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Abstract. In this paper, the hyperbolic tangent function method is applied for
constructing exact solutions for space-time conformal fractional Burgers’ equation.
Furthermore, the space-time conformal fractional Burgers’ equation is tested for the Painlevé
property, and consequently, new numerous exact solutions are generated via Backlund
transform.
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1. INTRODUCTION

Recently, fractional Calculus has made a very important impact on most fields of
science, such as mathematics, engineering, physics, economics, etc. The applications of
fractional calculus are contemporary [1-4].

Historically, the fractional derivatives were introduced in different ways, for example,
Riemann-Liouville, Riesz, Caputo, Modified Riemann—Liouville [5-7]. A new fractional
derivative is defined by the authors [8], named conformal fractional derivative (CFD). The
definition and basic concepts of CFD are developed by [9]. Furthermore, the interpretations of
CFD in engineering and physics applications are introduced and discussed [10].

The definition of CFD of a function f: (0,) — R of order @, where 0 < a <1 is
mainly given by the following limit

Daf(t) — ‘lglmf(t + Stl_a) - f(t)

-0 Foi

The function f is said to be a- differentiable. The fractional derivative at t = 0 is
given as
Df(0) = lim DUf(t)

! Northern Border University, Faculty of Science, Department of Mathematics, 91431 Arar, Saudi Arabia.
E-mail: abakerh@gmail.com.

2 Bahri University, College of Applied & Industrial Sciences, Department of Mathematics, Khartoum, Sudan. E-
mail: abakerh@gmail.com.

3 Alzaiem Alazhari University, Faculty of Engineering, 13311 Khartoum North, Sudan.

E-mail: ahmedmoh1966@gmail.com

* University of Khartoum, Faculty of Mathematical Sciences, Department of Applied Mathematics, 11111
Khartoum, Sudan. E-mail: eltayebyousif@gmail.com.

® National Research Institute of Astronomy and Geophysics (NRIAG), Astronomy Department, 11421 Helwan,
Cairo, Egypt. E-mail: abdo_nouh@hotmail.com.

https://doi.org/10.46939/J.Sci.Arts-21.4-a04 Mathematics Section



mailto:abakerh@gmail.com
mailto:abakerh@gmail.com
mailto:ahmedmoh1966@gmail.com
mailto:eltayebyousif@gmail.com
mailto:abdo_nouh@hotmail.com

920 The new families of... Abaker A. Hassaballa et al.

The advantages of CFD are that satisfying the properties of the classical integer
derivatives [8-10]. Assume that f and g are a- differentiable functions and A,a,b are
constants, then the CFD satisfies the following properties:

L.DUP =ptP % peER.
ii.D*A = 0.

d
iii. D*f(t) = t17¢ d—j;
iv.D*(af + bg) = aD*f + bD%g.
v.D(fg) = fDg + gD*f.
vi D“(£> _ 9P~ /D%

Y gczlf df d
vii. D® (f(g(t))) = @D"‘g(t) = tl-@ @d—‘f.

In the last few years, there are considerable and numerous models in the literature are
formulated in terms of conformable fractional derivatives [11-15].

In mathematical physics and many other phenomena in various fields of applied
science are described by nonlinear models, particularly by nonlinear partial differential
equations (NLPDEs), such as astrophysics, optics, fluid dynamics, mathematical biology,
plasma physics, and so on. It is important to search for the solutions of the concerned models
to understand and interpret their physical mechanisms and behavior. The search for exact
solutions to NLPDE has become of great interest to mathematicians and physicists and they
have exerted great efforts for that. There are many powerful and efficient methods for finding
exact solutions that have been introduced, here we mention some of them as the Béacklund
transformation [16-18], hyperbolic tangent function method [19, 20], Jacobi elliptic function
method [21, 22], truncated Painlevé expansion method [23-25], and there are other various
methods in the literature.

The Backlund transformations (BT) are considered as powerful tools for integrable
systems to relate NLPDEs and their solutions [16-18, 26]. Up to now, the research is still
devoted and ongoing for finding the BT, e.g. from the Painlevé property [23-25], the
Ablowitz-Kaup-Newell-Segur (AKNS) system [26], the nonclassical symmetries [27].

