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Abstract. In this study, a matrix-collocation method is developed numerically to solve 

the linear Fredholm-Volterra-type functional integral and integro-differential equations. The 

linear functional integro-differential equations are considered under initial conditions. The 

mentioned type problems often appear in various branches of science and engineering such 

as physics, biology, mechanics, electronics. The method essentially is a collocation method 

based on the Lagrange polynomials and matrix operations. By using presented method, the 

problem is reduced to a system of linear algebraic equations. The solution of this system gives 

the coefficients of assumed solution. An error analysis based on the residual function is 

studied. Some examples are solved to demonstrate the accuracy and efficiency of the method. 

Keywords: Interpolation and collocation points; Lagrange polynomials; Lagrange 

collocation method; residual error, residual function. 

 

 

1. INTRODUCTION 

 

 

Functional integro-differential equations (FIDEs) have a major importance in 

modeling of some phenomena in many applied areas which include engineering, mechanics, 

physics, chemistry, astronomy, biology, economics, potential theory, electrostatics, etc. [1-

11]. Since the mentioned equations are usually difficult to solve analytically, numerical 

methods are required.  

In recent years, various techniques have been used for solving FIDEs such as He’s 

variational iteration technique [11], the homotopy perturbation method [12], He’s homotopy 

perturbation method [13],  the modified homotopy perturbation method [14],  the rationalized 

Haar functions method [15], the Chebyshev cardinal functions method [16],  the differential 

transformation method [17], the Tau method with error estimation [18], He’s variational 

iteration method [19],  the collocation method [20], the Adomian decomposition method [21], 

the Adomian-Pade technique [22], the discontinuous Galerkin method [23], the 

Legendre multiwavelets [24],  the trigonometric wavelets [25], the spectral methods [26, 27] 

the meshless method [28] and etc [35,40,41,43-50,52]. In addition, the operation matrix 

method, the Galerkin-like method and the matrix-collocation methods based on Taylor, 

Chebyshev, Bessel, Bernoulli, Laguerre, Bernstein, Legendre, Chebyshev, Morgan-Voyce, 

Taylor-Lucas, Dickson and Lucas, polynomials, have been studied by some authors [29-

34,42,51] to solve the mentioned type equations.  
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In this paper, we deal with the m-th order linear functional integro-differential 

equation with variable coefficients in the form  

  

( )( ) ( ) ( ) ( ) ( )
J R

k

jk j j

j 0 k 0

P x y x F x I x g x 
 

    ,  , [ , ]x t a b                       (1.1) 

 

so that 

 

( )

1( ) ( , ) ( )

b

s

a

F x K x t y t dt  ,  

( )

( )

2( ) ( , ) ( )

h x

r

a

I x V x t y t dt  ,   max , ,m R s r . 

 

under the initial conditions 

 

 
1

( )

0

( )
m

k

jk j

k

a y a 




 , 0,1,2,..., 1j m  ,                                      (1.2) 

 

where )(xPjk , )(xg  and ( )g x  are analytic functions in the interval [ , ]a b ; the functions

( , )K x t and ( , )V x t  have the Maclaurin series expansion with N-th degree in [ , ]a b ; , ,jk j ja  

and j are appropriate constants. Note that Eq. (1.1) corresponds to an integral equation if 

0m   in Eq. (1.1).  

Our aim in this study is to develop a collocation method based on the Lagrange 

polynomials and to obtain the approximate solution of the problem (1.1)-(1.2) in the truncated 

Lagrange series form: 

 
0

( ) ( )
N

N n n

n

y x y L x


 a x b                                     (1.3) 

 

where  ( )nL x , n=0,1,2,…,N are the Lagrange polynomials defined by 

 

 
0

( )

(
)

)
(

r

r

r

r

n

N

n

n

L
x x

x x
x









 ,         a x b   (1.4) 

 

and ny , n=0,1,2,…,N are unknown coefficients. In this study, we use the evenly spaced 

collocation points defined by 

 

 ,    0,1,...,n

b a
t a n n N

N


   .   (1.5) 

 

Also, the Lagrange polynomials for n=0, 1,…, N can be clearly written as follows: 

 

   

   

   

   
1 2 0 2

0 1

0 1 0 2 0 1 0 1 2 1

( ) ( )
( ) ,  ( ) ,...,

( ) ( )

N N

N N

x x x x x x x x x x x x
L x L x

x x x x x x x x x x x x

       
 

       
 

   

 
0 1

0 1 1

1 ( )
( ) .

