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Abstract. The main purpose of this research is to inquire the new solitary wave
solution of the coupled time-fractional models to validate the influence and proficiency of the
planned variational iteration method (VIM) using conformable derivative definition.
Applications to four demanding nonlinear problems like Hirota-Satsuma coupled KdV
equations, modified Boussinesq (MB) equation, approximate long wave (ALW) equation and
Drinfeld-Sokolov-Wilson (DSW) equation demonstrate the efficiency and the robustness of the
method. An analysis of the consequences with effects of relevant parameters and comparison
with the exact solution presented with the help of graphs tables and gives the further
understanding of numerical results by others. The convergence of the method is illustrated
numerical and their physical significance is discussed.

Keywords: Conformable fractional derivative; conformable variational iteration
method; modified Boussinesq equation; Hirota-Satsuma coupled KdV equation; long wave
equation; Drinfeld-Sokolov-Wilson (DSW) equation; solitary wave solution.

1. INTRODUCTION

The nonlinear coupled mathematical models are used to model most of the natural
problems, such as ocean engineering, optical fibers, chemical-physics, fluid dynamics,
biology, plasma physics and other fields of engineering. For diagnosing these mathematical
models as well as in addition follow these physical models in realistic mathematical studies, it
is essential to discover their approximate and exact solutions that support in understanding the
phenomena. In fractional calculus a lot of numerical, analytical and approximate methods are
developed for handling nonlinear models [1-7].

There are miscellaneous researches correlated to this fractional derivative. Atangana et
al. [8] give a few definitions of the conformable derivative (CD). The importance and
applications of conformable fractional derivatives have been addressed by many researchers
[9-11]. The Time-space fractional heat differential equations are being resolved with the aid
of the CD delivered by Cenesiz and Kurt [12]. New exact solutions of conformable Burgers’
type equations obtained by Cenesiz et al. [13]. Some new solutions were presented of
Boussinesq and combined KdV-mKdV equations, Drinfeld-Sokolov-Wilson system in
shallow water waves and generalized Hirota-Satsuma system of equations by Tasbozan et al.
[14-16].

The HS equations ware familiarized in [17] and these equations examine the
collaboration of two long waves with diverse dispersion associations and happen as a specific
case of the Toda lattice equation, and these models possessive many potential applications in
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many nonlinear science fields. The solutions of these equations are studied by using many
methods such as modified simple equation method [18], new iterative method [19], homotopy
perturbation method (HPM) [20] and many other schemes.

Whitham, Broer and Kaup [21-24] put the Whitham-Broer-Kaup (WBK) equations as
an expansion of shallow water waves and are of the form

Dfu=-uu, -v,—bu,,, O<a<l,

€

a —
Dfv=-uv, —vu, —au,, +bv,,

Drinfeld, Solokov and Wilson derived an equation known as DSW equation which is
based on the model of water waves [25-26]. Generalized time fractional DSW equation is
written in the form of

Dfu=-pw,, 0<a <], @)
D/v=-qv,, —ruv, —su v, 0< B <1,

where p, q, v and s are nonzero parameters and o and  are the order of fractional derivative.
By taking a = 3 the Eq. (2) reduce to Eq. (3), which was presented in [27].

Dfu=—-pw,, O<a <], 3)
Dfv =—-qv,,, —ruv, —su,Vv.
These equations are premeditated by numerous authors through different techniques
like, Laplace ADM [28], g-homotopy analysis transform method [29] and other techniques.
The paper is organized as follows: Numerical implementation of methods for solving Hirota-
Satsuma coupled KdV equations, modified Boussinesq (MB) equation, approximate long
wave (ALW) equation and Drinfeld-Sokolov-Wilson (DSW) equation in section 1. Results
and discussion is given in section 2. Lastly, a conclusion section is given in section 3.
In literature, primary definitions of fractional calculus are given which can be practiced in the
calculation. It is famous that there are precise definitions of fractional Integral and fractional
derivatives, which includes, Grinwald-Letnikov, Riesz, Riemann-Liouville (RL), Caputo,
Hadamard and Erdélyi-Kober and lots of others [30-32]. The fractional CVIM has been
carried out in many models with the aid of many authors [33-35]. In this work we shall
mainly focus on behavior of CVIM. The conformable fractional derivative (CFD) takes into
consideration for this examine because it is simple for the calculation. He [36-38] presented
the standard VIM and implemented on many differential equations. CVIM is built on the CD
for fractional ODEs and CVIM for FPDEs is presented in [39].

