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Abstract.  This article is concerned with designing numerical schemes for the 

generalised Oskolkov equation using the quintic B-spline collocation finite element method. 

Applying the von-Neumann theory, it is shown that the proposed method is marginally 

unconditionally stable. It was obtained the theoretical bound of the error in the full discrete 

scheme for the first time in the literature. The accuracy and effectiveness of the method 

checked with three model problems, consisting of a single solitary wave, Gaussian initial 

condition and growth of an undular bore. The performance of the new method is 

demonstrated by calculating invariant I  and error norms 
2L  and L

. Results are displayed 

both numerically and graphically. Numerical experiments support the correctness and 

robustness of the method which can be further used for solving such problems. 

Keywords: Generalised Oskolkov equation; shock wave; finite element method; 

collocation; quintic B-splines. 

 

 

1. INTRODUCTION  

 

 

In recent years, nonlinear evolution equations have played a crucial role in describing 

complex phenomena that arise in different scientific subjects such as wave propagation, 

thermodynamics, soil consolidation, rock discontinuities and optical fibers [1]. The mentioned 

equations have become a widely studied subject in science and engineering due to their use in 

modeling natural phenomena. Therefore, the solutions obtained from these equations give a 

great idea about the physical behavior of the related problems. In the past few decades, a wide 

variety of analytical approaches, such as the modified simple equation method, have been 

developed and sensitive solutions have been found and significant progress has been made. 

Examining the dynamics of the nonlinear evolution equations, it can be discovered that 

several nonlinear systems may provide some solutions for a given set of parameter values and 

various initial conditions [2]. It should be noted, however, exact solutions of these equations 

are mostly not procurable, in particular when the nonlinear terms are involved. Since only a 

finite number of classes of these partial differential equations are solved analytically, 

numerical solutions are highly functional for studying physical phenomena. 

Many scientists have created a walking wave solution by applying various methods 
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through nonlinear partial differential equations [3]. For instance, Well-established procedures 

such as extended Kudryashov method, New extended  '/G G  expansion method, Darboux 

transform, Modified simple equation method (Msem), Trial solution method in extended 

literature, Jacobian elliptic function method, Inverse engineering method, Fokas method, Exp-

function method, Multiple simplest equation method, Sin-cosine method etc. [4-14]. The 

exact solutions of the various types of Oskolkov equation have been studied by a number of 

different methods [15-17]. For the Oskolkov equation, with the help of the computer algebraic 

system Maple, the (G′/G) expansion method has been proposed to search for solutions of 

moving waves [18]. Mamunur discovered complete and clear solution of Oskolkov equation 

with the (Mse) method [19], Faruk, found abundant new solutions of equation by the tanh-

coth method [20], Ak et al. [21] presented the shock wave solutions by applying the unified 

method and Bashar [3] compiled the adaptation of the exact nonlinear wave solutions for 

Oskolkov equations by applying the simple linear equation method. 

In this article solutions of the generalised Oskolkov equation are presented by using 

collocation finite element method. The collocation approach mentioned is based on 

collocation of quintic B-splines over spatial finite elements. Since the spline functions are 

fragmented polynomials, they can be integrated and differentiated and most of the integral in 

numerical methods is zero. In this way, B-spline functions are applied to numerical methods 

to get the solution of partial differential equations. In addition, these methods based on spline 

functions to obtain numerical solutions of differential equations lead to band matrices that can 

be easily resolved with low cost calculations and some algorithms in the market. The one-

dimensional Oskolkov equation can be defined as follows: 

                

 
0.t xxt xx xU U U UU    

  
               

            This equality is the pseudoparabolic equation and the one-dimensional analogue of the 

Oskolkov system indicates the dynamic behavior of the Kelvin - Voigt model of viscoelastic 

fluids. The parameter λ may be a negative value, but a negative value of λ does not distort the 

physical meaning of the Oskolkov equation. The parameters u and λ feature the viscous and 

elastic properties of the fluid, respectively [22]. 