( ) ( )

N

N

N N NN

x x x x x x
L x

x x x x x x





   


   
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Here,  ( 0,1,..., )nx n N represent the interpolation points selected from [ , ]a b  of the Lagrange 

polynomials. 

 

 

2. FUNDAMENTAL MATRIX RELATIONS AND LAGRANGE COLLOCATION 

METHOD 

 

 

In this section, we consider the functional integro-differential equation (1.1) and find 

the matrix forms of each term in the equation. Firstly, we can convert the solution form (1.3),  

the term ( )N j jy x 
 
and its k-th order derivative ( )( )k

N j jy x  to matrix forms as follows:  

 

   ( )N x xy  L Y ,  ( ) ( )( )k k

N xy x  L Y   (2.1) 

 

and 

 ( ) ( )N j j j jy x x     L Y , 
( ) ( )( ) ( )k k

N j j j jy x x     L Y  (2.2)  

 

where, for j=0,1,…,J and k=0,1,…,R, 

 
( ) ( ) ( ) ( )

0 1( ) ( ) ( ) ... ( ) ,   
k k k k

Nx L x L x L xL
 

 0 1 ... ,
T

Ny y yY  

 
( ) ( ) ( ) ( )

0 1( ) ( ) ( ) ... ( ) .      
k k k k

j j j j j j N j jx L x L x L x       L  

 

Let's denote the term with the sum symbol on the left-side of the Eq. (1.1) by D(x) .  

By substituting the matrix relation (2.2) into the part D(x) , we obtain the matrix form 

 ( )( ) ( )
J R

k

j j

j 0 k 0

x x 
 

  L
jk

D(x) P Y . (2.3) 

 

Then, we put the collocation points 
ix t  (i=0,1,2,…,N), which are selected  in the 

interval [a,b] such that ;  , 0,1,..., ,i nt x i n N   in the (2.3) as 

 

( )) ( ) ( ) ,
J R

k

i jk i j i j

j 0 k 0

t t 
 

 D(t P L Y  i=0,1,2,…,N.  

 

Here, we note that  ( 0,1,..., )nx n N  show the interpolation points of the Lagrange 

polynomials in Eq. (1.4). 

 

The compact form of the above system can be written as   

 

 ( )( , )
J R

k

jk j j

j 0 k 0

 
 

D P L Y  (2.4)

 
where  

 0 1 ...
T

Ny y yY , 
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0

1

2

( ) 0 0 0

0 ( ) 0 0

0 0 ( ) 0 ,

0 0 0 ( )

 
 
 
 
 
 
 
 

jk

jk

jkjk

jk N

P t

P t

P t

P t

P  

 

( )

( ) ( ) ( )

0 0 1 0 0

( ) ( ) ( )

0 1 1 1 1( )

( ) ( ) ( )

0 1

( ) ( ) ( )

( ) ( ) ( )
( , )

( ) ( ) ( )

k

k k k

j j j j N j j

k k k

j j j j N j jk

j j

k k k

j N j j N j N j N j

L

L t L t L t

L t L t L t

L t L t L t

     

     
 

     

   
 

   
 
 

    

L . 

In Eq. (2.4), the full dimensions of the matrices ,jkP
( ) ( , )k

j j L  and are respectively 

( 1) ( 1)N x N  , ( 1) ( 1)N x N   and ( 1) 1N x . 

  

Now, let’s consider the Fredholm integral part 

 

 
( )

1( ) ( , ) ( )

b

s

a

F x K x t y t dt  .  (2.5) 

Since it is assumed that ( , )K x t  function can be expanded to the maclaurin series in the 

problem (1.1), the function ( , )K x t  can be written as 

 

0 0

( , )
N N

i j

ij

i j

K x t k x t
 

 ,      

1 (0,0)

! !

i j

ij i j

K
k

i j x t





, ijk   K ,  

00 01 0

10 11 1

0 1

....

N

N

N N NN

k k k

k k k

k k k

 
 
 
 
 
 

K . 

 

 

From here, the kernel function can be written as ( , ) ( ) ( )TK x t x t X KX  and so by 

using the matrix relation (2.2), we can write 

 

 ( ) ( )

1 1( , ) ( ) ( ) ( ) ( , )( )

b b

s T s

j j

a a

K x t y t dt x t t dt     X KX L Y .