2. MATERIALS AND METHODS

2.1. MATERIALS

Some primary definitions of fractional calculus are recalled which can be practiced in
the calculation.
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Definition 1. The fractional integral operator of RL of order a > 0of a function f € Cy, p >
—1 is defined as

J”’f(x):%]‘x 0 o, @ >0, x>0 (4)
“f(x)= f(x). (5)

Definition 2. The Caputo’s fractional derivative is [32]

Mté—a’ £ eNo,§2|_a—‘
Dtf ={I(¢+1-a) (6)
0, EeNyé<|al
D“c=0, ce®R..
Definition 3. Let f be an n time differentiable at x then the CFD is well-defined by [40]
(le1-1) lel-a)_ ¢
(T, £ Yx)=lim- (s o) f ™) ys0 ae@ (7)

-0 <

If the above limit exists, then f is called a-differentiable. Let « € (0,]]and f,g be o-
differentiable at a point x > 0, then T, satisfies the following properties:
(i) T, (af +bg)=aT, (f)+bT, (g) forall abeR
(ii) Ta(x”)z px", forall peR
(iiiy  T,(4)=0,for all constant functions f(x)=1
(iv) T.(fg)=fT,(9)+gT,(f)
) T(f/g)={gT.(f)- T, (g}t/a

In addition, f is differentiable T, (f }(x)=x"* 3‘;( ).

2.2. METHOD

Firstly the CVIM is discussed for the solution of the following non-linear FPDE

Tow(x,t)+ L(w(x,t))+ N (w(x,t)) =h(x,t), n<a<n+l,
(8)

where L and N is linear and non-linear operator respectively, h(x) is source term and T,” is
CFD of order a. To solve differential Eq. (8) via CFVIM write in the form

([«])

flata 5(%(“) L(w(x.t)+ N(w(x.t)) = h(x.t). ©)
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As in CVIM, the CF for Equation (8) can be erected as

t ([«)
W, (X,1) =w, (X,t) + j ,,(,)(,Ma aaiv—&(])x'f) + L(w, (x,7))+ N(W, (x,7))— h(x, T)Jdl’, (10)

Finally, the solution is

w(x,t) = lim w, (x,1). (11)

3. RESULTS AND DISCUSSION

In this section, the CVIM has been attributed to seeking the traveling wave solution of
the Hirota-Satsuma coupled KdV equations, modified Boussinesq (MB) equation,
approximate long wave (ALW) equation and Drinfeld-Sokolov-Wilson (DSW) equation.

3.1. HS COUPLED KDV EQUATION

T“u = %uxxx —3uu, +3(vw),,

Tv=-v, +3uv,, O<a<], (12)

22 j—
T wW=-w_ +3uw,.

subject to
2
u(x,0) = B=2K" | 22 tanh? (kx),
N 2 2 _ 2 2
V(x.0) = 4k c0(€+k )+ 4k2 (B +k )tanh(kx)’ (13)

3c, 3c,

w(x,0) = ¢, + ¢, tanh?(kx).

wherek,c,,c,#0 and S are arbitrary constants. If c=—/4 then these are the traveling wave
solutions [41]. The corresponding exact solution is given by

u(x,t) = ﬂ_TZkZ + 2k ? tanh? (k(x — ct)),

—4kZc, (B +k?) . —4k? (B + k?)tanh(k(x — ct))
3c,” 3¢,
wW(x,t) = ¢, + ¢, tanh?(k(x —ct)).

