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Abstract. In this article, we construct the plastic number in the three-dimensional 

space. We examine the nested radicals and continued fraction expansions of the plastic ratio. 

In addition, we give some properties and geometric interpretations of the plastic constant. 
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1. INTRODUCTION  

 

 

There are so many studies in the literature about the special number sequences such as 

Fibonacci, Lucas, Pell, Jacobsthal, Tribonacci, Padovan, and Perrin  [1-11]. The most known 

of these are the Fibonacci numbers. One of the reasons that make Fibonacci numbers 

important is the golden ratio. Although the golden ratio appears in nature, art and architecture, 

the golden ratio is defined as the ratio of two consecutive Fibonacci numbers. The other 

important special numbers are the Padovan numbers. 

The Padovan sequence is named after Richard Padovan who attributed its discovery to 

Dutch architect Hans van der Laan in his 1994 essay Dom. In [12], the Padovan sequence 

 
0n n

P


 is defined by 

 
0 1 2 1P P P    and 

3 1n n nP P P   .                                       (1.1) 

 

Here, 
nP  is the n th Padovan number. First few terms of this sequence are 1, 1, 1, 2, 2, 

3, 4, 5, 7, 9, 12, 16, 21.  Similarly, the ratio of successive the Padovan number converges to 

the plastic constant. Firstly, let us compute the ratios 1n

n

P

P

  of the first 20 Padovan numbers, 

and then examine them for a possible pattern (Table 1 ). As n gets larger and larger, it appears 

that 1n

n

P

P

  approaches a limit, namely, 1,32471795724474602596... 

 

Table 1. Ratios of consecutive Padovan numbers. 

n Pn+1/Pn
 

n Pn+1/Pn
 

0 1/1≈1.000000 10 16/12≈1.333333 

1 1/1≈1.000000 11 21/16≈1.312500 

2 2/1≈2.000000 12 28/21≈1.333333 

3 2/2≈1.000000 13 37/28≈1.321428 

4 3/2≈1.500000 14 49/37≈1.324324 

5 4/3≈1.333333 15 65/49≈1.326530 
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n Pn+1/Pn
 

n Pn+1/Pn
 

6 5/4≈1.250000 16 86/65≈1.323076 

7 7/5≈1.400000 17 114/86≈1.325581 

8 9/7≈1.285714 18 151/114≈1.324561 

9 12/9≈1.333333 19 200/151≈1.324503 

 

The plastic number p  (also known as the plastic constant, the plastic ratio,  the platin 

number and the minimal Pisot number) is a mathematical constant which is the unique real 

solution of the cubic equation 1.2. 
 

3 1 0x x   .                                                      (1.2) 
 

It has the exact value 
 

3 3
9 69 9 69

1,324718
18 18

p
 

    

 

that was firstly defined in 1924 by Gerard Cordonnier. He described applications to 

architecture and illustrated the use of the plastic constant in many buildings (for the details see 

[13]). Its decimal expansion begins with 
 

1.3247 Plastic Ratio.p     

 

The other unreal roots of the equation are as follows 
 

0.66236 0.56228 ,i     0.66236 0.56228 .i     

 

Then, the following relations can be derived 
 

0,      1,       1.   

 

We confirm this observation. Let 
 

1lim 1.324717957244...n

x
n

P
p

P




   

 

By the Padovan recurrence, we then have 
 

1 1 2lim lim limn n n

x x x
n n n

P P P

P P P

  

  
 

 

1 2

21

3

1 1
            

lim lim

1 1
            

1
1lim

lim

n n

x x
n n

n

x
nn

x
n

P P

P P

P

PP

P

 
 







 

 


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1 1

1
1

p
p

p

 



 
 

Thus p  satisfies the cubic equation 3 1 0p p   . 

 

 

1.1. A GEOMETRIC INTERPRETATION OF THE PLASTIC RATIO 

 

 

 
Figure 1. A geometric interpretation. 

 

In [14], the golden ratio can be calculated by sectioning the segment AB  in two parts 

AC  and BC . Let AC x  and CB y  (Fig. 1). Then the equation 
AC AB

CB AC
  

 
 yields  

 

1
1

x x y x

xy x y

y


     

that is, 

2

1 0
x x

y y

 
   

 
. So, 

x

y
 satisfies the familiar quadratic equation 3 1 0.k k    When 

the CB  part of segment AB  separate, we get segment AB  in three parts. Let AD z  and 

CB y . The plastic number p  is defined with 

 

AC AD CB AC CD
p

AD CB AC CD BD
      

and follows  
3

1 0
z z

y y

 
   

 
 

 

Thus, 
z

y
 satisfies the familiar cubic equation 3 1 0.t t    Look at [13, 15]. 

