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Abstract. There are a lot of structures in tangent and cotangent bundle. One of them
is the Hsu — (4,2) structure have been defined and studied by Yano, Hough and Chen [1] and
the complete and horizontal lifts of Hsu — (4,2) structure extended in M™ to cotangent bundle
by R. Nivas and M. Saxena [2]. Hsu-structure had been defined firstly by Prof Mishra [3].
This paper consists of two main sections. In the first part, we find the integrability conditions
by calculating Nijenhuis tensors of the complete and horizontal lifts of Hsu — (4,2) structure.
Later, we get the results of Tachibana operators applied to vector and covector fields
according to the complete and horizontal lifts of Hsu — (4,2) structure and the conditions of
almost holomorfic vector fields in cotangent bundle T*(M™ ). Finally, we have studied the
purity conditions of Sasakian metric with respect to the lifts of Hsu — (4,2) structure. In the
second part, all results obtained in the first section were investigated according to the
complete and horizontal lifts of the Hsu — (4,2) structure in tangent bundle T*(M™ ).

Keywords: Integrability conditions; Tachibana operators; horizontal lift; complete
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1. INTRODUCTION

The investigation for the integrability of tensorial structures on manifolds and
extension to the tangent or cotangent bundle, whereas the defining tensor field satisfies a
polynomial identity has been an actively discussed research topic in the last 50 years, initiated
by the fundamental works of Kentaro Yano and his collaborators, see for example [4]. There
are a lot of structures in tangent and cotangent bundle. One of them is the Hsu — (4,2)
structure have been defined and studied by Yano, Hough and Chen [1] and the complete and
horizontal lifts of Hsu — (4,2) structure extended in M™ to cotangent bundle by R. Nivas and
M. Saxena [2].

Hsu-structure had been defined firstly by Prof Mishra [3]. In addition, a differentiable
structure F2v** + F2=0,(F # 0,v # 0) studyed by K.K. Dube [5] and Upadhyay and
Gupta have obtained some integrability conditions of F(K,—(K — 2) — structure, satisfying
FX + FX=2 =0,(F is a tensor field of type (1,1)) [6]. This paper consists of two main
sections. In the first part, we find the integrability conditions by calculating Nijenhuis tensors
of the complete and horizontal lifts of Hsu — (4,2) structure.

Later, we get the results of Tachibana operators applied to vector and covector fields
according to the complete and horizontal lifts of Hsu — (4,2) structure and the conditions of
almost holomorfic vector fields in cotangent bundle T*(M™ ). Finally, we have studied the
purity conditions of Sasakian metric with respect to the lifts of Hsu — (4,2) structure . In the
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second part, all results obtained in the first section were investigated according to the
complete and horizontal lifts of the Hsu — (4,2) structure in tangent bundle T*(M™).

Let M™ be a differentiable manifold of class C*and of dimension n and let T*(M™ )
denote the cotangent bundle of M. Then T*(M™) is also a differentiable manifold of class
C* and dimension 2n.

The following are notations and conventions that will be used in this paper.

1. IT(M™) denotes the set of the tensor fields C* and of type (r,s) on M™. Similarly,
R (T*(M” ))denotes the set of such tensor fields in T*(M™).

2. The map r is the projection of T*(M™) onto M™.

3. Vector fields in M™ are denoted by X, Y, Z,...and Lie differentiation by L,.The Lie
product of vector fields X and Y is denoted by [X,Y].

4. Suffixes a, b, c,..., h, 1, j...take the values 1 to n and 1 = i + n. Suffixes A, B, C,...take
the values 1 to 2n.
If A is point in M™, then T=1(A) is fiber over A. Any point p € T~1(A) is denoted by the
ordered pair (4,p,), where p is 1 — form in M™ and p, is the value of p at A. Let U be a
coordinate neighborhood in M™ such that A € U. Then U induces a coordinate neighborhood
p YU) inT*(M™) and p € m~1(4).

1.1 THE COMPLETE LIFTOF F* —A"F? =0 ONT*(M")

Let M™ be an n — dimensional differentiable manifold of class €. Suppose there exist
on M™ atensor field F (= 0) of type (1,1) satisfying

F*—\"F2 = (1.1)

Where 2 is complex number not equal to zero and r some finite integer. In such a manifold
M™, let us put

l=F?*/\"and m=1—F?/\" (1.2)

Where | denotes the unit tensor field. Then it is easy to show

P=lm?’=ml4+m=ILIm=ml=0 (1.3)

Thus, the operators [ and m when applied to the tangent space of M™ at a point are
complementary projection operators. Hence there exist complementary distributions L~ and
M corresponding to the projection operators ! and m respectively. If the rank of F is constant
everywhere and equal r, the dimensions of L" and M" are r and (n — r) respectively. Let us
call such a structure as Hsu — (4,2) structure of rank r.