v(x,t) = : (14)

Following the procedure described above, consequently the independent approximate
solutions are
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_ 2
Ug = % + 2k? tanh? (kx),
Ak?2 2  Ak?2 2
v, = 9 c0(€+k ) —AK*(B+k )tanh(kx)’ (15)
3c, 3c,
W, = ¢, + ¢, tanh(kx).
12k3sech2(kx)tanh(kx)(’8_32k2+2k2tanh2(kx)j+
L ELLSIPYe tanh? (kx) -t 1(32k5sech“(kx)tanh(kx)—lekSsechz(kx)tanh?’(kx))
03 2
4k? k? 2 2
ksechz(kX)Cl{_ Co(ﬂ: )—4k (Brk )tanh(kx)J_
3 3¢, 3¢,
4k° (B +k?)sech? (kx)(c, +¢, tanh (kx))
3¢,
8k5(ﬁ+k2)sech4(kx)
3¢, -
—4k’c, (B+Kk*) —4k?(B+k*)tanh(kx) | 16k°(B+k®)sech® (kx)tanh® (kx)
= + +t +
3¢’ 3c, 3c,
4k3(,8+k2)sech2(kx)(é(ﬂ—2k2)+2k2tanhz(kx)j
Cl
—2k®sech” (kx)c, +4k® sech? (kx)c, tanh? (kx)
W, = ¢, +¢, tanh (kx)—t (16)

T, 1

(2+a)
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—3ksech2(kx)cl(§(—2k2+ ﬂ)+2k2tanh2(kx)j |

4K? +/3—6k(1+ 2t (8k* +8K° B+ ) )sech? (kx) +18Kt* (8k* +8K* B+ 3% )sech® (kx)

96k‘t* (—2+a)(k® +,6’)2 sech? (kx)c tanh (kx)
3(t+2t")(—2+a)(4k* +38)+ 4Kt (-2 + )

- 4kt sech? (kx)| — —96k°® —144k* B —55k*5* — B° +9k*
G sech? (kx) 2
(4k*+3) sech® (kx)
—t-2t"(-2+a)
1+Kk%

—2kt(4k® +3p3)(~3+ 2cosh (2kx))

¢ tanh (kx)+6(k* + )¢, {

sech’ (kx)+(1-3sech’ (kx))tanh (kx)}
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1 2 2 442 2 4
V=g (K2 ) (co (~1- 4Kkt ) (K> + B)sech (ke) -3+ 4kt tanh (kx) ) ) +

1
2+a

t™c,

8kt (~2+a)sech* (k) (kB (4k” +38)-3(k* + B)tanh (kx)) + ktfsech? (kx)[(_f:aki;i'zt:nﬁzkx))]}

t™c

1+ 4K't2 (K + ) sech (ke) (~3+ ki tanh (kx)) 21

-2+a
-8K°t* (—2+ar) B(4k* +38)sech® (kx) +1“ (~2+ ) tanh (kx)

| 48K (<2+ ar)sech® (k) (ktB(4k? +38) ~3(k* + ) tanh (kx))
+ktBsech? (kx)(—t +t*(=2+a)(-2+ktBtanh (kx)))

(17)

Continuing in the similar manners, the higher order approximate solution can be
calculated using Mathematica version 10.4

T

Figure 1. Comparison of three dimensional surface plots of solitary wave solution (17) for differential
values of relevant parameters and o with the exact solution (14).
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Table 1. Numerical analysis of solution (17) and solution (14) when o =0.5, 0. =0.75,a =1 and k = 0.1,8 =
1. 5, C1 = 1. 5, Co = 1.5 for U(X, t)