One of the simple NLPDEs in mathematical physics is Burgers’ equation that arises in
many areas of science such as Navier-Stokes equations, traffic flow, and acoustics [28, 29].
Consider the space-time conformable fractional Burgers’ equation (CFBE)

Dfu + uDfu = oD%, (D

where ¢ is arbitrary constants, a« € (0,1], and D%*u = D¥(D%u). A few years ago, many
researchers are introduced the solutions of CFBE by different methods. The Hopf-Cole
transform is applied to a time CFBE, subsequently, the approximate analytical solution is
founded by applying a Homotopy Analysis Method [11]. The residual power series method is
introduced for finding approximate solutions of a time CFBE [30]. Also, the residual power
series method is used in finding the solution of the space-time conformable fractional KdV-
Burgers equation [31]. The solution of regular and singular space-time coupled CFBES is
formulated by applying the double Laplace transform [32].

The rest of the paper is organized as follows: In Sec. 2, we show that the space-time
CFBE possesses the Painlevé property. In Sec. 3 the exact solutions for the space-time CFBE
are constructed based on the hyperbolic tangent function method. In Sec. 4, the BT is used for
generating abundant new exact solutions for the space-time CFBE.
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2. PAINLEVE PROPERTY FOR THE SPACE-TIME CONFORMAL FRACTIONAL
BURGERS’ EQUATION

In this section, we intend to test the Painlevé property for the space-time CFBE given
by Eg. (1) following the approach introduced by [23-25, 33]. The space-time CFBE has the
Painlevé property when all the movable singularities are simple poles. For Eq. (1) we let

a2 D)oo,
j=0

. R x(Z ttZ xa ta R R
where u, # 0, n is an integer, ¢ = ¢ (?,;) and u; = u; (—,;) are analytic functions of

a
ata

(%—) in a neighborhood of M = {(%%) ) (ﬂf) = 0}.

a a «

To determine the values of n we consider the ansatz

u = ¢"u,. 3)
By using the chain rule on Eq. (3) we obtain

Dfu = nugdp™ 1DFP + ¢"DF ug
D%u = nugdp™ 1DFP + ¢"DE u,
DF*u = nuy@p™ D¢
+n(n — Duydp"?(DFP)?
+2n¢" " DEGDE uy + DL u,.

(4)

y,
By substituting Egs. (3) and (4) into Eqg. (1), we get
nugd" " 'DEP + ¢"DE uy + nugdp*" Db + ugdp*" Dy ug
= noug@™ D¢ + n(n — Dougd™ *(Dy ¢)?
+2nop™ 1D¥PDE uy + o P DE* uy. (5)
The dominant terms of Eq. (5) are ¢p2"~1 & ¢™ 2. Balancing of these gives n = —1.
Thus,
uy = —20Dg¢. (6)
Back to Eq. (2), we can consider the following Ansétz with resonance r as
uU=ugp t+ b’ =-20¢p"1D%p + bop" 1. (7)

From Eq. (7) we get
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Dfu =20¢p"*(DF$p)* —20¢p~'D%¢ \
+b(r — 1)¢T‘2D,‘§¢>
=200 2(Dgp)* + b(r — 1)¢p" " *Df¢p + -
DF*u = —40¢p~>(DfP)® + 409 *DFpDI* ¢
+20¢ 72D pDF* — 209~ D¢ > (8)
+b(r — 1)(r — 2)¢p" > (DFp)?
+b(r — 1)¢T‘2D,‘g‘“¢
= —40¢p3(Dg$)?
+h(r = 1)(r — )¢ (DgP)*

The fractional derivatives are rearranged in terms of powers of DZ¢. Now by
substituting Egs. (7) and (8) into uD%u = oD¥%u, we have

(-20¢7'D¢¢ + b ) (20972 (Dy$)? + b(r — 1) 2D + )
= 0(—40¢73(DFP)* + b(r — (r — 2)¢" > (DFP)* + )
= —2b(r — 1)o¢p"3(DE¢)? + 2bop™ 3 (DI ¢h)?
=ob(r — D)(r —2)¢" 3 (DFP)* + -
= (=2r+2+4+2-1r243r —2)ob¢p" 3(DFP)? = -+
= —(r+ 1) —2)obp"3(DEp)* = -
=r=-landr=2.