 

(2.6) 

 

By arranging the expression (2.6), we get 

 

( )

1( ) ( ) ( ) ( , )( )

b

T s

j j

a

F x x t t dt   

M

X K X L Y  

and hereby we have 
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1( ) ( ) .F x x X KMY

 
(2.7) 

 

By using the collocation points in the expression (1.5) in here, we obtain the system 

  

 
1( ) ( )i iF t t X KMY

  
(2.8) 

where 
0 0 0

0 1

2 0 1

0 1

( ) ( ) ( )

( ) ( ) ( )
( ) 1 ,  .

( ) ( ) ( )

N

b

N N

a

N N N

N

t L t t L t t L t

tL t tL t tL t
x x x x dt

t L t t L t t L t

 
 
      
 
 

X M  

 

The system (2.8) can be written in compact form, which is called as the matrix form of 

the Fredholm integral part, 

 

 1 ,F XKMY
 

(2.9) 

where 

 

0

1

( )

( )
,

( )N

t

t

t

 
 
 
 
 
 

X

X
X

X

 

 

Similarly, the kernel function ( , )V x t  like ( , )K x t  can be expressed to Maclaurin 

series. Its Maclaurin series becomes ( , ) ( ) ( )TV x t x t X VX . Here, 

 

0 0

( , )
N N

i j

ij

i j

V x t v x t
 

 ,
1 (0,0)

! !

i j

ij i j

V
v

i j x t





, ijv   V ,  

00 01 0

10 11 1

0 1

....

N

N

N N NN

v v v

v v v

v v v

 
 
 
 
 
 

V . 

 

 

 Hence, the Volterra integral part can be written as  

 
( ) ( )

( ) ( )

2 2( , ) ( ) ( ) ( ) ( , )( ) .

h x h x

r T r

j j

a a

V x t y t dt x t t dt     X VX L Y

 

(2.10) 

 

We arrange the expression (2.10) and thus it becomes  

 
( )

( )

2

( )

I( ) ( ) ( ) ( , )( )

h x

T r

j j

a

M x

x x t t dt   X V X L Y

 
where 
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0 ( ) 0 ( ) 0 ( )

0 1

( ) ( ) ( )( )

0 1

( ) ( ) ( )

0 1

( , )( ) ( , )( ) ( , )( )

( , )( ) ( , )( ) ( , )( )
( )

( , )( ) ( , )( ) ( , )( )

r r r

j j j j N j j

r r rh x

j j j j N j j

a

N r N r N r

j j j j N j j

t L t t L t t L t

tL t tL t tL t
x dt

t L t t L t t L t

     

     

     

 
 
 
 
 
  

M  

 

and thus, we have 

 

 
2( ) ( ) ( ) .I x x x X VM Y

 
(2.11) 

 

By substituting the collocation points (1.5) into the matrix form  (2.11),  we get the 

system 

 
2( ) ( ) ( )i i iI t t t X VM Y .

 
(2.12) 

 

We write this system in compact form and so we have the matrix form of the Volterra integral 

part 

 

 
2I XV MY

 
(2.13) 

Where 

 

2 22 2

0 0

1 1

2

( 1) ( 1)( 1) ( 1) 1) ( 1)

( ) 0 ... 0 ( )0 ... 0

0 ( ) ... 0 ( )0 ... 0
,  ,  .

0 0 ( ) 0 0 0 0

0 0 ... ( ) ( )0 0 ...N NN x NN x N N x N

t t

t t

t

t t
    

    
    
      
    
    

    

X MV

X MV
X V M

X V

X MV

 

By means of the matrix forms (2.4), (2.9) and (2.13), the fundamental matrix equation 

of the Eq. (1.1)  is formed as  

                 

( )

1 2( , )
J R

k

jk j j

j 0 k 0

   
 

 
   

 


W

P L XKM XV M Y G

 

or it can be briefly written as 

 WY G   or [ ];W G  (2.14)

 where for , 0,1,2,...,p q N  

 

 ( )

1 2 0 1[ ] ( , ) ,  ( ) ( ) ... ( ) .
J R

k

pq jk j j N

j 0 k 0

w g t g t g t   
 

    
T

W P L XKM XV M G  

 

On the other hand, by means of the relation (2.1), the corresponding matrix forms of 

the initial conditions (1.2) are obtained as 

 j jU Y  or ;j j
  U  ; 0,1,2,..., 1j m  ,  (2.15) 

such that 
1

( )

0 1 2

0

( )




    
m

k

j jk j j j jN

k

a a u u u uU L . 
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Hence, the augmented matrices of the expressions (2.14) and (2.15) can be clearly 

written in the forms 

 

00 01 0 0

10 11 1 1

( 1)0 ( 1)1 ( 1) 1

0 1

; ( )

; ( )

; ;

; ( )

; ( )

   

 
 
 

  
 
 
  

N

N

N N N N N

N N NN N

w w w g t

w w w g t

w w w g t

w w w g t

W G  

and 

00 01 0 0

10 11 1 1

( 1)0 ( 1)1 ( 1) 1

;

;
; .