 

 

1.2. SOME SHAPES OF THE PLASTIC RATIO 

 

 

The shape created by coinciding the sides of three equilateral triangles side by side, 

and the shape formed by coinciding the other equilateral triangles spirally counterclockwise 

with one side of the other (Fig. 2). 
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Figure 2. Shape-1 of Padovan numbers obtained in 

spiral form with triangles. 

 
Figure 3.  Shape-2 of Padovan numbers obtained in 

spiral form with triangles. 

 

 

The different representation see Fig. 3. This shape is called the Padovan triangles [16].  

The following figure  (Fig. 4) is formed by bringing the co-squares anticlockwise side 

by side with an overlapping corner. 

 
Figure 4. Padovan numbers obtained in spiral form with quadrangles. 
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2. NESTED RADICALS EXPANSIONS AND CONTINUED FRACTION OF THE 

PLASTIC CONSTANT 

 

 

In [17], recall that p  is reel root of the cubic equation 3 1x x  . This equation has 

exactly one positive solution, namely, p . Since 
1

1x
x

  , it follows by iteration that 

 

1
1

1
1

1
1

p  





 

 

Next, consider the equation 3 1x x  . Since, 3 1x x  , we also have 
 

3 3 31 1 1p     . 

 

Next, consider the equation 4
1

1x x
x

   , we have 

 

4

4
4 44

4
4

1 1 1
1 1 1

1 1 11 1 1
1

1

p       

     

 

. 

 

Next, consider the equation 5
1

2x x
x

   , we have 

 

5

5
5 55

5
5

1 1 1
2 2 2

1 1 12 2 2
1

2

p       

     

 

. 

 

Next, consider the equation 6
1

2 2x x
x

   . 

So, if we continue, we have 
 

7
2

3 2 ,x x
x

  
 

 

8
2

4 3 ,x x
x

  
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9
3

5 4 ,x x
x

  
 

 

…  

 

4
2 3 .nn

n n

P
x P P x

x


   

 
 

Thus, we get 
 

4 4
2 3 2 3

4
2 3

.n nn
n n n n

n
nn

n n

P P
x P P P P

P
P P

 
   


 

    

 
 

 

In  [18, 19], the simply continued fraction expansion of the plastic constant is 
 

1
1

1
3

1
12

1
1

1
1

p  









 

 

The continued fraction expansion of plastic number (the positive root of 3 1x x  ) is 

[1, 3, 12, 1, 1, 3, 2, 3, 2, 4, 2, 141, 80, 2, 5, 1, 2, 8, 2, 1, 1, 3, 1, 8, 2, 1, 1, 14, 1, 1, 2, 1, 1, 

...](the On-Line Encyclopedia of Integer Sequences (OEIS) A072117). 
 

 

3. GATTEI-LIKE DISCOVERY OF THE PLASTIC RATİO 
 

 

When P. Gattei was at Queen Elizabeth’s Grammar School in Blackburn, England, he 

stumbled upon a problem involving the inverse f  of a real-valued function f  [20]. 

Accidentally, he dropped the minus sign and ended up taking the derivative 'f  of  f  . 

 

Theorem 3.1:  Let  
2nf x Ax , where A is the positive real number. p  is plastic constant. 

 

    1' .
n

f x f x n p                                              (3.1) 

 

Proof:  Then  
22 1' nf x An x   and 

2

1

1( )
nx

f x
A

  
  
 

. 

By equation (3.1), this implies 
2

2

1

2 1

n

n
n x

An x
A



 
      
 

; that is 
31 2 1 1n n n nA n x    . So  

3 1 0n n    and
1 2 1n nA n  . Then ,   or n     are one of the roots in (1.2). n  cannot be 

  and  . Because A  must be a positive real number. Therefore n p  . 
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4. GEOMETRIC SHAPES OF THE PLASTIC RATIO 

 

 

4.1. GRAPHICS OF THE PLASTIC CONSTANT 

 

 

It is a bit easier to solve the corresponding equation in x : 3 1 0x x    (Fig. 5).  
 

 
Figure 5. Graphic 1 of the Plastic Constant. 

 

Using Cardano's formula, we have 
 

2 3 2 3

3 3

2 4 27 2 4 27

n n m n n m
t        

 
 

for the real solution of the equation 3 0t pt q   , the real value p of x  is given by 

 

3 33 3
1 1 1 1 1 1 9 69 9 69

1,324718
2 4 27 2 4 27 18 18

p
 

          

 
 

 

The graph of cubic and linear functions is given in Fig. 6 

The apse of the point where these graphics intersect gives the plastic constant. 