Let F/* be the component of U at A in the coordinate neighbourhood U of M™. Then
the complete lift F¢ of F is also a tensor field of type (1,1) in T*(M™ ) whose components Fj
in t~1(U) are given by

Fih = Fl'h, (14)

Fr=o0 (1.5)

WWW.josa.ro Mathematics Section



Some research notes on ... Hasim Cayir et al. 765

I = pa|oF2/0xt — OFf/0x"] (1.6)
and

Fr =Fi, (1.7)

l

where (x1, x2,x3, ...,x™) are coordinates of A in U and p, has components (py, P2, P3, - Pr)-
Thus we can write

FC = (F4) = F 0 (1.8)
| P2 pa(@iF — 0nFf)  Ff
where 9; = d/0x".
If we put
0;Ff — 0y Ff* = 20[iF¥), (1.9)
then the equation (1.8) can be written as
- F! 0
FE=(@FH =" - (1.10)
2pq0[iFy]  Fy
h F} 0
(F&)? = IFl a Oil [ b jl (1.11)
2p,0[iFy] Fpl[2p.0[jFf] F;
) o
Ly, F/F
Squaring (1.11) again we get
hpt
(FO) = o7 lF b 0 tl (1.12)
Lhz Ft Fh
(FOHO* =" (FS)%2 =0 (1.13)

Thus the complete lift F© of F also has Hsu — (4,2) structure in the cotangent bundle
T« (M™).

1.2. THE HORIZONTAL LIFT OF F* —A"F? = 0 ON T*(M™)

Let F and G be two tensor fields of type (1,1) on the manifold M™. If F¥ denotes the
horizontal lift of F, we have [7]

FHGH 4+ GHFH = (FG + GF)H. (1.14)
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Taking F and G identical, we get
(FH)? = (F&H)H. (1.15)
Squaring the above equation both sides and making use of the equation (1.14) we get
(FHy* = (FHH. (1.16)
Since F gives Hsu — (4,2) structure on M™, we have
F4*—\"F2 =0 (1.17)
Taking horizontal lift in the above equation we get
(FIY* =" (FH)? = 0. (1.18)
- Thus the horizontal lift F# of F also admits Hsu — (4,2) structure in the cotangent
undle.

2. RESULTS

2.1. THE NIJENHUIS TENSORS OF THE STRUCTURE (F¢)*—-2a"(F¢)2=0 ON
COTANGENT BUNDLE

Definition 1. Let F be a tensor field of type (1,1) admitting F(4,2) — structure in M™. The
Nijenhuis tensor of a (1,1) tensor field F of M™ is given by

Nz = [FX,FY] — F[X,FY] — F[FX,Y] + F2[X,Y] (2.1)
for any X,Y € 31(M™) [8,9,10]. The condition of Nz(X,Y) = N(X,Y) = 0 is essential to
integrability condition in these structures.
The Nijenhuis tensor Ny is defined local coordinates by

N&o, = (FP0XF) — Flo,F} — 0,F/F}* + 0,F F})o,

where X = 9;,Y = 9;,F € J;(M™).
Proposition 1. If X,Y € J3(M"), 0,0 € I2(M™) and F, G € J1(M™), then [4]

[w",0"] = 0,[w"YF] = (w - F)",[yF,yG] = y[F,G],

[XC, w"] = (Lyw)?, [XC,yFy] = y(LyF), [X¢Y¢] = [X,Y]¢ (2.2)

where w - F is a 1 — form defined by (w - F)(Z) = w(FZ) for any Z € I{(M™) and Ly the
operator of Lie derivation with respect to X.
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Theorem 1. The Nijenhuis tensor N(X¢, w") of the complete lift of F* vanishes if the Lie
derivative of the tensor field F? with respect to the X is zero and F acts as Hsu —structure
operator on M.

Proof: The Nijenhuis tensor N(X¢, w") for the complete lift of F* is given by
NE4ycEyeX Co?) = [(FHXE, (FH @] = (FHI(FHXC, w¥]
—(FHXE FH 0]+ (FHC(FH[XC, 0]

[()\TFZ)CxC' ()\TFZ)C(/JV] _ (XTFZ)C[()\TFZ)COJV]
_(}\rFZ)C[XC’ (erZ)C(UV] + (}\TFZ)C(}\TFZ)C[XC’ (UV]

e }LZr{[(FZ)CxC’ (FZ)C(UV] _ (FZ)C[(FZ)CwaV]
—(FA)CXE, (FA) wV] + (FAC(FH)[XC, 0" ]}
If we put the equation of (F2)¢X¢ = (F2X)¢ + y(LyF?) (see [4], pp. 243)
N c(X¢, ") = ¥{[(F2X)¢ + yLxF?, (w - F*)"]

—(FY)[(F?X)° +yLyF? "] = (FAC[XC, (0 - F?)"]
+(FH (Lyw)"}

F)°(F%)

= 2T {[(F?X)C, (0 F)V] —[(w - F?)Y, yLyF?]
—(FOC(F2X)C, ] + (F2)C[w", yLyF?]
~(F (Ly(@ D) + ((Lxw) - F*)'}

Let us now suppose that Ly F? = 0 then the equation takes the form

c(XC, ") = 22" {(LFZX(w  F2))Y = (FC (L pegyw)”

—(F)¢(Lx(@ - F?) + ((Lxw) - F*)"}

N (o)

Let us now suppose that F acts as Hsu —structure on M [11]. Then F? = A"1.
Thus the equations becomes

N oy oyt X6 0") = 2T ((Lxw)” = (Lg)") + (L)} = 0,

Where w € J%(M™).