If M is a singularity manifold, it is obtained that n = —1. By leading order analysis,

= ¢-1z Pl = Z &I ;. 9)
=0 =0

From (9) we get

Dfu = Z[(I - D¢/~ *u;Df ¢ + ¢7 ' DE uy]
=0
= (G- D¢y aDEG + D w )
j=0
Dgu = Y[ = NP 7w DEp + ¢/ uj]
=0

= > 6= D¢/ wDg¢ + ¢I2D¢ w ]

=0

(G —D0 - Du¢p’3(DEg)?
+( — D¢/ 2u;DE%¢

+2(j — D¢/ "2DZPDE u;
L+~ 1Dg*

[oe]

DIy = Z

j=0
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U= DU - 2u;¢/ > (DE$)?
+(j — 2)¢/ 3w DI

T [+2(1 - 2)p/™ 3D“¢D“ Uiy J
+¢] 3Daa

M_S

The recursion relations for u; are found to be

D&y + (j — 2wy, DEP + Z W [DE Uy + (m = Dy DEP]
[(1 — 1) — 2wy (DEP)? + ( — Dy_, DI

) 10
+2(] - Z)DQ¢DC¥ u] 1 + DX uJ 2 ( )

where u, = 0fork =—-1,-2,-3,...
From the recurrence formula (10) we obtain for:

Jj=0= —ugDy¢ = 20u,(Dy'¢)*
= uy = —20DZ¢. (11)
Eq. (11) is identical to Eq. (6).
j=1=

~uoDEG+ )ty D Uy + (m = Dty DE G]

m=0
—0olugDF¢ + 2D ¢ D5 ]
= ~ugDf$ — ugus DFd + uoDff ug = 60*DFPDE* ¢
— D& + u, D% — 6D = 0, (12)

j = 2 and considering Egs. (11, 12), then from Eqg. (10), we get

Dftty + )ty D Uy + (m = Dt DEP] = aDE ug

m=0
= DI(Dfp + u;DFp — aDF*P) = 0. (13)

By Eq. (12) the compatibility condition Eq. (13) at j = 2 is satisfied identically. For
j =3, Eq. (10) yields

3
Dfty +u,DE G+ Y tty D s + (m = Dty D]

m=0
= o[2u3(Df $)? + u, DF*p + 2DF PDF up + DF* uy |

= [Dfu; + u, DF uy — oDI* uy |
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Since the resonances occur at r = —1, 2, and (¢, u,) are arbitrary functions of (%%)
in the expansion (14). If we let the arbitrary functions u, = u; = 0, then we get

Dful + ung- u1 - O.D;CZO_’ ul. (15)
For j = 3 then Eq. (15) is automatically satisfied for u, .

Forj =4, uy, = —20Dg¢, and u, = uz = 0 then from Eq. (10) we obtain

4
D e IDE g + Om = D D] = 601, (DFH)’

m=0

= uyD¥Pp(Ruy — 66DFPp) =0 = u, = 0.

Thus, we conclude that all

providing u, satisfies space-time CFBE (Eg. (15)). Now, we can conclude that from Eq. (16),
the space-time CFBE possesses the Painlevé property and the truncation of the Painlevé
expansion Eq. (9) takes the form

20 u
uz—EDx¢+u1, (17)

which is the Bécklund transform for the space-time CFBE. When u; = 0, then from Eq. (17)
we obtain

20
u=- EDx o, (18)
Eq. (18) yields the fractional Cole-Hopf transform. When u; = ¢, then we have
20
u=—$Dx¢+¢, (19)
where
Di'¢ + ¢Dydp = oD@, (20)

Egs. (19) and (20) represent the Backlund transform for the space-time CFBE.