            In this study, the motions of shallow water waves, modeled by the generalised 

Oskolkov equation with the quintic B spline collocation finite element method has been 

examined. The plan of this paper is as follows: Some preliminary results of quintic B-spline 

and the stability analysis of the scheme are well studied in Section 2 and Section 3. 

Convergence of the full discrete scheme is examined in Section 4. In Section 5, some 

numerical model problems are presented. A conclusion is given in Section 6. 

  

   

2. NUMERICAL APPLICATIONS OF THE SCHEME 

 

 

In this section, the following generalised Oskolkov equation is examined 

 

                                              ( ) 0p

t x xx xxtU U U U                                                    2.1  

 

which has need for the boundary conditions 0U   as x , where ,   and   are 

constants and x  is the space coordinate and t  symbolizes time differentiation. 

First of all, the nodes are divided into N  intervals equal to the problem domain 
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bxa   like that bxxxa N  ...10  with mesh spacing .
N

abh   for 1,2,...,m N . 

Boundary conditions have been taken into account from the following homogeneous 

conditions: 

 

( , ) 0, ( , ) 0,

( ) ( , ) 0, ( , ) 0, 0

N N

N x N x

U a t U b t

U a t U b t t

 

  
                                 2.2  

 

and the initial condition ( ,0) ( ), .U x f x a x b    

The quintic B-splines   , ( 2(1) 2),m x m N     at the knots mx  with the required 

properties are described by Prenter [23]: 
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        (2.3)  

 

             Each quintic B-spline embeds six elements so that each element  1,m mx x   is covered 

by six spline functions. The spline functions  m x and its principal derivatives disappear 

outside the interval  3 3,m mx x  . To solve the boundary value problem  2.1  using quintic B- 

splines as approximation functions by the collocation method, the following approximate 

solution  ,NU x t  is expressed as  

2

2

( , ) ( ) ( )
N

N j j

j

U x t x t 




                                               (2.4)  

 

where ( )j t are time-dependent parameters specified from the collocation and boundary 

conditions. Substituing the quintic B-spline interpolation functions (2.3)  into the trial 

function (2.4) , four fundamental derivatives of  ,U x t  relating to at the knots are 

determined in terms of the time parameters m  by 

 

                                 2

3

4

2 1 1 2

5
2 1 1 2
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2 1 1 2

60
2 1 1 2

120
2 1 1 2

( , ) 26 66 26 ,

( 10 10 ),

( 2 6 2 ),

( 2 2 ),

( 4 6 4 ).

N m m m m m m m

m m m m mh

m m m m m mh

m m m m mh

iv

m m m m m mh

U x t U

U

U

U
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                      (2.5)  

Using the node values of mU  and its space derivatives given by Eqs. (2.5)  in Eq. (2.1) , 
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following combined the set of ordinary differential equations are obtained: 

                             

   

5

2 1 1 2 2 1 1 2

2 1 1 2 2 1 1 22 2

( 26 66 26 ) ( 10 10 )

20 20
2 6 2 2 6 2 0,

mZ

m m m m m m m m mh

m m m m m m m m m m
h h


        

 
         

       

       

        

          
    2.6   

 

where  1 1

2 1 1 2( 26 66 26 ) ,p p

m m m m m m mZ pU p      

          and  states derivative with 

respect to t . The term 1ppU   in non-linear term 1p

xpU U , is received as Eq.  2.6

considering that the quantity 1ppU   is locally constant, with the linearization form presented 

by Rubin and Graves [24]. The equation given by  2.6  is decomposed by 
i 's and its time 

derivatives i 's by the following Crank-Nicolson formula 

  

                                                     
1

,
2

n n

i i
i

 


 
                                                                 (2.7)   

 

and routine finite difference approach 

 

                                                 
1

.
n n

i i
i

t

 


 



                                                                  (2.8)   

       

             This approximation leads to the following recurrence relationship between two-time 

levels n   and  1n   depending two unknown parameters  ,1n

i  n

i : 

 

                                           

1 1 1 1 1

1 2 2 1 3 4 1 5 2

5 2 4 1 3 2 1 1 2
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m m m m m
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m m m m m

         

         

    

   

   

   

    
                                  (2.9)   

where   
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                      (2.10)                