CVIM Solution
T X a=0.5 a=0.75 a=1 Exact Solution
0 0.489240 0.489813 0.490936 0.493351
0.2 0.5 0.488993 0.489606 0.490811 0.493341
1 0.488870 0.489521 0.490799 0.493431
0 0.485781 0.486818 0.488576 0.493405
0.4 0.5 0.485279 0.486391 0.488276 0.493335
1 0.484923 0.486104 0.488104 0.493365
0 0.482746 0.484107 0.486251 0.493494
0.6 0.5 0.482018 0.483477 0.485777 0.493365
1 0.481456 0.483004 0.485446 0.493335
0 0.480060 0.481609 0.483962 0.493619
0.8 0.5 0.479131 0.480792 0.483315 0.493431
1 0.478382 0.480146 0.482823 0.493341

Table 2. Comparison of CVIM solution and exact when a =0.5, . =0.75,a=1 and k = 0.1, =1.5,¢, =
1.5,¢c9 = 1.5 for v(x, t) of Eq. (17) and Eq. (14).

CVIM Solution
T X a=0.5 0=0.75 a=1 Exact Solution
0 —0.014107 —0.014011 —0.013824 —0.013020
0.2 0.5 —0.014775 —0.014680 —0.014493 —0.012351
1 —0.015436 —0.015342 —0.015156 —0.011687
0 —0.014689 —0.014517 —0.014224 —0.012618
0.4 0.5 —0.015354 —0.015182 —0.014889 —0.011952
1 —0.016009 —0.015838 —0.015548 —0.011292
0 —0.015206 —0.014979 —0.014621 —0.012217
0.6 0.5 —0.015866 —0.015640 —0.015283 —0.011555
1 —0.016513 —0.016289 —0.015935 —0.010902
0 —0.015668 —0.015409 —0.015017 —0.011819
0.8 0.5 —0.016322 —0.016064 —0.015673 —0.011162
1 —0.016961 —0.016706 —0.016318 —0.010516

Table 3. Comparison of CVIM solution (17) and exact solution (14) when o =0.5, o =0.75, o.=1 and
k = Ol,ﬂ = 1.5,C1 = 1.5,C0 = 15 fOI’W(X, t)

CVIM Solution
T X a=0.5 o=0.75 a=1 Exact Solution
0 1.576475 1.565817 1.544891 1.502999
0.2 0.5 1.651144 1.640512 1.619639 1.574935
1 1.725064 1.714512 1.693794 1.649410
0 1.641618 1.622306 1.589565 1.502999
0.4 0.5 1.715893 1.696629 1.663970 1.574935
1 1.789103 1.769983 1.737568 1.649410
0 1.699308 1.673969 1.634022 1.502999
0.6 0.5 1.773054 1.747779 1.707931 1.574935
1 1.845463 1.820376 1.780825 1.649410
0 1.750929 1.722074 1.678260 1.502999
0.8 0.5 1.824010 1.795226 1.751523 1.574935
1 1.895516 1.866947 1.823569 1.649410
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3.2. THE MB EQUATIONS

T u=-uu, —v,, O<a<l, (18)

TV =-uv, —vu, —U,,.

subject to
u(x,0) = w — 21 coth(I(x + c)), (19)
v(x,0) =-217 csch?(I(x + ¢)),
The corresponding exact solution is given by
u(x,t) = @ — 2l coth(I(x + ¢ — wt)), (20)

v(x,t) = —21% csch?(I(x + ¢ — at)),

According to the procedure described above, the consequently approximate
independent solutions are

u, = w— 2l coth(I(x +¢)),

v, = —21% csch?(I(x +¢)), (21)
u, = @ — 2l csch?(I(x + ¢))2lte + sinh(21(x + ¢))),
v, =12 csch*(I(x + ¢))YL+ 81%t + (—1+ 41°t )cosh(2(x + ¢)) — 2ltwsinh(I(x + ¢)). 22)

U, =m— ! (212t t + 2t“(— 2 + &) Jw csc h2(I(c + x)))+ %I coth(l(c + x))

