrt{\left|k_1^2 - k_2^2\right|}, \ \phi(t) = \arg \tanh\left(\frac{k_1}{k_2}\right), \ \tau(t) = \phi,$$

$$k_1 = \kappa \cosh \phi, \ k_2 = \kappa \sinh \phi,$$

$$T = T,$$

$$M_1 = \cosh \phi N - \sinh \phi B,$$

$$M_2 = -\sinh \phi N + \cosh \phi B$$

where the differentiable functions k_1 and k_2 are the Bishop curvatures.

Definition 12: Let M be a hypersurface in \mathbb{IR}^3_1 and let $\gamma : I \to M$ be a parametrized curve. γ is called an integral curve of X if

$$\frac{d}{dt}(\gamma(t)) = X(\gamma(t)) \text{ (for all } t \in I)$$

where X is a smooth tangent vector field on M [8]. We have

$$TM = \bigcup_{P \in M} T_P M = \chi(M)$$

where T_PM is the tangent space of M at P and $\chi(M)$ is the space of vector fields of M.

Definition 13: For any parametrized curve $\gamma : I \to M$, $\overline{\gamma} : I \to TM$ given by

$$\overline{\gamma}(t) = \left(\gamma(t), \gamma(t)\right) = \gamma(t)|_{\gamma(t)}$$

is called the natural lift of γ on TM, [5]. Thus, we can write

$$\frac{d\overline{\gamma}}{dt} = \frac{d}{dt} \left(\gamma(t) |_{\gamma(t)} \right) = \nabla_{\gamma(t)} \gamma(t)$$

where ∇ is the Levi-Civita connection on IR_1^3 .

Definition 14: $A \in \chi(TM)$ is called a geodesic spray if for $V \in TM$

$$X(V) = \varepsilon g(S(V), V) N, \varepsilon = g(N, N), [5].$$

Theorem 15: The natural lift $\overline{\gamma}$ of the curve γ is an integral curve of geodesic spray X if and only if γ is a geodesic on M, [5].

We denote by $\{\overline{T}(s), \overline{N}(s), \overline{B}(s)\}\$ the moving Frenet frame along the curve $\overline{\gamma}$, where $\overline{T}, \overline{N}$ and \overline{B} are the tangent, the principal normal and the binormal vector of the curve $\overline{\gamma}$, respectively.

Corollary 16: Let γ be a unit speed timelike space curve and $\overline{\gamma}$ be the natural lift of γ If W is a spacelike vector field, then

$$T(s) = N(s)$$

$$\overline{N}(s) = -\cosh\theta T(s) - \sinh\theta B(s)$$

$$\overline{B}(s) = -\sinh\theta T(s) - \cosh\theta B(s), [7].$$

Corollary 17: Let γ be a unit speed timelike space curve and the natural lift γ of the curve γ be a space curve with curvature $\overline{\kappa}$ and torsion $\overline{\tau}$. If W is a spacelike vector field, then

$$\overline{\kappa}(s) = \frac{1}{\cosh\theta}, \overline{\tau}(s) = -\frac{\theta}{\|W\|\cosh\theta}, [7].$$

Corollary 18: Let γ be a unit speed timelike space curve and $\overline{\gamma}$ be the natural lift of γ If W is a timelike vector field, then

$$T(s) = N(s)$$

$$\overline{N}(s) = -\sinh\theta T(s) - \cosh\theta B(s)$$

$$\overline{B}(s) = -\cosh\theta T(s) - \sinh\theta B(s), [7]$$

Corollary 19: Let γ be a unit speed timelike space curve and the natural lift γ of the curve γ be a space curve with curvature $\overline{\kappa}$ and torsion $\overline{\tau}$. If W is a timelike vector field, then

$$\overline{\kappa}(s) = \frac{1}{\sinh\theta}, \overline{\tau}(s) = \frac{\theta}{\|W\|\sinh\theta}, [7].$$