3. EXACT SOLUTIONS FOR THE SPACE-TIME CONFORMAL FRACTIONAL
BURGERS’ EQUATION

The hyperbolic tangent function method (tanh-method) is an efficient method used for
constructing the exact traveling wave solutions for NLPDEs. The Ansétz is considered as a
power series in tanh, where tanh is introduced as a new variable. Moreover, the derivatives of
tanh are also given in terms of tanh itself [20]. In the following steps, we seek to describe the
general tanh-method for constructing the solutions of the space-time conformal fractional
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partial differential equations (CFPDES). Consider a general space-time conformal fractional
partial differential equation (space-time CFPDE):

H(u, Dfu, DFu, Df%u, D (DEu), DF%u,...) = 0. 21
In the following steps, we summarize the tanh-method for solving Eqg. (21):

Step 1: Consider the traveling wave solution of Eq. (21) as

k
utht) =u@),  §=-G"—wt?), (22)

where k and w are the wave number and wave velocity, respectively. Substitution of Eq. (22)
into Eq. (21) produces the following ordinary differential equation for u(¢)

Hu,u',u”,..) =0, u' = az etc. (23)

Step 2: Assume that the solution of Eq. (23) can be expressed as a finite power series of F (&)
S
u(®) =a, + Z aF/(§), as#0, (24)
j=1

where s € N, which is determined by balancing the highest power of the linear term with the
highest power of the nonlinear term in Eq. (23), and a; are constants to be determined. The
new exact solutions of the space-time CFPDE can be obtained via the solutions of the Riccati
equation that are satisfied by the tanh function [34, 35].
Consider the required Riccati equation to be
F'= A+ BF + CF? R (25)
- ) —_ df’

where A, B and C are constants.

Step 3: Substitution of Eqg. (24) into Eq. (23), generates a system of algebraic equations for
ag, Ay, ..., Ag, w, AN k.

Step 4: Solution of the system obtained in step 3, produces the values of a,, a4, ..., a5, w and k
in terms of A, B and C. By substituting these results into Eq. (24), we obtain the general form
of traveling wave solution of Eq. (21).

Choosing of each proper value for A,B and C in Eq. (25) corresponds to a solution
F(&) of Eq. (25) that is could be one of the hyperbolic functions or triangular function as
follows.
Case 1. IfA=C =1,and B = 0, then Eq. (25) has the solutions, tané.
Case2:IfA=C = —1,and B = 0, then Eq. ((25) has the solutions, cot¢.
Case3:IfA =1, B=0,and C = —1, then Eq. (25) has the solutions, tanhé, coth§.

Case4:If A = % B=0and C = —%, then Eq. (25) has the solutions, tanhé + i seché,
tanhé coth¢ _2 "

cotht + cschs, 1+ seché’1+i cschf'l -
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Case5: IfA=C= % and B = 0, then Eq. (25) has the solutions, tané + secé, cscé — coté,
tané

1+ sec’
Case 6: If A=C = —i, and B = 0,then Eqg. (25) has the solutions, coté + cscé, secé —
coté

tané, Tt oot
Case 7: If A=1,C = —4,and B = 0, then Eq. (25) has the solutions, —22_

1+tanh?¢&
Case8:If A =1,C = 4,and B = 0, then Eq. (25) has the solutions, %
Case 9: If A = —1,C = —4,and B = 0, then Eq. (25) has the solutions, 1_655525.
Case 10: If A = 1,B = —2,and C = 2, then Eq. (25) has the solutions, 13:2
Case 11: If A = 1 and B = C = 2, then Eq. (25) has the solutions, 12:2
Case 12: If A= —1,B = 2,and C = —2, then Eq. (25) has the solutions, %ﬁ;
Case 13: If A= —1,B = C = —2, then Eq. (25) has the solutions, 122;
Case 14:If A= B = 0and C # 0, then Eq. (25) has the solutions, C;C :

0

Case 15: If A # 0, C = 0,and B # 0, then Eq. (25) has the solutions, %(exp(Bf) —A).