Theorem 2. The Nijenhuis tensor N(w"8") of the comple lift of F* vanishes.
Proof: The Nijenhuis tensor N(w"8") for the complete lift of F* is given by

C(CL)C, QV) — [(F4)C0)V, (F4)C6V] _ (F4)C(1)V, QV
—(F4)C[(1)V, (F4)C6V] + (F4)C(F4)C[(UV, HV]

N

F*)°(F%)

=2 {[(w - F?)Y, (8- F)'] = (F)°[(w - F?)", 0]
—(FH) [0, (8- F2)V] + (F)C(F) 0", 8"]}.

ISSN: 1844 — 9581 Mathematics Section



768 Some research notes on ... Hasim Cayir et al.

Because of [wV8Y] =0 and w-F? € I9(M™) on T*(M™), the equation becomes
N(F4)C(F4)c(a)v9v) = 0.
The theorem is completed.

2.2. TACHIBANA OPERATORS APPLIED TO VECTOR AND COVECTOR FIELDS
ACCORDING TO LIFTS OF(F€)* — A7 (F€)2 = 0 ON COTANGENT BUNDLE

Definition 2. Let ¢ € I1(M™), and I(M™) = 375, I1(M™) be a tensor alebra over R. A

map ¢¢|r+s>0: 3 (M™) - I(M™) is called as Tachibana operatér or @, operator on M™ if

a) @, is linear with respect to constant coefficient,

b) @, <K<;) L> = (0,K)9,: %(M") - S;l(M") for all r and =,

) ®L+K®Q@,LforallK,L € %(M"),
d) @,xY =—-(Lyp)XforallX,Y € 3 ;(M”) where Ly is the Lie derivation with respect
toY (see[2,4,7]),
&) (Bpxm)Y = (dCy ) (0X) — (d(y (1709))) X + n((Ly)X)
= 0X(y ) — X(1or7) + 1((y@)X)

forall n € S;(M”) and X,Y € S(l)(M”), where w77 = n(Y) = ®Y, 3, (M™) the module of

all pure tensor fields of type (r,s) on M" with respect to the affinor field, <>Cb is a tensor product
with a contraction C [8, 9, 12] (see [10] for applied to pure tensor field).

Remark 1. If r = s = 0, then from c), d) and e) of Definition 2 we have
Dox(ym) = 0X(ym) —X(y,yn) for wneIJ(M™), which is not well-defined @, —

operator. Different choices of Y and 7 leading to same function f = 1,7 do get the same

0 1 )
1 0)' Consider the

function f = 1. This may be written in many different ways as 1, 7. Indeed taking » = dx, we

may choose Y = ai orY = ai-" xai. Nov the right-hand side of @,x(yy7) = 8X(y7) —
X X y

X(yyn) is (9X)1 — 0 = 0 in the first case, and (pX)1 — Xx = —Xx in the second case. For

X = ai’ the latter expression is —1 # 0. Therefore, we putr + s > 0 [9].
X

values. Consider M™ = R? with standard coordinates x,y. Let ¢ = (

Remark 2. From d) of Definition 2 we have

DoxY = [pX,Y] — @[X, Y] (2.3)
By virtue of

[FX,gY]1 = fglX, Y1+ f(X,)Y — g(Y;)X (2.4)

forany f,g € I3(M™), we see that P,xY is linear in X, but not Y [9].
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Theorem 3. Let (F4)¢ be a tensor field of type (1,1) on T*(M™) defined by (1.12). If the
Tachibana operator @, applied to vector and covector fields according to complete lifts of

(F*) on T*(M™), then we get the following results:

e (W F)X)" +yLxLyF?},

i O cyc@” = =4 {(Lx(@-F?)" = Wpyw)V},
L R A CE (LxF?))",
v, (D(F4)c 0V =0

where complete lifts X¢,Y¢ € S§(T*(M™)) of X,Y € I5(M™) and the vertical lift »"6" €
S%)(T*(Mn)) of w, 8 € I3 (M™) are given, respectively.

Proof:
i ®(F4)CXCYC = —(Lyc(FHC)XC = —Lyc(FHXC + (FY)LycX©
= I {~((LyFH)X) = (F2LyX)¢ — yLyLyF?
+(F2(LyX))" + YLy LxF? — yLxLyF?}

= -1 {(WyFOX)" + yLyLyF?}

i ®(F4)cchV = —(L v(FH)XC = =L v(FY)XC + (FH)CL,vXC
—L v (AT FAXC + (T F2)C (—(Lyw))"
_— {va(FZX)C + Ly (LyF?) + ((Lyw) - FZ)V}
= -1 {(Lx(@-F?)" = (Lp2yw)"}

ii. o XC = —(Lyc(FH)w" = —Lyc(FH " + (FH) LycwV
= =2 {(Lyc(FH) )" — (FH) (Lyw)"}
= -1 {(Lxw - F?)" = ((Lxw) - F?)"}

= (- (LyF?))"

(F) w?

iv. Q(F4)ch0V = —(Lyv(FH)w" = —Lgv(FH @V + (FH)Lyvw”
= _ATLBV(CU - FZ)V
=0

Theorem 4. If LyF2 = 0 for Y € M™, then its complete lift Y to the cotangent bundle is an
almost holomorfic vector field with respect to the structure (F4)¢ — A"(F?)¢ = 0.