Because, the positive real root of  3 1 0x x    is p . 
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Figure 6. Graphic 2 of the Plastic Constant. 

 

 

4.2. PLASTIC RATIO IN THE TRIANGLE 

 

 

Let / /DE EC  be parallel lines. The areas of the triangles are proportional to the 

squares of their vertices. Assume that the following triangle exists (Fig. 7). 

 

 
Figure 7. Plastic ratio in a triangle. 

 
2

y x

x x y

 
 

 
. 

That is 

3

1 0
x x

y y

   
     

   
. So 

x

y
 satisfies the familiar cubic equation 3 1 0t t   . 
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4.3. PLASTIC RATIO IN UPRIGHT PRISMS 

 

 

Let's consider the cube prism with a  edge length. Remove a cube prism with b  edge 

length of this cube prism. The volume of the resulting shape is equal to the volume of the 

square upright prism in the a  and b  side lengths as follows (Fig. 8): 

 

 
Figure 8. Plastic Ratio in Upright Prisms 

 

Since the volume of the resulting shape equals that of the square upright prism, it 

follows that  
3 3 2

3 2 3

3

           

  0

 1 0.

a b ab

a ab b

a a

b b

 

  

 
   

 

 

Hence, 
a

p
b
  gives the plastic ratio. 

 

 

4.4. PLASTIC RATIO IN CYLINDERS 

 

 

Let's consider the cylinder with radii and height a . Remove a cylinder with radii b  

and height a  of this cylinder. The volume of the resulting shape is equal to the volume of the 

cylinder with radii and height b  as follows  (Fig. 9): 

 

 

 
Figure 9. Plastic Ratio in Cylinders. 
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Since the volume of the resulting shape equals that of the cylinder, it follows that  
3 2 3

3 2 3

3

           

 0

 1 0.

a ab b

a ab b

a a

b b

 

  

 
   

 

 

So, 
a

p
b
 , the plastic ratio. 

 

 

4.5. PLASTIC RATIO IN PYRAMIDS 

 

 

Let's consider the pyramid with base edges and height a . Remove a pyramid with 

base edges b  and height a  of this pyramid. The volume of the resulting shape is equal to the 

volume of the pyramid with base edges and height b  as follows (Fig. 10): 
 

 
Figure 10. Plastic Ratio in Pyramids. 

 

Since the volume of the resulting shape equals that of the pyramid, it follows that  

 

3 2 3

3 2 3

3

1 1 1
           

3 3 3

          0

          1 0.

a ab b

a ab b

a a

b b

 

  

 
   

 

 

So, 
a

p
b
 , the plastic ratio. 
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4.6. PLASTIC RATIO IN CONES 
 

 

Let's consider the cone with radii and height a . Remove a cone with radii b  and 

height a  of this cone. The volume of the resulting shape is equal to the volume of the cone 

with radii and height b  as follows (Fig. 11): 
 

 
Figure 11. Plastic Ratio in Cones. 

 

Since the volume of the resulting shape equals that of the cone, it follows that  

3 2 3

3 2 3

3

1 1 1
           

3 3 3

               0

               1 0.

a ab b

a ab b

a a

b b

   

  

 
   

 

 

So, 
a

p
b
 , the plastic ratio. 

 

 

4.7. PLASTIC RATIO IN THE SPHERE  

 

 

In [16], consider a ball (globe-shaped volume) formed by two concentric spheres with 

radii a  and b , where a b . Inscribe an ellipse of the major axis 2a  and minor axis 2b , so it 

touches the outer and inner spheres (Fig. 12). Suppose the volume of the ellipse equals that of 

the ball. Compute the ratio 
a

b
.   

 
Figure 12. Plastic Ratio in the Sphere. 

 

Since the volume of the ellipse equals that of the ball, it follows that  



 Some properties of the plastic constant Orhan Dişkaya and Hamza Menken  

 

www.josa.ro Mathematics Section 

894 

 2 3 3

3 2 3

3

4 4
         

3 3

 0

 1 0.

b a a b

a ab b

a a

b b

  

  

 
   

   

So, 
a

p
b
 , the plastic ratio. 

 

 

5. CONCLUSION 

 

 

The plastic ratio is a ratio that has the various features of the golden ratio. Therefore, 

various scientific studies about the golden ratio, which has an important place in nature, were 

examined and it was researched how these studies would give results for the plastic ratio. 

Thus, the results obtained for the plastic ratio are included in this study. 
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