Case 16: If A= 0and B = C = 1, then Eq. (25) has the solutions, 1=

¢
Case 17:If A=0,and B =C = % then Eq. (25) has the solutions, EXp(Z)f

—)

Case 18: If A=—%,B =0, and C=%, then Eqg. (25) has the solutions, —tanh(g),

—coth (g)
Case 19: If A= —1,and B = C = 2, then Eq. (25) has the solutions, — = — —‘/gt“":(ﬁf),

1 V3coth(V3§)

2 2

V3 tan(?{ )
2

Case 20: If A=1,B =1, and C = 1, then Eq. (25) has the solutions, —% +
1 ﬁcot(?f)

2 2 )
Case 21: IfA=-4,B=0, and C=4, then Eg. (25) has the solutions,

—tanh(4§), —coth(4§).
Case22:If A= % B = —1,and C = 1, then Eq. (25) has the solutions, % + %tan (E) ,

2
1 1 g
2300t (3)

Now, we need to implement the tanh-method technique into the space-time CFBE
given by Eq. (1) to generate new exact solutions. Firstly, substituting the traveling wave
solution given by Eq. (22) into Eqg. (1) we obtain

—wu' +uu’ —kou' =0, (26)

where Dfu = —wku', D%u = ku', D#*u = k?u'"", by balancing u'’with uu’'gives s = 1.
Use s = 1 in Eq. (24), then the solution of Eq. (1) can be expressed as

u=ay+ a,F, (27)
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substituting Eq. (27) into Eq. (26) and using Eq. (25), then we obtain a set of algebraic
equations with respect to F*(i = 0,1,2,3). Equating the coefficients of F*(i = 0,1,2,3) to zero.
The solution of the resulting system is given by

ap = w+ 0Bk, a, =20Ck, (28)
with w and k are arbitrary constants. Inserting Eq. (28) into Eq. (27) and using the special

solutions of Eq. (25), we obtain the following soliton like-solution and triangular periodic
solutions of the space-time CFBE:

Uy = w + 20k tané, (29)
U, = w — 20k coté, (30)
uz = w — 20k tanhé, (31)
U, = w — 20k cothé, (32)
us = w — ok(tanhé + i seché), (33)
Ug = w — ok(cothé + csché), (34)
u; = w + ok(tané + secé), (35)
ug = w — ok(coté + cscé), (36)
_ 8ok tanhé 37

o= @77y tanh?¢’ (37)
—wt 8ok tané 18

to =@ tan2&’ (38)

_ 8ak coté 39

U =w 1— cot?¢’ (39)

_ ok tanh& 40

M2 = @7 sech&’ (40

B ok cothé 1

s =@ csché’ 41
o+t ok tan& 42

Y = QT secé’ (42)

_ ok coté 43

Ws = @ T osce (43)

_ 20k + 40k tané 44

te = @ T ORI tané’ (44)
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— o+ 20k 40k coté 45
ty =@ T 40 1+ coté’ (45)
(ok + ) + (ck — w)et
Uig = 1— eg ’ (46)
(0k/2 + w) + (ck/2 — w)e’/?
U9 = 1= ef/z ) (47)
Uyo = w — ok tanh %, (48)
Uy, = w — ok coth g, (49)
Uy, = w — 2v/30k tanhV/3§, (50)
Uys = 0 — 2V30k cothhV3¢, (51)
3
Uys = w +V30k tan <g§>, (52)
3
Uys = w — 30k cot (%E), (53)
Uye = w — 8ak tanh(4§), (54)
Uy; = w — 8ak coth(4§), (55)
Uyg = W + ok tan (g), (56)
Uyg = w — ok cot g), (57)

Remarks:
1- Making the transformation k — 2k then Eq. (48) and Eq. (49) transformed to Eq. (31) and

Eq. (32) respectively, and if k — 2ki where i = v/—1, they transformed into Eq. (29) and Eq.
(30) respectively.