;

;   

 
 
      
 
 

N

N

j j

m m m N m

u u u

u u u

u u u








U  

 

Consequently, in order to obtain the Lagrange polynomial solution of the Eq. (1.1) 

under the condition (1.2), we replace any m rows of the augmented matrix (2.14) by the m 

row matrices of the Eq. (2.15). Thereby we obtain the new augmented matrix 

 

 [ ; ]W G    or     WY G . (2.16) 

If last m rows of the augmented matrix (2.14) are replaced, then the new augmented 

matrix becomes as follows 

 

00 01 0 0

10 11 1 1

( 1 )0 ( 1 )1 ( 1 ) 1

( )0 ( )1 ( )

00 01 0 0

10 11 1 1

( 1)0 ( 1)1 ( 1) 1

; ( )

; ( )

;

; ( )

; ( );

;

;

;

;

       

   

   

 
 
 
 
 
 
      
 
 



 

N

N

N m N m N m N N m

N m N m N m N N m

N

N

m m m N m

w w w g t

w w w g t

w w w g t

w w w g t

u u u

u u u

u u u







W G .





 

 

If                           in Eq. (2.16), then we can write ( . -1
Y W) G Thus, 

the matrix Y  (the coefficients of the Lagrange solution) is uniquely determined. Hence, the 

Eq. (1.1) under the conditions (1.2) has a unique solution. This solution is given by the 

truncated Lagrange series (1.3). 

 

 

3. ACCURACY OF SOLUTIONS AND RESIDUAL ERROR ESTIMATION  

 

 

In this section, we can easily check the accuracy of the obtained solutions and the 

error estimation [29-32, 36-38]. Since the truncated Lagrange series (1.3) is approximate 
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solution of the Eq. (1.1), when the function  Ny x and its derivatives are substituted in the 

Eq. (1.1), the resulting equation must be satisfied approximately. That is, it becomes 

 

( )( ) ( ) ( ) ( ) ( ) ( ) 0,
J R

k

N jk N j j

j 0 k 0

R x P x y x F x I x g x 
 

       a,bx   

where 

( )

1( ) ( , ) ( )

b

s

N

a

F x K x t y t dt      and    

( )

( )

2( ) ( , ) ( )

h x

r

N

a

I x V x t y t dt  . 

For a,b 0,1,2,...   lx x l ;  ( ) 10 ,   is any positive integerlk

N l lR x k


 . 

If max10 10lk h   (h is an positive integer) is prescribed, then the truncation limit N 

is increased until the difference  N lR x  
 at each of the points becomes smaller than the 

prescribed 10
-h

. 

  

In addition, the error function ( )Ne x can be defined as  

 

( ) ( ) ( )N Ne x y x y x  , 

 

where ( )y x is the exact solution of the problem (1.1)-(1.2). Thus, we obtain the error 

differential equation in the form 

( )
( ) ( ) ( )

0 0

( ) ( ) ( , ) ( ) ( , ) ( ) ( ),

bn R h x
k s r

jk N jk jk N N N
a

j k a

P x e x K x t e t dt V x t e t dt R x 
 

             (3.1) 

 

with the homogeneous conditions  

 
1

( )

0

( ) 0,
m

k

jk N

k

a e a




 0,1,..., 1j m  . 

 

The error problem (3.1) is solved by using the method given in Section 2 and thus we 

obtain the approximation , ( )N Me x  to ( ).Ne x  Also, we can improve the approximate solution 

( )Ny x  by , ,( ) ( ) ( ).N M N N My x y x e x    

 

 

4. NUMERICAL EXAMPLES  

 

In this section, we give applications of the method on some numerical examples. In the first 

two examples, we solve the integral equation which corresponds to case 0m   of Eq. (1.1). 

In the last two examples, two applications of the integro-differential equations are given. 
 