             

The system (2.9)  consists of )1( N  equations in ( 5)N   unknown values 

2 1 1 2( , , , , )T

N N      
. To get a unique solution to this system, four additional constraints 

are required. Boundary conditions are applied to eliminate the parameters 
2 1,  

and 

1 2,N N    from the system (2.9) . In this case, this becomes a matrix equation for the )1( N

unknowns T

N

nd ),,,( 10     of the form 

  

.P Qn 1 nd d                                                           (2.11)  
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              The resulting system is solved with the Thomas algorithm and is implemented two 

inner iterations )( 1

2
1   nnnn   at each time step to deal with the non-linearity caused 

by mZ . Before the commencement of the solution process, the initial state vector 
0d  must be 

determined from the initial condition and the following derivatives at the boundaries:  

 

                                   

( ,0) ( ,0); 0,1,2,...,

( ) ( ,0) 0, ( ) ( ,0) 0,

( ) ( ,0) 0, ( ) ( ,0) 0.

N m

N x N x

N xx N xx

U x U x m N

U a U b

U a U b

 

 

 
                                

 2.12
 

 

 Thus, considering Eq. (2.12), a penta-diagonal system of equations are obtained and 

written in the following matrix form for the initial state vector 0;d     

 
0 ,Wd R  

where 
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NNNd ),,,...,,,( 12210

0     and  
0 1 1( ( ,0), ( ,0),..., ( ,0), ( ,0)) .T

N NR U x U x U x U x    

 

 

3. STABILITY OF THE SCHEME 

 

 

For determining behaviour of the systems, stability is probably the first and most 

important problem to deal with it. Stability plays a significant role for studying on numerical 

approaches. Especially, for a discreating scheme, numerical stability is the most important 

concept [25]. In this section, the von-Neumann theory is employed to investigate the linear 

stability of the numerical scheme [26]. Growth factor   of a typical Fourier mode is 

identified as: 

                                                n n im h

m e   , ( 1).i                                                          (3.1)  

 

Substituting the Eq. (3.1 ) into the scheme (2.9), following equality is obtained: 

 

                    

1 ( 2) ( 1) ( ) ( 1) ( 2)

1 2 3 4 5

( 2) ( 1) ( 1) ( 2)

5 4 3 2 1

( )

( )

n i m i m i m i m i m

n i m i m im i m i m

e e e e e

e e e e e

    

    

     

     

    

   

   

                              (3.2)  
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where     is mode number,  h   is the element size,  h  . By implementing Euler's 

formula to the Eq.(3.2), the following growth factor is obtained  

 

iB

A iB






 

 where 

 

1 3 4 1 3 4 1 3 4

2 2

(2 2 2 )cos(2 ) (48 4 4 )cos( ) 66 6 6 ,

2 sin(2 ) 20 sin( ),

A

B

          

   

        

 
 

 

and 

1 2 3 42 2

5 10 20
1, , , , 0,1,..., .

2
mZ t t t m N

h h h


               

 

According to the Fourier stability analysis, for the given scheme to be stable, the 

condition  1||    must be satisfied. Because of | | 1  , is find that the linearized scheme is 

unconditionally stable. 

 

 

4. CONVERGENCE OF THE FULL DISCRETE SCHEME 

 

 

In this study generalised Oskolkov equation which is a non-linear PDE is integrated 

using collocation B-splines in space followed by a one step scheme for temporal 

approximation. It is to note that the performance of a numerical scheme depends on its error 

reduction and computational stability. Finite element schemes are very much popular for their 

priori and a posteriori estimates of convergence rates as well as discretization errors. Mostly 

theories depend on a functional analysis framework which is well developed and discussed in 

numerous books and articles. Here, the relevant concepts and key results without proof and 

cite sources of a more complete treatment are studied. To be specific, to a brief survey about 

the error estimates of the above-mentioned space time scheme without a formal proof is 

opted. One may consult [27-32] and many other well-known references for a detail. It is 

mentioned that are employed some constants 0iC , which are necessary not the same for all 

the cases. 