2- Making the transformation k — % then Eq. (50) and Eq. (51) transformed to Eq. (31) and
Eq. (32) respectively.

3- Making the transformation k — 3—; then Eq. (52) and Eq. (53) transformed to Eqg. (29) and
Eq. (30) respectively.

4- Making the transformation k — 2k then Eq. (47) transformed to Eq. (46).

5- Making the transformation k — % then Eq. (54) and Eq. (55) transformed to Eq. (31) and
Eq. (32) respectively.

6- Making the transformation k — 2k then Eq. (56) and Eq. (57) transformed to Eq. (29) and
Eg. (30) respectively.

Also, we can get two new exact solutions
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Uszg = w — 20k (tanhé + cothé), (58)
Uz; = w + 20k (tané — cotf), (59)
with & = g(x“ — wt%).

In the following section, we use the obtained solutions Egs. (29) - (59) to generate
new abundant exact solutions via BT.

4. BACKLUND TRANSFORMATIONS AND ABUNDANT EXACT SOLUTIONS

From section 2, we show that the space-time CFBE possesses the Painlevé property
and it has a BT in the form

20
u= —?Dx¢)+w,

where ¢ = ¢ ﬁ,f is the singular manifold variable, w is a function of X and & Also, the
a a a a

function w solves the space-time CFBE given by Eq. (1) and the function ¢ satisfies the FDE
Df¢p +wDEp = aDF%p.
Now, if we take w = ¢ then the function ¢ satisfies also the space-time CFBE

Di'¢ + ¢D5¢ = oDy,
thus the BT for the space-time CFBE takes the following recurrence form

20 0%u,
Unt1 = —E Ix

+ u,. (60)

We turn to the application of BT for the FDEs. Their power lies in that they may be
used to generate additional solutions of the FDEs. Here u,,,quantities refer to the new
solution and u,, quantities refer to the old solution. This means that, based on a known
solution to the space-time CFBE, we can find a new solution for space-time CFBE. To
construct the new solution of the space-time CFBE one can start with the solution u; obtained
in Eq. (29) and using BT given in Eq. (60) we get the following set of new solutions:

—40%k? + w? + 4okw tané
w + 20k tan&

U3y =

Inserting us, into the BT given in Eq. (60) we have

120%k%*w — w® + 20k(402k? — 3w?) tan&
402k? — w? — 4okw tané ’

U3z =

furthermore, using u;3 and BT given in Eq. (60) we get

—160*k* + 2402k*w? — w* + (320%k3w — 8w3ck) tané
120%k?w — w3 + 20k(40%k? — 3w?) tané

Uzy =
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and so on, we can get sequences of exact solutions generated by the known tan-function
solution Eq. (29) of the space-time CFBE. Starting from u, obtained in Eq. (30) and using BT
given in Eq. (60) we get

—40%k? + w? — 4okw cot&
w — 20k coté

U3s =

Inserting uss into the BT given in Eq. (60) we have

—120%k*w + w3 + 20k (40%k? — 3w?) cotf
—402k? + w? — 4okw coté

Uze =

)

furthermore, using us, and BT given in Eq. (60) we get

_ 160*k* — 240°k*w? + 0* + (320°k*w — 8w?ak) cot§
Ua7 = —120%k?w + w3 + 20k(402k? — 3w?2) coté ’

and so on, we can get sequences of exact solutions generated by the cot-function solution Eq.
(30) of the space time fractional CFBE. Starting from u; obtained in Eq. (31) and using BT
given in Eqg. (60) we get

—40%k? — w? + 40kwtanh &
—w + 20k tanh &

U3zg =

Inserting usg into the BT given in Eq. (60) we have

120%k*w + w® — 20k (40%k? + 3w?) tanhg
40%k? + w? — 40kw tanh & ’

U3g =

furthermore, using us;q and BT given in Eq. (60) we get

_ 160%k* + 240°k*w* + w* — (320°k*w + 8w3ck) tanh §
Yao = 120%k?w + w3 — 20k(402k? 4+ 3w?) tanh & ’

and so on, we can get sequences of exact solutions generated by the tanh-function solution Eq.
(31) of the space-time CFBE. Starting from u, obtained in Eq. (32) and using BT given in Eq.
(60) we get
—40%k? — w? + 40kw coth &