Example 1. We consider the linear Fredholm-Volterra integral equation  

 

                                
  

 
              

 

 
,   0 , 1x t   (4.1) 
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with the exact solution ( ) siny x x .  Here, 2

00 ( )P x x , 
10( ) xP x e , V( , ) ,x tx t e  

2K( , ) ,x tx t e   

      
  

 
 

 

 
          

 

 
         

 

 
                         

 

 
        , 

1 1  , 2 1   , ( ) 2h x x , 0 1  , 0 0  , 1 2  , 1 0  . 

 

 

According to the method in Section 3, the fundamental matrix form of the Eq. (4.1) is  

 

 (0) (0)

00 0 0 10 1 1( , ) ( , )      

W

P L P L XKM XV M Y G . 

 We note that the problem is applied without initial condition since the problem is 

unconditional that is it is an integral equation problem. 

 

In Table 1 and Fig. 1, the exact solution of equation (4.1) and the obtained numerical 

results are compared for N = 5, N = 6 and N = 10. According to this information, it can be said 

that the errors decrease as the value of N increases. 

 
Table 1. Comparison of the values of the exact solution and the approximate solutions of the Example 1 

for values x. 

xi 
Exact solution Lagrange collocation method 

( ) siny x x
 

( ), 5iy x N  E( ), 5ix N  ( ), 6iy x N  E( ), 6ix N  

0 0 -0.00495619 4.9561e-03 -0.00065869869 6.5869e-04 

0.2 0.198669330 0.2344778152 3.5808e-02 0.200638310438 1.9689e-03 

0.4 0.389418342 0.3952434767 5.8251e-03 0.388579599448 8.3874e-04 

0.6 0.564642473 0.5541787256 1.0463e-02 0.563716333962 9.2613e-04 

0.8 0.717356090 0.7196883210 2.332e-03 0.717363861002 7.7701e-06 

1 0.841470984 0.8646744913 2.3203e-02 0.840939293397 5.3169e-04 

 
Figure 1. Comparison of the exact solution and the approximate solutions for the Example 1. 

 

Example 2.  Secondly, let's take the functional Volterra integral equation 

 

                                
 

 
, 0 1.1x   (4.2) 
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with the exact solution ( ) xy x e . Here,                      0, 1.1, a b

00 10( ) 1,  ( ) ,  ( , )x x tP x P x e V x t e    , ( )h x x , 1 0  , 2 1  , 0 1  , 0 0  , 1 0.8  , 

1 0   and thus the fundamental matrix form becomes   

 

 (0) (0)

00 0 0 10 1 1( , ) ( , )     

W

P L P L XV M Y G.

 
 

In Table 2, values of the exact solution and the approximate solution for 5N  are 

compared. Fig. 2 show a comparison of the exact solution and the approximate solution for 

5N  . From Fig. 2, it can be said that the approximate solution is quite close to the exact 

solution.  

Table 2. Comparison of the values of the exact solution and the approximate 

solutions of the Example 2 for values x. 

 Exact solution Approximate solution Absolute error 

xi ( ) ix

iy x e



 

55, ( )iN y x   5 ie x  

0.1 0.904837418035960 0.904837430610626 1.2574e-08 

0.4 0.670320046035639 0.670321948648831 1.9026e-06 

0.6 0.548811636094027 0.548841279982742 2.9643e-05 

0.8 0.449328964117222 0.449516281156010 1.8731e-04 

1 0.367879441171442 0.368577080743251 6.9763e-04 

1.1 0.332871083698080 0.334059536022421 1.1884e-03 

 

 
Figure 2. Comparison of the exact solution and the approximate solutions for the Example 2. 

 

Example 3. [34,39] Now we consider the third-order linear delay Fredholm integro-

differential equation  
1

1

'''( ) '( ) ''( 1) ( 1) ( 1)(sin( 1) cos( )) cos(2) 1 ( 1)y x xy x y x xy x x x x y t dt


                 (4.3) 

with conditions (0) 0y  , '(0) 1y  , ''(0) 0y  . The exact solution of problem is ( ) sin( )y x x .  
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Here, g( ) ( 1)(sin( 1) cos( )) cos(2) 1,x x x x      
00( ) ,P x x  13( ) 1,P x   

11( ) ,P x x   
02( ) 1,  K( , ) 1,P x x t  1 1   , 2 0  , 0 1  , 0 1   , 1 1  , 1 0  . Thus, 

fundamental matrix form becomes as follows 

 

 (3) (1) (2) (0)

13 1 1 11 1 1 02 0 0 00 0 0( , ) ( , ) ( , ) ( , )           

W

P L P L P L P L XKM Y G . 