Proof:
I LYC((F4)C)XC = LYC(F4)CXC - (F4)CLYCXC
= 7 {((WyFD)X) + (F2LyX)C + yLyLyF?
= (F2(LyX))" = yYLyLyxF? + yLyLyF?}
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= 7 {((LyFH)X)" +yLxLyF?}
i.  (Lyc(FH)w¥ = Lye(FHCw” — (F9)CLycw”
= A{Lyc(FH 0’ — (F)¢(Lyw)"}
=1 {yw F?)’ = ((Lyw) - F?)"}
= 1"(w - (LyF?))"

2.3. THE PURITY CONDITIONS OF SASAKIAN METRIC WITH RESPECT TO (F*)° ON
T*(M™)

Definition 3. A Sasakian metric s, is defined on T*(M™) by the three equations

sqg(w”,0") = (97w, 6))V =g Yw8)m (2.5)
sg(@”,Y") =0 (2.6)
sy (X", YH) = (g(x, 1)) = g(X, ) . (2.7)

For each x € M™ the scalar product g~ = (g"f) is defined on the cotangent space
7 (x) = T (M™) by )
9 ' (w,0) = g w6, (2.8)

where X,Y € Sz(M”) and w, 0 € Sz(M"). Since any tensor field of type (0,2) on T*(M™)

is completely determined by its action on vector fields of type X# and w" (see [4], pp.280), it
follows that sy is completely determined by equations (2.5), (2.6) and (2.7).

Theorem 5. Let T*(M™), s, be the cotangent bundle equipped with Sasakian metric sy and a

tensor field (F*)¢ of type (1,1) defined by (1.12). Sasakian metric sq is pure with respect to
(FHC if acts as Hsu-structure operator (F2 = A"I) on M and VF? = 0. (I = identity tensor
field of type (1,1).

Proof: We put
s =(&7) = s,((FHCX, ) — s,(X, (FH)°T)

If S(X,¥) = 0, for all vector fields X and ¥ which are of the form «"6" or X¥,vH,
then S = 0. By virtue of (F*)¢ — A" (F?)¢ = 0 and (2.5), (2.6), (2.7), we get

i S, 0Y) =s,(FHw,8") = sy(w”, (F)C8")
— Sg((ler)ch, QV) _ sg(a)V, (F4)C9V)
=" (s;((w - F?)",0") — sy(w”, (6 - FA)V)

=7 <(g—1((w ) FZ)B))V _ (9_1(0)' (9 ) FZ)))V>

i, S(XHOV) =s,(FHXH,0") — s, (X", (FH)C6Y)
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=5, (((,V(FZ)CXH, V) — s, (X", (,V(FZ))CQV)
= 1 g((F2X),60%) + 17 (s, ((p[VF?]5)"6"))
= 1 (g7 ((p[VF?1,0,6)))

where VyF + F(Vy) — VEX = [VF]y (see [4], pp.279).

i, SXHYH) = 5, (FY)CXH, YH) — 5, (XH, (F4)CYH)
= 17 {5, (P21, Y") + 5, ((p[VF?1,)), Y
—sg (XM, (F2V)) = 5,(X", (p[VF?1,))"}
= ((g((FZX), y))V - (g(X, (FZY)))V),

where FCXH = (FX)" +y([VF]y) for all X" e I§(T*(M™)),FC¢ € I1(T*(M™)) and
[VF]x € I1(M™) (see [4], pp.279).

2.4. THE STRUCTURE (F4)H — AT (F2)H = 0 ON COTANGENT BUNDLE

In this section, we find the integrability conditions by calculating Nijenhuis tensors of
the horizontal lifts of Hsu — (4,2) structure. Later, we get the results of Tachibana operators
applied to vector and covector fields according to the horizontal lifts of Hsu — (4,2) structure
in cotangent bundle T*(M™). Finally, we have studied the purity conditions of Sasakian
metric with respect to the lifts of Hsu — (4,2) structure.

Theorem 6. The Nijenhuis tensor N #(XHYH) of the horizontal lift F* vanishes if F

(7)™ (F*)
acts as Hsu- structure on M.

Proof: The Nijenhuis tensor N(X¥YH) for the horizontal lift of F* is given by

n(XHYH) = [(FRXH, (FORYH] = (FOH PR, ]
—(F4)H[XH, (F4)HYH] + (F4)H(F4)H[XH, YH]

N ey ()
— AZr{[(FZ)HxH’ (FZ)HYH] _ (FZ)H[(FZ)HXH, YH]
—(FHR XA, (FHRYH] + (FAH)R(F)P[XH, Y]}
= A2 {{[F2X,FY] — F2[(F?X),Y] + F%[X, F?Y]
+F4[X, Y + y{R(F2X,F?Y) — R((F?X),Y)F?
—R(X,F?Y)F? + R(X,Y)F*}}
Let us suppose that F acts as Hsu — structure on M [11]. Then
F?2 =21 (2.9)

Thus the equation becomes
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a(XHYH) = 297 {([X, Y] — [X, Y] + [X, Y]}
+y{R(X,Y) — R(X,Y) — R(X,Y) + R(X, V)}.