—-2+a

(34172 csch?(I(c + x))121% — 3e* + 412(9 + tew? )esc h? (I(c + X))
0!]] cosh(2I(c + x))+

241t*(41 — wsinh(21(c + x))t* (- 2 + &)
3+ 41°t(12 - 3t +81°t(— 6 + te? )+ 21t
—31(= 2+ 41%t + to? Jcosh (21 (c + x)) +
4(9 — 41t )w coth(I(c + x)) + |
212t| (~ 45 +10tw? — 36ltw coth(l(c + x))csch?(I(c + x)))
+6(—1+ 21%t Josinh(21(c + x))

l-a

t—a

12(—1+ 41 2t(l+
—2+at

v, :él2 csch*(I(x +c)

(23)

The higher order approximate solution can be calculated using Mathematica version
10.4
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Figure 2. Comparison of three dimensional surface plots of solitary wave solution (23) for differential
values of parameters and a with the exact solution (20).

Table 4. Analysis of solution (20) and (23) when a =0.5, o =0.75, o =1 and w = 0.005,1 = 0.1,c = 10 for

u(x, t).
CVIM Solution
t X a=0.5 a=0.75 a=1 Exact Solution
0 —0.257622 —0.257619 —0.257612 —0.257622
0.2 0.5 —0.250832 —0.250829 —0.250823 —0.250831
1 —0.244857 —0.244855 —0.244849 —0.244856
0 —0.257614 —0.257608 —0.257597 —0.257636
0.4 0.5 —0.250828 —0.250822 —0.250813 —0.250843
1 —0.244856 —0.244851 —0.244843 —0.244867
0 —0.257585 —0.257577 —0.257564 —0.257651
0.6 0.5 —0.250806 —0.250799 —0.250788 —0.250856
1 —0.244840 —0.244834 —0.244824 —0.244878
0 —0.257534 —0.257525 —0.257511 —0.257665
0.8 0.5 —0.250768 —0.250760 —0.250748 —0.250869
1 —0.244811 —0.244804 —0.244793 —0.244889
Table 5. Comparison when o =0.5, a =0.75,a =1 and @ = 0.005,1 = 0.1, ¢ = 10for v(x, t) of Eq. (20) and
Eq. (23)
CVIM Solution
t X a=0.5 a=0.75 a=1 Exact Solution
0 —0.014079 —0.014136 —0.014246 —0.014485
0.2 0.5 —0.012391 —0.012437 —0.012528 —0.012725
1 —0.010936 —0.010975 —0.011050 —-0.011214
0 —0.013741 —0.013844 —0.014017 —0.014489
0.4 0.5 —0.012112 —0.012196 —0.012339 —0.012728
1 —0.010705 —0.010775 —0.010893 —0.011217
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CVIM Solution
t X a=0.5 o =0.75 a=1 Exact Solution
0 —0.013448 —0.013582 —0.013793 —0.014493
0.6 0.5 —0.011870 —0.011979 —0.012154 —0.012731
1 —0.010503 —0.010595 —0.010739 —0.0112194
0 —0.013190 —0.013343 —0.013574 —0.014496
0.8 0.5 —0.011657 —0.011782 —0.011973 —0.012734
1 —0.010326 —0.010430 —0.010588 —0.011222
3.3. THE LONG WAVE (ALW) EQUATIONS
u 1
T“u=-uu, —-v, ——v,,, O<a <],
2 (24)
Tv=-uv, —vu, + lVXX.
2
subject to
u(x,0) = @ — I coth(I(x +c)), (25)
v(x,0) = —1% csch?(I(x +¢)).
The corresponding exact solution is
u(x,t) = @ — 2l coth(I(x + ¢ — wt)), (26)

v(x,t) = =21 csch?(I(x + ¢ — wt)),

According to the procedure described above, the consequently approximate
independent solutions are

U, = @—lcoth(l(x +c)),
v, = —1%csch?(1(x +c)).