Corollary 20: Let γ be a unit speed spacelike space curve with a spacelike binormal and $\overline{\gamma}$ be the natural lift of γ . Then

$$\overline{T}(s) = N(s)$$

$$\overline{N}(s) = \cos\theta T(s) + \sin\theta B(s)$$

$$\overline{B}(s) = \sin\theta T(s) - \cos\theta B(s), [7].$$

Corollary 21: Let γ be a unit speed spacelike space curve with a spacelike binormal and the natural lift $\overline{\gamma}$ of the curve γ be a space curve with curvature $\overline{\kappa}$ and torsion $\overline{\tau}$. Then

$$\overline{\kappa}(s) = \frac{1}{\cos\theta}, \overline{\tau}(s) = -\frac{\theta}{\|W\|\cos\theta}, [7].$$

Corollary 22: Let γ be a unit speed spacelike space curve with a timelike binormal and $\overline{\gamma}$ be the natural lift of γ . If W is a spacelike vector field, then

$$T(s) = N(s)$$

$$\overline{N}(s) = \sinh \theta T(s) - \cosh \theta B(s)$$

$$\overline{B}(s) = \cosh \theta T(s) - \sinh \theta B(s), [7].$$

Corollary 23: Let γ be a unit speed spacelike space curve with a timelike binormal and the natural lift $\overline{\gamma}$ of the curve γ be a space curve with curvature $\overline{\kappa}$ and torsion $\overline{\tau}$. If W is a spacelike vector field, then

$$\bar{\kappa}(s) = \frac{1}{\sinh\theta}, \bar{\tau}(s) = -\frac{\theta}{\|W\|\sinh\theta}, [7].$$

Corollary 24: Let γ be a unit speed spacelike space curve with a timelike binormal and $\overline{\gamma}$ be the natural lift of γ If W is a timelike vector field, then

$$\overline{T}(s) = N(s)$$

$$\overline{N}(s) = \cosh \theta T(s) - \sinh \theta B(s)$$

$$\overline{B}(s) = \sinh \theta T(s) - \cosh \theta B(s), [7].$$

Corollary 25: Let γ be a unit speed spacelike space curve with a timelike binormal and the natural lift $\overline{\gamma}$ of the curve γ be a space curve with curvature $\overline{\kappa}$ and torsion $\overline{\tau}$. If W is a timelike vector field, then

$$\bar{\kappa}(s) = \frac{1}{\cosh\theta}, \bar{\tau}(s) = \frac{\theta}{\|W\|\cosh\theta}, [7].$$

2. THE RELATION BETWEEN FRENET FRAME OF THE NATURAL LIFT CURVE AND BISHOP FRAME OF THE CURVE

In this section, the relations between the two frames are given.

Corollary 26: Let $\overline{\gamma}$ be the natural lift of γ in \mathbb{IR}^3 and be a regular curve. The relation between the $\{\overline{T}(s), \overline{N}(s), \overline{B}(s)\}$ and the $\{T(s), M_1(s), M_2(s)\}$ of is as follows. $\overline{T}(s) = \cos\theta M_1 + \sin\theta M_2$ $\overline{N}(s) = -\cos\phi T(s) - \sin\phi\sin\theta M_1 + \sin\phi\cos\theta M_2$ $\overline{B}(s) = \sin\phi T(s) - \cos\phi\sin\theta M_1 + \cos\phi\cos\theta M_2$.

Corollary 27: Let γ be a unit speed timelike space curve and $\overline{\gamma}$ be the natural lift of γ . If $\overline{\gamma}$ is a spacelike space curve with a timelike binormal and W is a spacelike vector field. The relation between the $\{\overline{T}(s), \overline{N}(s), \overline{B}(s)\}$ and the $\{T(s), M_1(s), M_2(s)\}$ of is as follows,

$$\overline{T}(s) = \cos\theta M_1 + \sin\theta M_2$$

$$\overline{N}(s) = \cosh\phi T(s) - \sinh\phi\sin\theta M_1 + \sinh\phi\cos\theta M_2$$

$$\overline{B}(s) = \sinh\phi T(s) - \cosh\phi\sin\theta M_1 + \cosh\phi\cos\theta M_2.$$