Usually global polynomial interpolations are used to integrate the solutions of 

differential equations for simple computational domain and when unknown curves are 

considered to be smooth enough. However, most real life models are considered when the 

solutions are not sufficiently smooth to support such a scheme and the computational domain 

is not usually simple rather it is complex. For these types of cases finite element schemes play 

an important role and performs very well for such a modelled problem. 

Polynomials are smooth which is very important in approximation theory. It helps to 

approximate and analyze solutions using polynomial basis functions. Let it have 1r   data 

values. Then there is exactly one polynomial of degree at most r  passing through the data 

points and the error in the interpolating polynomial is proportional to a power of the distance 

between the data points [27-30]. As stated above is used a collocation Quintic B-splines in 

space. It is well known that collocation scheme gives super-convergence at collocation points 

and it does not require an extra inner product to evaluate as of the Galerkin inner product 

approach [33]. So this approach is simpler and efficient to compute solutions. 
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Here, )(kH  is a space of k  times differentiable functions and .
r
 as standard 

)(kH  norm. Let hv  be an approximation to a function )()(  kHxv  in  . Here 
0

.  stands 

for )(2 L norm. Let h  be the distance between the grids and ii , where 

],[ 1 iii xx , hxx ii 1 . It was observed from [29-35] that 

 
1

1
( ) ( ) where1 ,  r

h r
v x v x Ch v r k


     

 

and 
hv  stands for interpolation by piecewise-polynomials of degree r  (considering 

 i i  ). This error is preserved by the Galerkin finite element approximation as well [30, 

32]. 

    Let hw  be a B-spline of degree less or equal k  that approximates ( )rw H   for 

any natural number 0r  , then it is evident [27, 32, 34, 35] that 
 

1

1
( ) ( ) 1 .m

h m
w x w x Ch w where m r


     

 

Here Quintic B-splines have been used for space integration. Thus, from the above 

quotations it is confirmed that obtained a 6( )hO  accuracy for the spatial approximation in 

)(2 L  norm [32]. For time a forward difference scheme has been used which is accurate of 

)( tO  in ])0([2 TL  norm for some 0T  [30]. So for the space time discretization the error 

bound is of the form  
 

8

1 2( , ) ( , ) ,hu x t u x t C h C t   
 

                                                 

for a suitable  01 C   and  02 C . 

 

 

 5. COMPUTER APPLICATIONS AND DISCUSSIONS 

 

 

In this section, numerical solutions of the generalised Oskolkov equation are 

considered for three problems which are including the motion of shock wave, evolution of 

solitary waves with Gaussian and undular bore initial conditions. The error norms given 

below are utilized to demonstrate how good the numerical scheme guesses the position and 

amplitude of the solution as the simulation proceeds: 
 

 
2

2 2
0

,
N

exact exact

N j N j
J

L U U h U U


     

and  

 max , 1,2,..., .exact exact

N j N jj
L U U U U j N 

      

 

The generalised Oskolkov equation (2.1)  owns only one invariant by 

                                                                          

1

b N N

jja
I Udx h U


    

which correspond to mass. 
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5.1. PROPAGATION OF SHOCK WAVE 

 

 

The shock wave solution of the Eq. (2.1)  with boundary conditions as 0U   as 

x  is denoted by 
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and , , ,a k p  are arbitrary constants. Initial condition is obtained as 

 

                             
   

2 1( ,0) [ ] .
2 cosh sinh

pa
U x A BD

a x x

 

 


 

      
                        5.2  

 

The values of parameters are chosen as 0.1, 7, 0.1, 0.5, 0.33,h t         

2,3p  and 0.3, 0.5a   through the interval  50,50x   for the computational work. 

 

CASE 1. 

 

For 2,p   the parameters 0.5, 0.1, 7, 0.1, 0.3h a        and 0.1t     are 

selected through the interval 10 10.x    These parameters generate the amplitude 

0.096.A   The numerical simulations are performed to time 5t   to calculate error norms 

2 ,L L
 and the invariant .I  The values of the invariant and error norms provided by the 

suggested method are tabulated in Table  5.1 . This table proves that the invariants remain 
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almost constant over time. Also, it have seen that the magnitude of the 
2L  and L

 error 

norms is adequately small with increasing time and velocity, as expected. The behaviour of 

shock wave is plotted in Fig.  5.1 . It is to notice from Fig. (5.1) that the shock wave keeps 

its identity and moves to the right at constant velocity. 