 

In Table 4, the obtained results from the present method are compared with the results 

obtained from the Taylor and Legendre methods. From this, it can be said that although it 

gives similar results with the Legendre method, it gives better results at more points compared 

to the Taylor method. 

 

 
Table 4. Comparison of the values of the approximate solutions of the Example 3 for x values with other 

methods. 

 Taylor series [39] Legendre series [34]
 

Present method 

xi m=7
 

m=7 N=5
 

-1 6.03 e-02 5.05 e-03 5.6815e-03 

-0.8 2.28 e-02 2.38 e-03 2.6828e-03 

-0.6 6.63 e-03 9.14 e-04 1.0277e-03 

-0.4 1.20 e-03 2.42 e-04 2.7199e-04 

-0.2 6.90 e-05 2.65 e-05 2.9829e-05 

0 0 0 0 

0.2 5.30 e-05 1.91 e-05 2.1534e-05 

0.4 8.09 e-04 1.25 e-04 1.4039e-04 

0.6 3.82 e-03 3.30 e-04 3.7091e-04 

0.8 1.14 e-02 5.78 e-04 6.4853e-04 

1 2.73 e-02 7.53 e-04 8.4147e-04 

 

Example 4. [34,39] Finally, let's take the second-order linear functional Fredholm integro-

differential equation 

 

0

1

''( ) '( ) ( ) '( 1) ( 1) ( 1)xy x xy x xy x y x y x e e ty t dt



          , 1 , 0x t   , (4.4) 

 

with the conditions (0) 1y  , '(0) 1y   . The exact solution of the problem is ( ) xy x e .  

In Table 5, the exact solution of equation (4.4) and the obtained numerical results 

according to the method in Section 2 are compared for N = 5 and N = 10. According to this 

information, as in the previous tables and figures, it can be said that the better the result can 

be obtained for the higher the N value,. Additionally in Table 5, the obtained results from the 

present method are compared with the results obtained from the Taylor method. From here, it 

can be observed that the present method gives better results than the Taylor method. 
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Table 5. Comparison of the values of the exact solution and the approximate solutions of the Example 4 

for x values with Taylor matrix method. 

 Exact solution Lagrange Collocation method
 

Taylor series [39] 

xi ( ) ix

iy x e



 

55, ( )iN y x   5 ie x  
N=6 

0 1 1 0 0 

-0.1 1.105170902716915 1.105264084493846 9.3181e-05 0.100e-3 

-0.2 1.221402758160170 1.221671552582331 2.6879e-04 0.200e-3 

-0.3 1.349858807576003 1.350215521556035 3.5671e-04 0.100e-3 

-0.4 1.491824697641270 1.491993887696942 1.6919e-04 0.100e-3 

-0.5 1.648721270700128 1.648223141050780 4.9812e-04 0.200e-3 

-0.6 1.822118800390509 1.820252180199343 1.8666e-03 0.100e-2 

-0.7 2.013752707470477 2.009576127032827 4.1765e-03 0.240e-2 

-0.8 2.225540928492468 2.217850141522157 7.6907e-03 0.450e-2 

-0.9 2.459603111156950 2.446903236491322 1.2699e-02 0.740e-2 

Lagrange Collocation method 

xi
 

1010, ( )iN y x   10 ie x  

0 1 0 

-0.1 1.105169340463458 1.562253456821594e-06 

-0.2 1.221397221328834 5.536831336083736e-06 

-0.3 1.349851459450560 7.348125442785403e-06 

-0.4 1.491821211271796 3.486369474448026e-06 

-0.5 1.648731526704309 1.025600418103068e-05 

-0.6 1.822157235003633 3.843461312391661e-05 

-0.7 2.013838699950223 8.599247974627744e-05 

-0.8 2.225699263531193 1.583350387255322e-04 

-0.9 2.459864554785385 2.614436284353872e-04 

 

 

5.  CONCLUSIONS 

 

In this paper, we have presented the Lagrange collocation method to solve m-th order 

linear functional integro-differential equations with variable coefficients. In numerical 

examples, we have calculated the numerical values of the approximate solutions obtained by 

the method. Also, the results have been compared with exact solution and the results of other 

methods in tables and figures. These comparisons show that the suggested method is quite 

effective. Moreover, the method can be developed for nonlinear integro-differential equations 

and partial integro-differential equations. 
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