Corollary 28: Let γ be a unit speed timelike space curve and $\overline{\gamma}$ be the natural lift of γ . If $\overline{\gamma}$ is a spacelike space curve with a timelike binormal and W is a timelike vector field. The relation between the $\{\overline{T}(s), \overline{N}(s), \overline{B}(s)\}$ and the $\{T(s), M_1(s), M_2(s)\}$ of is as follows,

$$T(s) = \cos\theta M_1 + \sin\theta M_2$$

$$\overline{N}(s) = \sinh\phi T(s) - \cosh\phi\sin\theta M_1 + \cosh\phi\cos\theta M_2$$

$$\overline{B}(s) = \cosh\phi T(s) - \sinh\phi\sin\theta M_1 + \sinh\phi\cos\theta M_2.$$

Corollary 29: Let γ be a unit speed timelike space curve and $\overline{\gamma}$ be the natural lift of γ . If $\overline{\gamma}$ is a spacelike space curve with a spacelike binormal and W is a spacelike vector field. The relation between the $\{\overline{T}(s), \overline{N}(s), \overline{B}(s)\}$ and the $\{T(s), M_1(s), M_2(s)\}$ of is as follows,

$$\overline{T}(s) = \cos\theta M_1 + \sin\theta M_2$$

$$\overline{N}(s) = \cosh\phi T(s) - \sinh\phi\sin\theta M_1 + \sinh\phi\cos\theta M_2$$

$$\overline{B}(s) = -\sinh\phi T(s) - \cosh\phi\sin\theta M_1 + \cosh\phi\cos\theta M_2.$$

Corollary 30: Let γ be a unit speed timelike space curve and $\overline{\gamma}$ be the natural lift of γ . If $\overline{\gamma}$ is a spacelike space curve with a spacelike binormal and W is a timelike vector field. The relation between the $\{\overline{T}(s), \overline{N}(s), \overline{B}(s)\}$ and the $\{T(s), M_1(s), M_2(s)\}$ of is as follows, **Corollary 31:** Let γ be a unit speed spacelike space curve with a spacelike binormal and $\overline{\gamma}$ be the natural lift of γ . The relation between the $\{\overline{T}(s), \overline{N}(s), \overline{B}(s)\}$ and the $\{T(s), M_1(s), M_2(s)\}$ of is as follows,

$$\overline{T}(s) = \cosh \theta M_1 + \sinh \theta M_2$$

$$\overline{N}(s) = \cos \phi T(s) + \sin \phi \sinh \theta M_1 + \sin \phi \cosh \theta M_2$$

$$\overline{B}(s) = \sin \phi T(s) - \cos \phi \sinh \theta M_1 - \cos \phi \cosh \theta M_2.$$

Corollary 32: Let γ be a unit speed spacelike space curve with a timelike binormal and $\overline{\gamma}$ be the natural lift of γ . If $\overline{\gamma}$ is a spacelike space curve with a timelike binormal and W is a spacelike vector field. The relation between the $\{\overline{T}(s), \overline{N}(s), \overline{B}(s)\}$ and the $\{T(s), M_1(s), M_2(s)\}$ of is as follows,

$$\overline{T}(s) = \cosh \theta M_1 + \sinh \theta M_2$$

$$\overline{N}(s) = -\sinh \phi T(s) + \cosh \phi \sinh \theta M_1 + \cosh \phi \cosh \theta M_2$$

$$\overline{B}(s) = -\cosh \phi T(s) + \sinh \phi \sinh \theta M_1 + \sinh \phi \cosh \theta M_2.$$

Corollary 33: Let γ be a unit speed spacelike space curve with a timelike binormal and $\overline{\gamma}$ be the natural lift of γ . If $\overline{\gamma}$ is a spacelike space curve with a timelike binormal and W is a timelike vector field. The relation between the $\{\overline{T}(s), \overline{N}(s), \overline{B}(s)\}$ and the $\{T(s), M_1(s), M_2(s)\}$ of is as follows, $\overline{T}(s) = \cosh \theta M_1 + \sinh \theta M_2$