 
Table 5.1. The invariant and the error norms for Case I over the interval [-10,10]. 

2p   
I  2L  L

 
t 

0.0  0.0705095703 0.00000000 0.00000000 

1.0  0.0688729173 0.00219512 0.00450895 

2.0  0.0684210594 0.00262091 0.00462410 

3.0  0.0679864368 0.00307562 0.00473738 

4.0  0.0675684286 0.00354994 0.00484890 

5.0  0.0671664551 0.00403901 0.00495867 

 

 

   
 

 
Figure 5.1. Shock wave profiles for a) p=2, γ=0.5, σ=0.1, η=7, h=0.1, a=0.3 and Δt=0.1 b) p=3, γ=0.33, 

σ=0.1, η=7, h=0.1, a=0.5 and Δt=0.1. 

 

CASE 2. 

 

As a second case, to show simulation through the interval 10 10,x    the 

parameters 0.33, 0.1, 7, 0.1, 0.5h t a          are chosen for 3.p   Here by, it is 

calculated that the amplitude of shock wave has 0.116 . The calculated error norms and 

conservation constant values are listed in Table  5.2 . This table clearly shows that the error 

norms obtained by our method are marginally quite small. The distribution of errors at 10t   

are depicted in Fig.  5.2 for 2p   and 3,  respectively. The error aberration varies from 

32 10   to 
32 10  for 2p   and from 

24 10   and 
24 10  for 3.p   
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Table 5.2. The invariant and the error norms for Case II over the interval [-10,10]. 

3p   
I  2L  L

 
t 

0.0  -2.33523963 0.00000000 0.00000000 

1.0  -2.32880100 0.00679857 0.00204288 

2.0  -2.32274406 0.01338439 0.00406700 

3.0  -2.31704365 0.01977795 0.00607621 

4.0  -2.31167526 0.02599985 0.02599985 

5.0  -2.30661498 0.03207079 0.01006373 
 

  
Figure 5.2. Error distributions at t=10 for the parameters a) p=2,γ=0.5, σ=0.1, η=7 and a=0.3 b) p=3, 

γ=0.33, σ=0.1, η=7 and a=0.5. 

 

 

5.2. EVOLUTION OF WAVES 

 

 

5.2.1. Gaussian initial condition 

 

For the equation under consideration, the evolution of waves is now investigated using 

the Gaussian initial condition 

 

                                                         2( ,0) exp( )U x x                                                        5.3  

and boundary condition 
 

( 10, ) (10, ) 0, 0U t U t t     

 

for different values of h  and .t  

To examine the wave evolution shown below, the parameters 

0.1, 7, 0.5, 0.33,      2, 3, 0.3, 0.5, 0.1, 0.01p a h t       are taken in the range 

 10,10 .  

 

CASE 1. 

 

The values of 0.5, 0.1, 7, 0.3a       and 0.01h t    are selected for 2.p   

The run of the algorithm is run to time 5t  to obtain the values of the invariant. The values 

of the the invariant quantity of motion for two different values of h  and t  are demonstrated 
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in Table  5.3 . In this case, it can be said that the solutions reached depend on the values of 

h  and .t  Fig.  5.3  illustrates the development of the Gaussian initial condition into waves 

through the interval  10,10 .x   

 

CASE 2. 