N ey ()

Therefore, it follows
N(F4)H’(F4)H(XHYH) =0

Theorem 7. The Nijenhuis tensor N Fo)H (o) (X" w") of the horizontal lift F* vanishes

(
if VF?2 = 0.
Proof:
Nty (0¥ = [((FORXH, (FHH V] = (FH[(FFXH, ]

—(F4)H[XH, (F4)H(J)V] + (F4)H(F4)H[XH, CUV]
= AZT{(VFZX((") ) Fz))v - ((VFZX) ) FZ)V
14
—((Vx(@-F?) - F?) + ((Vyw) - F4)V}
= )Lzr{(w ) (VFZXFZ) — (w - (VxF?)F?}V
where F € 31(M), X € 3L (M), w € I9(M). The theorem is proved.

1(wV,8Y) of the horizontal lift F* vanishes.

Theorem 8. The Nijenhuis tensor N, ,.u,_,
(F*)"(F*)
Proof:
Nty (@07, 67) = [(F 0", (FHOV] = (FHH[(FH) o™, 6]

—(F4)H[(1)V, (F4)H9V] + (F4)H(F4)H[(1)H, BV]

= 27 {[(w F2)Y, (0 F)'] =(F)"[(w - F2)",6"]
~(F?)[w", (0 F)'] + (F2)" (F2) [, 0]

Because of [w",0Y] = 0and w - F? € IF(M™) on T*(M™), the equation becomes

V gVy —
N(F4)H(F4)H((U ,07)=0

Theorem 9. Let (F*)H be a tensor field of type (1,1) on T*(M™). If the Tachibana operator
@, applied to vector and covector fields according to horizontal lifts of F* defined by (1.16)

on T*(M™), then we get the following results.

L0V = {—((LYFZ)X)” = (pR(Y, F2X))" + ((pR(Y, X))FZ)V},
i By = A {(Vpaxw)” = ((Vxw) - F2)"}
i @y X = =2 (w0 (VxF?2))",

H vV —
iv. (D(F4)HwV0 =0,
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where horizontal lifts X¥, Y € S3(T*(M™)) of X, Y € I5(M™) and the vertical lift w”,6" €
S(T*(M™)) of w, 6 € I5(M™) are given, respectively.

Proof:
L Byt =~y HEDDX"
= —Lyu(FHHXH — (FHHL uX"
= 7 {~(LyFD)X)" = (pR(Y, F2X))’
174
+((oR(Y, X))F?) }
ii. Q(F4)HXHwV = —(L, v(FHH)xH
—L,y(FOHXH + (FOHL, v xH
= —A"Lv (F2X)H =T (F2)H (Vyw)"
= A" {(VFZX(U)V - ((VXCU) . FZ)V},
T
= (Vg (w - FD) + A7 ((Vyw) - F?)"
= 1 (w- (VxF?))
iv. ¢(F4)HwV9V = —(Lyv(FH")

= —Lgv(FH " + (FH" Lovew”
=0

Theorem 10. Let (T*(M")f g) be the cotangent bundle equipped with Sasakian metric s, and
a tensor field (F*)¥ of type (1,1) defined by (1.16). Sasakian metric s, is pure with respect to
(FHH if F2 = 271 (I = identity tensor field of type (1,1).

Proof: We put
S=(X7) =5 g((FHHX,V)—g(X, (FHHY).

If S(X,¥) = 0 for all vector fields X and ¥ which are of the form ", 6" or xH,y#
then S = 0. By virtue of (F*)?—2"(F?)" = 0 and (2.5), (2.6),(2.7), we get

)

i S(Y,0Y) =s,(FH"w",0") = sy(w”, (F)HOY)
— Sg((/lrFZ)HwV' 8v) — sg(a)V, (ATF2)HQY)
i (sg((w F2)V,0Y) — 5,(0", (@ FZ)V)).

i, S(XH,0Y) = s, (FHHXH,0V) — s, (X", (F)16")
— Sg((ArFZ)HxH’ HV) _ Sg(XH, (/‘LTFZ)HQV)
= 17 (s, ((F2X)",0") = s,X", (@ - FA)"))
= 0.
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i, SQXH,YH) = s, ((FHHXH, YH) — s, (XH, (FHHYH)
— Sg((/'trFZ)HXH, YH) _ Sg(XH, (ArFZ)HYH)
= 17 (s, ((F2X)", Y1) = s, (XM, (F?V)")).

Thus, F? = 71, then s, is pure with respect to (F*)*.
2.5. THE STRUCTURE (F4)C =27 (F2)¢ = 0 ON TANGENT BUNDLET(M™)

Let M™ be an n — dimensional differentiable manifold of class C*. Suppose there
exist on M™ a tensor field F(# 0) of type (1,1) satisfying

F*="F% =0,

Where A is complex number not equal to zero and r some finite integer. In such a manifold
M™, let us put
I=F%/Aandm=1-F?/1",

Where | denotes the unit tensor field. Then it is easy to show
P=Ilm?=ml+m=LIm=ml=0.

Thus, the operators | and m when applied to the tangent space of M™ at a point are
complementary projection operators. Hence there exist complementary distributions L* and
M* corresponding to the projection operators | and m respectively. If the rank of F is constant
everywhere and equal to r, the dimensions of L* and M* are r and (n — r) respectively. Let us
call such a structure as Hsu — (4,2) structure of rank r.