(27)
u, = w—I’twcsch?(1(x +c))—coth(I(x +c))I + 21%t csch? (I(x +¢))),
—1—2ltewcoth(1(x +c¢))+ 21*tcoth®(I(x +¢)) (28)
+1”tesch®(1(x +c)) J

v1=—lzcsch2(l(x+c))(

-a

Uu=0+———
3(-2+a)

WWW.josa.ro

Itwcsch? (1(x+c)) [

+coth(I(x+c)) (

“3t+t(-2+a)

—3t* (—2+a)+1’tesch? (1(x+c))

—6t+t" (—2+a)

—6(1+3I2t)+lztcsch2(l (x+c))
(—27+81°t+101°tcsch? (1(x+c)))

3(—4+71°t—te® )+ 17tesch? (1(x+c))
(57 +81%t + 2tew’ +121°tcsch? (1 (x+c)))
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t*(-2+a)
—121(-1+1(1* +@° ) )+ 24(~1+ I’t) wcoth (I (x+c)) +
18-1°t(15+161°t) +t(-9+81°t )

v, = %IZ csch? (1(x+c))| -6-+121% +ﬁltl‘“ +41t(9+21°t) wcoth (1 (x+c))

csch?(1(x+c))

+°t(-15-1121° + 20te” +12ltwcoth (1 (x+c)))
csch* (1(x+c))-841°t* csch® (I (x+c))
+6t(—2a)coth (I(x+c))+1(2+3csch? (I (X+C))))

(29)

The higher order approximate solution can be calculated using Mathematica version
10.4.

2 1.0
() (d)
Figure 3. Comparison of three dimensional surface plots of (29) for differential values of parameters and
o with the exact solution (26)
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Table 6. Numerical analysis of solution (29) and (26) when o =0.5, a =0.75, 0.=1 and @ = 0.005,1 =
0.1,c = 10 for u(x, t).

CVIM Solution
t X a=0.5 a=0.75 a=1 Exact Solution
0 —0.126955 —0.126864 —0.126683 —0.126311
0.2 0.5 —0.123468 —0.123389 —0.123235 —0.122915
1 —0.120403 —0.120336 —0.120203 —0.119928
0 —0.127496 —0.127329 —0.127048 —0.126318
0.4 0.5 —0.123932 —0.123789 —0.123548 —0.122922
1 —0.120805 —0.120682 —0.120474 —0.119933
0 —0.127959 —0.127740 —0.127397 —0.126325
0.6 0.5 —0.124331 —0.124144 —0.123849 —0.122928
1 —0.121150 —0.120989 —0.120736 —0.119939
0 —0.128356 —0.128107 —0.127730 —0.126332
0.8 0.5 —0.124675 —0.124462 —0.124139 —0.122934
1 —0.121449 —0.121266 —0.120988 —0.119945

Table 7. Numerical analysis of CVIM solution (29) and exact solution (26) when a =0.5, a =0.75, o.=1 and
w=0.005,1l=0.1,c = 10 for v(x, t).

CVIM Solution
t X a=0.5 a=0.75 a=1 Exact Solution
0 —0.007141 —0.007155 —0.007182 —0.007243
0.2 0.5 —0.006279 —0.006290 —0.006312 —0.006362
1 —0.005538 —0.005547 —0.005566 —0.005607
0 —0.007057 —0.007082 —0.007124 —0.007244
0.4 0.5 —0.006209 —0.006230 —0.006265 —0.006364
1 —0.005480 —0.005497 —0.005526 —0.005608
0 —0.006982 —0.007015 —0.007067 —0.007246
0.6 0.5 —0.006148 —0.006175 —0.006218 —0.006366
1 —0.005429 —0.005452 —0.005486 —0.005610
0 —0.006915 —0.006952 —0.007009 —0.007248
0.8 0.5 —0.006093 —0.006124 —0.006171 —0.006367
1 —0.005383 —0.005409 —0.005448 —0.005611

3.4. THE DSW EQUATION

T“u=-pw,, O<a<l,

(30)
T.“v=-qv,,, —ruv, —su,Vv.
where p, q, v and s are nonzero parameters [42], subject to conditions
u(x,0) =3sech?(x), (31)
v(x,0) = 2sech (x).
The corresponding exact solution of equation (30) is given by
u(x,t) =3sech?(x—2t), (32)

v(x,t) =2sech(x—2t).