 $\overline{N}(s) = -\cosh\phi T(s) + \sinh\phi\sinh\theta M_1 + \sinh\phi\cosh\theta M_2$ $\overline{B}(s) = -\sinh\phi T(s) + \cosh\phi\sinh\theta M_1 + \cosh\phi\cosh\theta M_2.$

Corollary 34: Let γ be a unit speed spacelike space curve with a timelike binormal and $\overline{\gamma}$ be the natural lift of γ . If $\overline{\gamma}$ is a spacelike space curve with a spacelike binormal and W is a spacelike vector field. The relation between the $\{\overline{T}(s), \overline{N}(s), \overline{B}(s)\}$ and the $\{T(s), M_1(s), M_2(s)\}$ of is as follows, $\overline{T}(s) = \cosh \theta M_1 + \sinh \theta M_2$ $\overline{N}(s) = -\sinh \phi T(s) + \cosh \phi \sinh \theta M_1 + \cosh \phi \cosh \theta M_2$ $\overline{B}(s) = \cosh \phi T(s) - \sinh \phi \sinh \theta M_1 - \sinh \phi \cosh \theta M_2$.

Corollary 35: Let γ be a unit speed spacelike space curve with a timelike binormal and

 $\overline{\gamma}$ be the natural lift of γ . If $\overline{\gamma}$ is a spacelike space curve with a spacelike binormal and W is a timelike vector field. The relation between the $\{\overline{T}(s), \overline{N}(s), \overline{B}(s)\}$ and the $\{T(s), M_1(s), M_2(s)\}$ of is as follows, $\overline{T}(s) = \cosh \theta M_1 + \sinh \theta M_2$ $\overline{N}(s) = -\cosh \phi T(s) + \sinh \phi \sinh \theta M_1 + \sinh \phi \cosh \theta M_2$ $\overline{B}(s) = \sinh \phi T(s) - \cosh \phi \sinh \theta M_1 - \cosh \phi \cosh \theta M_2$.

3. CONCLUSION

In this article, the relationship between the Bishop Frame of the curve and the Frenet Frame of the natural lift of the curve is given. As a result, the transition matrix between the two frames can also be calculated.

REFERENCES

- [1] Bishop, R.L., *The American Mathematical Monthly*, **3**(82), 246, 1975.
- [2] Fenchel, W., Bulletin of the American Mathematical Society, 57, 44, 1951.
- [3] Thorpe, J.A., *Elementary Topics In Differential Geometry*, Springer-Verlag, New York, Heidelberg-Berlin, 1979.
- [4] Çalışkan, M., Sivridag, A.I., Hacisalihoglu, H.H., *Communications Faculty of Sciences University of Ankara*, **33**, 235, 1984.
- [5] Ergün, E., Çalışkan, M, International Journal of Contemporary Mathematical Sciences, 6, 39, 1929, 2011.
- [6] Walrave J., PhD. Thesis Curves and surfaces in Minkowski space, , K.U. Leuven, 1995.
- [7] Ergün, E., Bilici, M. Çalışkan, M., Bulletin of Society for Mathematical Services & Standards, 1(2), 59, 2012.
- [8] O'Neill, B., *Semi-Riemannian Geometry with Applications to Relativity*, Academic Press, New York, 1983.
- [9] Ratcliffe, J.G., Foundations of Hyperbolic Manifold, Springer-Verlag, New York, 1994.
- [10] Bükcü, B., Karacan, M.K., *Tamkang Journal of Mathematics*, 3(39), 255, 2008.
- [11] Silva, L.C.B., PhD Thesis *Differential geometry of rotation minimizing frames, spherical curves, and quantum mechanics of a constrained particle,* Universidade Federal De Pernambuco, 2017.
- [12] Arreaga, G., Capovilla, R., Guven, J., Classical Quantum Gravity, 18(23), 5065, 2001.
- [13] Do Carmo, M.P., *Differential Geometry of Curves and Surfaces*, Pearson Education, 1976.