Let F/* be the component of F at A in the coordinate neighbourhood U of M™. Then
the complete lift F¢ of F is also a tensor field of type (1,1) in T*(M™) whose components Fz'
in t~1(U) are given by

h
eo(5 0 s
Let F,G € I1(M™) then we have
(FG)E = FCGC, (2.11)
Putting F = G we obtain
(F?)¢ = (F9)2 (2.12)

Putting G = F?in (2.11) and making use of (2.12) we get
(F3)¢ = (F¢)3. (2.13)
Continuing the above process of replacing G in equation (2.11) by some higher degree

of F we obtain
(FH¢ = (FOH* (2.14)
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Taking complete lift on both sides of equation (1.1) we get
(FHE = A" (F3H)E = 0. (2.15)
which in view of the equation (2.14) gives
(FHE =" (FH)C = 0. (2.16)

Thus the complete lift F¢ of F also has Hsu — (4,2) structure in the tangent bundle
T(M™).

Definition 4 Let X and Y be any vector fields on a Riemannian manifold (M™, g), we have [4]
X7, 7] = [X,Y]" — (R(X,Y)w)",
[X",YV] = (VxY),
[X",YV] =0,
Where R is the Riemannian curvature tensor of g defined by
R(X; Y) = [VX: VY] - V[X,Y]-
In particular, we have the vertical spray u” and the horizontal spray uf on T(M™)

defined by
u’ =ul(9,)V = u'o; — uf' = ul(9)" = u's;,

. —S
where §; = 0; — uw/ |_jl.6$ —. u" is also called the canonical or Liouville vector field on
T(M™).

Theorem 11. The Nijenhuis tensor N c(XCY¢) of the complete lift of F* vanishes if

GONGD
the Nijenhuis tensor of the F? is zero.

Proof: In consequence of Definition 1 the Nijenhuis tensor of (F#)¢ is given by

C(XCYC) — [(F4)CXc’ (F4-)CyC] _ (F4-)C[(F4-)CchC]
—(F4)C[XC, (F4)CYc] + (F4)C(F4)C[XC, YC]

N ey
= A2 ([(F2X)C, (F2V)C] —(FA)C[(F2X)C, Y]
—(FAC[XE, (F2Y)C] + (FOC(FH)C[XC, Y€}
= J2"{[F2X, F2Y] — F2[F2X,Y] — F2[X, F2Y] + F*[X, Y]}¢
= A*"Np2p2(X,Y)C

Theorem 12. The Nijenhuis tensor N c(X€Y") of the complete lift of F* vanishes if

(F)°(F*)
the Nijenhius tensor F? is zero.
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Proof:

Ny e XEYY) = [FDEXE, (FOEYY] = (FHE[FHXCYY]

—(F4)C[XC, (F4-)CyV] + (F4)C(F4)C[XC, YV]

= AT{[(F2X)°, (F*Y)V] —=(F®)°[(F?X), Y]
—(FHX, (PP + (FHCIX, Y]}

= A2r{[F2X,F2Y] — (F2[F2X,Y])V
—(F?[X, F2Y]Y — (F*[X, YDV}

= /12TNF2F2 (X, Y)V

c(X"YV) of the complete lift of F* vanishes.

Theorem 13. The Nijenhuis tensor N(F4)C(F4)
Proof:
N ey VYY) = [FDXY, (FOYY] = (FHELEDEXVYY]

—(F4)C[XV, (F4)CYV] + (F4)C(F4)C[XV, YV]

= 22H{[(F2X)", (F?Y)"] =(FH)°[(F?X)",Y"]
—(FHXY, (P2 + (FHC[X, Y]}

2.6. THE PURITY CONDITIONS OF SASAKIAN METRIC WITH RESPECT TO (F*)¢ ON
T(M™)

Definition 5. The Sasaki metric s, is a (positive definite) Riemannian metric on the tangent
bundle T(M™) which is derived from the given Riemannian metric on M as follows:
ss (X7, YH) = g(X,Y), (2.17)
sgX,YH) =s,(XV,Y") =0

sg(XV,YV) = g(X,Y)
forall X,Y € I5(M™).

Theorem 14 The Sasaki metric s, is pure with respect to (F*)¢ if VF? = 0 and F? = A"I,
where | = identity tensor field of type (1,1).

Proof: S(X,¥) =5 g((FH)°X,¥)—Sg(X, (F*)CY) if S(X,¥) = 0 for all vector fields X and ¥
which are of the form X", Y"or X#,Y" then S = 0.

i S(XY,YY) = s, ((FHEXY, YY) = s,(X", (FHYY)
= {5, ((F2X),Y") — 5, (X", (F2Y)")}
=1 {(gF?x, 1)) - (9%, F?))"}
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i SKXY,YH) = s,(FHXV,YH) — s,(XV, (FHCYH)
= s, (XY, (F*)H) + (V,F?)YH)
= —A"s,(X", (V,F2)YH)
= —1"s, (XV, (((VFZ)u)y)V)
= -1 (g(x, ((VFHw)Y)")

iii.  SXH,YH) = s (FHCXH,YH) — s, (XH, (FH)CYH)
= Nsg((FACXH, YH) — A"s, (X1, (F2)CYH)
= Asy,((F2X)" + (V. F2)XH, vH)
—A"sy(XH, (F*)? + (V,F?)YH)

= {g(F2x),¥)" - g(x,(F?1))"}

Theorem 15. Let ¢, be the Tachibana operator and the structure (F*)¢—2"(F?)¢ =0

defined by Definition 2 and (2.16), respectively. If L,F? = 0, then all results with respect to
(F*)¢ is zero, where X, Y € I§(M), the complete lifts X€,Y¢ € 33(T(M)), and the vertical
lift XV, YV € 3§(T(M)).