—w + 20k coth &

Uy =

Inserting u,, into the BT given in Eq. (60) we have

_ 120%k*w + w® — 20k(40%k? + 3w?) coth &
Haz = 402k? + w? — 4okw coth & ’

furthermore, using u,, and BT given in Eq. (60) we get

_ 160%k* + 240°k*w® + w* — (320°k*w + 8w3ak) coth §
taz = 1202k2w + w3 — 20k(402k? + 3w?2) coth ¢ ’

and so on, we can get sequences of exact solutions generated by the coth-function solution Eq.
(32) of the space-time CFBE. Starting from ug obtained in Eq. (33) and using BT given in Eq.
(60) we get
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02k? + w? — 20kw (tanh & + isech &)
w — ok (tanh & + isech &)

Ugg =

and so on. Starting from u, obtained in Eq. (34) and using BT given in Eq. (60) we get

_ 0%k? + w® — 20kw (coth ¢ £ csch )
tas = ® — ok (coth€ T cschg)

and so on. Starting from u, obtained in Eq. (35) and using BT given in Eg. (60) we get

02%k? — w? — 20kw (tan € + secé)
—w — ok (tané + sec&)

Use =

and so on. Starting from ug obtained in Eq. (36) and using BT given in Eq. (60) we get

—0%k? + w? — 20kw (coté + cscé)
w — ok (coté £+ cscé)

Uy7 =

and so on. Starting from u4 obtained in Eq. (37) and using BT given in Eq. (60) we get

_ (160%k* + w?) tanh? § — 160kw tanh § + 160%k? + w?
Uas = wtanh? § — 8ok tanh ¢ + w '
Inserting u,g into the BT given in Eq. (60) we have

_ (480K w + w®) tanh? § — (240kw?® + 1280°k>) tanh § + 480%k*w + w?
tao = (1602k?2 + w?) tanh2 & — 160kw tanh & + 1602k?2 + w? ’

and so on. Starting from u;,, obtained in Eq. (38) and using BT given in Eq. (60) we get

(160%k? — w?)tan? ¢ + 160kw tan & — 1602k? + w?
w — wtan?§ + 8ok tan ¢ '

Uso =

Inserting us, into the BT given in Eq. (60) we have

(480%k?w — w3) tan? & + (24ckw? — 12803k3) tan & — 4802%k?w + w3

Us1 = (1602k? — w?) tan? & + 160kw tan & — 1602k? + w?

and so on. Starting from u,; obtained in Eq. (39) and using BT given in Eq. (60) we get

_ (160%k* — w?) cot? § — 160kw coté — 160%k? + w?
Usz = w — wcot? & — 8ak coté '

Inserting us, into the BT given in Eq. (60) we have

(w3 — 480%k?w) cot? & + (24ckw? — 12803k3) cot & + 480%k?*w — w3
(w? — 1602k?) cot? & + 160kw coté + 1602k2 — w? ’
and so on. Starting from u,, obtained in Eq. (40) and using BT given in Eq. (60) we get

Us3 =

o%k? + w? + (0%k? + w?) sech& — 2ckw tanh &
w+ wsech& —oktanh &

Usy =

and so on. Starting from u,; obtained in Eq. (41) and using BT given in Eq. (60) we get
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02%k? + w? + (6%k? + w?)icsch& — 20kw coth &
w + wicsch& — ok cothé

Uss =

’

and so on. Starting from u,, obtained in Eq. (42) and using BT given in Eg. (60) we get

(62k? — w?) cos & + 0%k? — w? — 20kwsin &

w+wcosé +aksiné

Use =

]

and so on. Starting from u, s obtained in Eq. (43) and using BT given in Eq. (60) we get