According to the procedure described above, the consequently approximate
independent solutions are
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u, = 3sech?(x),

v, = 2sech(x), (33)

u, = 3sech?(x)+ 4 ptsech?(x)tanh(x),

v, = 2sech(x)—t( 6r sech?(x)tanh(x)—12ssech®(x)tanh(x)),

_ 2t>“ tanh(x) .
-2+«

(34)

u, =3sech?(x)+ 4ptsech?(x)tanh(x)— 2psech?(x) | —2tanh(x)+6(r + 2s)°t* sech®(x)tanh(x)
—12(r + 2s)’tsech(x)? tanh(x)?

—3(r + 2s)tsec h“(x{_“ 6(r + 25))

t tanh®(x)

—

v, = 2sech(x)—t(- 6r sec h®(x)tanh(x) —12s sec h®(x)tanh(x)) — t sech®(x)

ez o ot sk 2 (G0 =)

tsech?(x)(—4ps +9(3r? +8rs + 4s? )tanh? (x) + 8p(3r? + 8rs + 4s? ) tanh*(x))

(35)

The higher order approximate solution can be calculated using Mathematica version
10.4.

(c) (d)
Figure 4. Comparison of three dimensional surface plots of solitary wave solution in (35) for differential
values of relevant parameters and o with the exact solution (32).

ISSN: 1844 — 9581 Mathematics Section




500 Solitary wave solutions of ... Aniqga Zulfigar and Jamshad Ahmad

Table 8. Comparison of CVIM solution (35) and exact solution (32) when o =0.5, a =0.75, o =1 and
p=3,q=2,r=2,s=1"foru(xt).

CVIM Solution
t X a=0.5 o =0.75 a=1 Exact Solution
0 2.992872 2.992862 2.992875 2.988791
0.01 0.5 2.384642 2.394642 2.348642 2.339342
1 1.299998 1.299998 1.299921 1.239921
0 2.999931 2.999934 2.999881 2.998781
0.001 0.5 2.367985 2.367985 2.363715 2.357342
1 1.267541 1.267546 1.263791 1.257921
0 2.999993 2.999993 2.999983 2.999831
0.0001 0.5 2.360215 2.360185 2.363712 2.359142
1 1.260695 1.260665 1.260315 1.259724
0 2.999998 2.999998 2.999998 2.999981
0.00001 | 0.5 2.359432 2.359432 2.359392 2.359322
1 1.259967 1.259967 1.259965 1.259671

Table 9: Comparison of CVIM solution (35) and exact solution (32) when a =0.5, a =0.75, a =1 and
p=3,q9q=2,r=2,5s =1 forv(xt).

CVIM Solution
t X a=0.5 a=0.75 a=1 Exact Solution
0 1.991641 1.991641 1.991641 1.982341
0.01 0.5 1.789742 1.789742 1.788642 1.753642
1 1.296560 1.296571 1.296110 1.276110
0 1.999928 1.999928 1.999981 1.998234
0.001 0.5 1.788952 1.788015 1.781382 1.771642
1 1.297398 1.297351 1.297391 1.294110
0 1.999998 1.999998 1.999998 1.999831
0.0001 0.5 1.775183 1.775128 1.774421 1.773442
1 1.296915 1.297065 1.296615 1.295912
0 1.999998 1.999998 1.999998 1.999981
0.00001 | 0.5 1.773791 1.773791 1.773721 1.773622
1 1.296162 1.296216 1.296162 1.296091