LB eyt € = 1 ((LyFAX)"
i 0 eyt = 1 ((LyF2)x)"
i e,V = —A((LyFH)X)’
v. (D(F4)CXVYV =0
Proof:
i. ®(F4)CXCYC = —(Lyc(FH°)X¢
= A {~Lyc(F2X)¢ + (F)‘L,cX‘}
= - ((LyFH)X)*
ii. Q)(F‘*)CXCYV = —(LYV(F4)C)XC
= —Lv(FHCXC + (FHCL,vX¢
= 1 {~Lyw(F?X) + (F¥)CL,vX€}
= - ((LyF)x)"
i, Q)(F‘*)CXVYC = —(LYC(F4)C)XV
= —L,c(FHXY + (FCLycXY
= A {~Lyc(F2X)" + (F?)°L,cX"}
= - ((LyFD)x)"
V. Bt =~y (FHOXY

= Ly (FHCXY + (FHCLvXY
=0
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Theorem 16. If L,F? = 0 for Y € M, then its complete lift Y¢ to the tangent bundle is an
almost holomorfic vector field with respect to the structure (F*)¢—2A"(F2)¢ = 0.

Proof:
i (Lyc(FHO)XC = Lyc(FHXE — (FH)CLycX©
= A{Lyc(F2X)¢ — (F?)°LycX*}
= 1 ((LyFAX)"

i, (Lyv(FH)XY = Lyc(FHXY — (FHLycX"
= A{Lyc(F?X)" — (F?)’LycX"}
= 7 ((LyFA)X)’

2.7. THE STRUCTURE (FH)" —2T(F?)" = 0 ON TANGENT BUNDLE T(M™).

Let F/* be the component of F at A in the coordinate neighbourhood U of M™. Then
the horizontal lift F# of F is also a tensor field of type (1,1) in T(M™) whose components F4
in t~1(U) are given by

W — FC (v ( & 0)
F" =F“ —y(VF) = h t . (2.18)
_|_tFit + |_iFth Fih

Let F, G be two tensor fields of type (1,1) on the manifold M. If F# denotes the
horizontal lift of F, we have

(FG)H = FHGH (2.19)
Taking F and G identical, we get

(Ff)? = (F&)H (2.20)
Multiplying both sides by F¥ and making use of the same (2.20), we get

(FH)3 — (FB)H
and so on. Thus it follows that

(FM* = (FH)" (2.21)
Taking horizontal lift on both sides of equation F*—A"F? = 0 we get

(FHE-A"(F5)H =0 (2.22)
view of (2.21), we can write

(FHY* =17 (FH)? = 0 (2.23)

Thus the horizontal lift F7 of F also has Hsu — (4,2) structure in the tangent bundle
T(M™).
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Theorem 17. The Nijenhuis tensor N n(XH,YH) of the horizontal lift of F* vanishes

CONGD
if the Nijenhuis tensor of the F? is zero and
{~(RGF2X, FPYyu) + (F2(R(F?X,V)u)) -
(F2(Rx, V)u)} =o.
Proof:
N(F4)H(F4)H(X”. YH) = [(FHEXE, (FHPYH] — (FHR[(FH"XH, Y]
—(F4)H[XH, (F4-)HyH] + (F4)H(F4)H[XH, YH]
= A {[(F?X)1, (F?Y)"] — (FHP[(F*X)",Y"]
—(FHRXHFY)] + (FHR(FA)H XM, YH]}
= A227{([F?X, F2Y] —(F?)[F?X, Y]
—(FHR[X, F?Y] = (FA)(FH)[X,Y]T) )
—(R(F2X, F?Y)u)” + (F?(RGF2X, Y)u))

+(F2(Rx, FZY)u))V — (P22 (R(x,) u)V}

= 27 {(Np2p2(X, 1)) = (RGF2X, F2Y )"
+ (FZ(}?(FZX, Y)u))V + (Fz(ﬁ(X,FZY)u))V
- (R, Y)u))v}.

If Np2p2(X,Y) = 0 and

{—(ﬁ(FZX,FZY)u) + (Fz(ﬁ(FZX, Y)u)) + (Fz(ﬁ(X,FZY)u)) -
(F2(R(X,Y)u)} =o.

then we get N () (F4)H(X H yH) = 0, where R denotes the curvature tensor of the affine
connection V defined by VyY = VY + [X, Y] (see [4], pp.88-89).

Theorem 18. The Nijenhuis tensor N(F4)H(F4)H(XH, YH) of the horizontal lift of F* vanishes

if the Nijenhuis tensor of the F?2 is zero and VF? = 0.