(62k? — w?)siné + 0%k? — w? + 20kw cos &

—w—wsiné + okcosé

Us7 =

’

and so on. Starting from u, 4 obtained in Eq. (44) and using BT given in Eq. (60) we get

w? — 40%k? — 4okw + (w? — 40%k? + 4okw) tan &
(w+ 20k)tané + w — 20k '

Usg =

Inserting usg into the BT given in Eq. (60) we have

w3+ 803k3 — 60kw? — 120%k%*w + (w3 — 803k3 + 60kw? — 120%k?*w) tan &
w? —40%k? — 4okw + (w? — 402k? + 4okw) tan & ’

Usg =

and so on. Starting from u,- obtained in Eq. (45) and using BT given in Eq. (60) we get

w? — 40%k? + 4okw + (w? — 40%k? — 4okw) coté
(w — 20k) coté + w + 20k ’

Ugp =

Inserting u,, into the BT given in Eq. (60) we have

w? —803k3 + 60kw? — 120%k*w + (w® + 803k3 — 60kw? — 120%k?*w) cot&
w? —40%k? + 4okw + (w? — 402k? — 4okw) coté ’

Ue1 =

and so on. Starting from u; 4 obtained in Eq. (46) and using BT given in Eq. (60) we get

_ (ok + w)? — (ok — w)?e’
Yo = W+ (ok — w)et

Inserting ug, into the BT given in Eq. (60) we have

_ (ok + w)* + (ok — w)3e’
Y3 = (ok + w)? — (ck — w)?es ’

Furthermore, using ug; and BT given in Eq. (60) we get

_ (ok + w)* — (ok — w)*es
Yot = (ok + w)3 + (ck — w)3eé ’

and so on, we can get a new sequence of the exact solution of the space-time CFBE.
Starting from u, obtained in Eq. (58) and using BT given in Eq. (60) we get

—(w? + 1602%k?) cosh € sinh & + 8ckw cosh? & — 4ckw
—w cosh & sinh & + 40k cosh? & — 20k ’

Ugs =

WWW.josa.ro Mathematics Section



The new families of... Abaker A. Hassaballa et al. 933

and so on, we can get a sequence of solutions generated by the addition of two functions tanh
and coth-function solution of the space-time CFBE. Starting from u3; obtained in Eq. (59)
and using BT given in Eg. (60) we get

(w? — 160%k?) cosé siné — 8ckw cos? & + 4okw
—w cosésiné + 4ok cos? & — 20k ’

Uge = —

and so on, we can get a sequence of solutions generated by the addition of two functions tan
and cot-function solution of the space-time CFBE.
By means of the variational iteration method (Inc, 2008) and the Adomian
decomposition method [36] the solution of the space-time CFBE in closed form is
_(w+k)+ (w—k)exp(§/o)
Uo7 = 1+ exp(é/0)

From u,- we can get a new sequence of the exact solution for the space-time CFBE by
using BT given in Eq. (60) in the form

_(w+k)?+ (w—k)? exp(§/0)
Ues = (w+k)+ (w—k)exp(é/o) ’

(0 + k) + (w—k)* exp(¢/0)
Yoo = (w+ k)2 + (w—k)2 exp(é/o)

_(w+R)*+ (w—k)* exp(§/0)
U0 = (w+ k)3 + (w—k)exp(é/o)

_(w+k)*+ (w—k)® exp(§/0)
T 0T+ (0= R exp(E/0)

and so on, we can get a new sequence of the exact solution of the space-time CFBE.

5. CONCLUSIONS

In this work, we discuss the Painlevé property for non-linear conformal fractional
differential equations for the first time. We apply the desired method to the space time
conformal fractional Burgers’ equation. Also, we derive the B&cklund transform. The general
solutions of the space-time conformal CFDEs are described based on the tanh-method,
accordingly, the method is successively implemented to space-time CFBE. Moreover, the
space-time CFBE is found to possess the Painlevé property and then Béacklund transform.
Also, we introduced a new recurrence formula based on the B&cklund transform, that enables
us to derive an analytical solution from a known solution or old solution to give the new
solution. New numerous exact solutions are generated based on the Backlund transform.
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