3.5. DISCUSSION

The four coupled systems of fractional PDEs (18), (24), (30), and (35) with described
ICs are solved with the help of symbolic software Mathematica. The comparison with the
previous studied exact solution is discussed in Tables 1-8 for various values of relevant
parameters. Through graphical demonstrations, we observe that the soliton is a wave that
keeps its shape, preserve after colliding by some other similar wave. Four examples are
presented in this work to explore the effectiveness of CVIM. We can see that from obtaining
results, the evaluated method gives incredible exactness in comparison to the techniques
presented in the literature. Fig. 1 (a)-(f) corresponding to CVIM’s results and the exact
solution for Solitary wave solutionu(x,t), v(x,t)and w(x,t)atk=0.1,=1.5,¢c; =
1.5,co = 1.5 and a =1 for HSCKdV equation. Fig. 1 (a) and (b) shows the surfaces of
approximate solution and exact solution respectively of Eq. (1) which is of bell shaped for
u(x,t).Figl (c) and (d) are the response to CVIM’s results and the exact solution forv(x,t)
which is of kink-type. Fig 1. (e) and (f) show the CVIM’s results and the exact solution for
w(x,t) which is also of kink- type. It is significant to observe that some of the acquired

solutions give greater comparability with earlier established solutions.
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Fig. 2 (a)—(f) demonstrate the solitary wave solutions behavior for u(x,t), v(xt) at

parameters values w = 0.005,1 = 0.1,c = 10 and a =1 for MB and ALW equations. Fig 2 (a)
and (b) shows the CVIM’s results and the exact solution foru(x,t). Fig. 2 (c) and (d) are

responding to CVIM’s results and the exact solution forv(x,t).

Fig 3 (a) and (b) shows the behavior solitary wave solution and the closed form solution for
u(x,t). Fig 3 (c) and (d) are responding to CVIM’s results and the closed form solution for
v(x,t). Fig 4 (a) and (b) illustrates behavior of CVIM’s results and the closed form solution
for solitary wave solution for u(x,t) and Fig. 4 (c) and (d) v(x,t) atp =3,q =2,r =2,s =
1and o =1.

Tables 1-3 numerically explore the comparison of obtaining solutions with the exact
solution for a =0.5, o =0.75 and a =1 atk = 0.1,8 = 1.5,¢; = 1.5,¢c, = 1.5. Table 4-7
numerically present the comparison of obtaining solutions with the exact solution for a =0.5,
a =0.75 and a =1 atw = 0.005, [ = 0.1, ¢ = 10. Tables 8 and 9 numerically present the
comparison of obtaining solutions with the exact solution for a =0.5, o =0.75 and a =1 at
p =3, q=2, r=2, s=1.Inall instances, we achieve identical solitary wave solutions for
various values of parameters which absolutely show that the final solution is not always based
on these parameters effectively. Therefore, we can consider random values of these
parameters as input into our solutions.

4. CONCLUSIONS

In this paper, the fundamental objective of CVIM has been utilized to search the new
solitary wave solutions and has been efficaciously applied to study HS coupled KdVv, MB
equations, ALW equations and DSW equations of time-fractional order. The consequences of
comparison of the exact solutions with those acquired by CVIM show that CVIM is
influential, compatible and proficient technique for physical phenomena of nonlinear PDEs of
fractional order. Some surface plots have been given to demonstrate the dynamical behavior
of the obtained solutions when the parameters take some special values.

It is observed that the obtained approximate solutions are very close to the exact
solution [40-41] at particularly oo =1. And we also explained the physical meaning of each one
estimated wave behavior through figures. It is apparent from the analysis that these models
give rise to a variety of solitary wave solutions that clarify the complex physical phenomena.
The outcomes attained through this new technique are straight forward and very encouraging
to determine solitary wave solutions of other NLDEs.
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