Proof:
N(F4)H(F4)H(XH' YV) — [(F4)HXH, (F4)HyV] _ (F4)H[(F4)HXH, YV]
_(F4)H[XH, (F4-)HyV] + (F4)H(F4)H[XH, YV]
= A7 {[F2X,F?Y]V — (F?[F?X,Y])¥ — (F?[X,F?Y])"
+((F2[X, YD + (Vpay F2X)” — (F2(VyF2X))"
— (F?(Vp2y X))+ (F?)?9, %)V}
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= 22" (Npope (X, 1)) + ((Very FOX) = (FZ((VYFZ)X))V}

#(XV,Y"V) of the horizontal lift of F# vanishes.

Theorem 19. The Nijenhuis tensor N(F4)H(F4)
Proof:
N(F4)H(F4)H(XV; YV) = [(F4)HXV; (F4)HYV] - (F4)H[(F4)HXV; YV]

—(F4)H[XV, (F4)HYV] + (F4)H(F4)H[XV, YV]

= A{{(F2X)” + (F*Y)V] = (F)"[(F2X)",Y"]
—(FHIXY, (F?Y)V] + (FHHP[XY, YV ]}

Because of [X",YV] = 0 for X,Y € M, we have N
The theorem is proved.

V yVry —
(F4)H(F4)H(X ,YP) =0.

Theorem 20. The Sasakian metric s is pure with respect to (F*)* if
F? = "I, where | = identity tensor field of type (1,1).

Proof: S(X,7) =5 g((FY)"X,7)—sg(X, FH)"Y) if S(X,¥) = 0 for all vector fields X and ¥
which are of the form X", Y" or X*,Y” then § = 0
i S(XV,YY) = s, (FHPXY, YY) — s,(X7, (FHHYY)
= {5y (F2X)",Y") — 5,(X", (F?Y)")}
14 14
=1 {(9(F2x,1))" = (g(x,F?1))"}

i, SXY,YH) = s, ((FHEXY,YH) — s, (XY, (FH)HYH)
= —A"g(XV, (F*Y)")
=0

i, SQXH,YH) = s, (FOHXH, YH) — s, (XH, (FHHYH)

= A{(s,(F2OH, YH) — s, (X1, (F2Y)H)}
v
= {(g(F2x%), )V = (g (X, (F?1)"))"}
Theorem 21. Let @, be the Tachibana operator and the structure (F*)"—A"(F2)" =0
defined by Definition 2 and (2.22), respectively. if L,F? = 0 and F? = 2”1, then all results

with respect to (F*)H is zero, where X,Y € I3 (M), the horizontal lifts X¥, Y € 33(T(M™))
and the vertical lift XV, YV € S§(T(M™)).

N e {—((LYFZ)X)H + (R(v, F2xu)” = (F*(R(, X)u))v}
i, Dt =1 {(~(wFHx%)" + (W F?x)"}
i, O V=1 {—((LYFZ)X)V — (Ve V)V + (FZ(VXY))V},
iv. Q)(F‘*)HXHYV = O,
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Proof:
i. ¢(F4)HXHYH = —(Lyn(FHH)xH
= —Lyc(FOX" + (F4)LynX"
= —X"[Y, F2X]" + A"yR[Y, F2X]
+AT(FR[Y, X)) — AT (F2)H (R(Y, X)u)”

S0 @ ~(r6000)]

i Oyl = —(Lyr (FX"
= —Ly(F*X)" + (FHHL, v X"
= [V, F2X]Y + A" (W, F2X)V + A7 (F2[Y, X])Y — A" (F2(Vy X))’
= 7 {~(WFHX)" + (W FH)X)"}

iii. ®(F4)HXVYH = —(Lyn(FHH)XV
= —Lyu(F*X)V + (FHHL,uXV
= [V, F2X]Y — A" (Vi V)V + A (F2[Y, XDH + A7 (F2(VyY))"
=) {—((LYFZ)X)V — (Vpzy V)V + (FZ(VXY))V}

iv. Q)(F“)HXHYV = —(LYV(F4)H)XV

= ALy (F2X)V + AT (F)HL,vXY
=0

Theorem 22. If L,F? = 0 and F? = A"] for Y € M, then its horizontal lift Y to the tangent
bundle is an almost holomorfic vector field with respect to (F#)*.

Proof:
i, Ly (FHNXH = Lu(FHIXH — (FHHL,uX"
= A"[Y, F?2X]1" — A"y R(Y,F?X)
—AT(F2[Y, XDH + AT (FD)H(R(Y, X)u)”
= 7 {(WyFHX)" = (RO, F2x0u)" )

i, Ly (FHDXY = Lu(F*X)Y — (FHL,ux"
= AT[Y, F2X]V = AT (Vi V)Y — A7 (F2[Y, X])Y — A7 (F2(VyY))"
= 7 {(LyFH)X)" + (Vpey )V (F?(V41))' ]

3. CONCLUSIONS

In this paper, firstly, obtained the integrability conditions by calculating Nijenhuis
tensors of the complete and horizontal lifts of Hsu — (4,2) structure, the results of Tachibana
operators applied to vector and covector fields according to the complete and horizontal lifts
of Hsu — (4,2) structure and the conditions of almost holomorfic vector fields in cotangent
bundle T*(M™), the purity conditions of Sasakian metric with respect to the lifts of Hsu —
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(4,2) structure . In addition, all results obtained in the first section were investigated
according to the complete and horizontal lifts of the Hsu — (4,2) structure in tangent bundle
T*(M™).
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