 

The parameters 0.33, 0.1, 7, 0.5a       and 0.01h t    are chosen for 

3.p   Calculations are realized from 0t   to 5.t   The values of the conserved invariant of 

motion are given in Table  5.3  for different values of time and space steps. It can be said 

from the Table  5.3 that the invariant is very close to each other as time increases. Therefore, 

it can said that our method is sensibly conservative. The evolution of a train of waves with 

Gaussian initial condition is plotted in Fig.  5.3  for 3.p   

 

Table 5.3. Invariant and error norms for Gaussian initial condition 

t 
2p   3p   

0.1h t    0.01h t    0.1h t    0.01h t    

I  I  I  I  
0.0 1.7724537283 1.7724549574 1.7724537283 1.7724549574 

1.0 1.8025375281 1.8025515254 1.8022592747 1.8024322019 

2.0 1.8315838133 1.8316063645 1.8310659550 1.8314024588 

3.0 1.8590051123 1.8590509111 1.8586491384 1.8591428539 

4.0 1.8842829125 1.8843701948 1.8848031508 1.8854496139 

5.0 1.9065605329 1.9071105522 1.9093419082 1.9101386384 

  
Figure 5.3. Generated waves profiles with a) p=2, γ=0.5, σ=0.1, η=7 and a=0.3 b) p=3, γ=0.33, σ=0.1, η=7 

and a=0.5 with various values of h and Δt. 

 

 

5.2.2 Undular bore initial condition 

 

In this part, evolution of a train of waves of the generalised Oskolkov equation is 

processed using the undular bore initial condition and boundary condition 
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cause to produce a train of solitons for generalised Oskolkov equation. If the transition 

between the depths has only a slight slope, a bore is formed when a deeper stream of water 

flows into the still water area [36]. The changing in amplitude is centered on 
0x x  and the 

steepness of the change is measured by .d  The values of d is inversely proportional to the 

steepness [37]. The parameters are choosen as 
0 00.1, 7, 0.25, 25U x      and 5d   in 

Eq.  5.4 .  

 

CASE 1. 
 

In the first case, the parameters 0.5, 0.1, 7, 0.3a       and 0.1, 0.02h t    

are taken for 2.p   The numerical study was calculated up to 5.t   Variation of the 

conserved quantity position is reported in Table  5.4 .  Fig.  5.4 indicates the simulation of 

waves at 5.t  It can be clearly said that the undulation bore maintains the steady state during 

operation, which can be observed in Fig.  5.4  from 0t   to 100.t   

 

CASE 2. 
 

 In this simulation, for comparison with earlier case, the parameters 

0.33, 0.1, 7, 0.5a      and 0.1, 0.02h t     are chosen for 3.p   The run of the 

algorithm is continued up to time 5t  over the problem region 60 60.x    The values of 

the invariant obtained from present method are given in Table  5.4 . The evolution of the 

waves is samplied in Fig.  5.4 from 0t   to 100.t   
 

Table 5.4. Invariant and error norms for Undular bore initial condition 

 2p   3p   

t  0.1h t    0.02h t    0.1h t    0.02h t    

 I  I  I  I  
0.0 12.5000275676 12.4998649440 12.5000275676 12.4998649440 

1.0 12.4968960273 12.4967407712 12.4986970475 12.4985477436 

2.0 12.4870227201 12.4869144654 12.4947142014 12.4945965316 

3.0 12.4687265050 12.4687427378 12.4873844225 12.4873318673 

4.0 12.4396450182 12.4399136353 12.4757710379 12.4758377388 

5.0 12.3966116239 12.3973296490 12.4586439575 12.4589122926 
 

   
Figure 5.4. Generated waves with a) γ=0.5, σ=0.1, η=7 and a=0.3 b) γ=0.33, σ=0.1, η=7 and a=0.5 with 

various values of h and Δt. 
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6. CONCLUSIONS  

 

 

In this research, a collocation method based on quintic B-splines has been constructed 

for obtaining the numerical solutions of the generalised Oskolkov equation. Stability analysis 

has been done and the suggested method has been shown to be unconditionally stable. The 

method is implemented through shock wave and evolution of waves with Gaussian and 

undular bore initial condition; for shock wave 
2L  and L

 error norms and for the Gaussian 

and undular bore initial condition the invariant quantity I  have been calculated. Furthermore 

the theoretical bound of the error in such a full discrete approximation has been demonstrated. 

From the calculated results it is obviously clear that the error norms are quite small, and the 

invariant is almost constant in all computers run. Finally, it could be recommended that the 

method can be used to solve a wide range of different partial differential equations. 
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