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Abstract. The main purpose of this research is to inquire the new solitary wave 

solution of the coupled time-fractional models to validate the influence and proficiency of the 

planned variational iteration method (VIM) using conformable derivative definition. 

Applications to four demanding nonlinear problems like Hirota-Satsuma coupled KdV 

equations, modified Boussinesq (MB) equation, approximate long wave (ALW) equation and 

Drinfeld-Sokolov-Wilson (DSW) equation demonstrate the efficiency and the robustness of the 

method. An analysis of the consequences with effects of relevant parameters and comparison 

with the exact solution presented with the help of graphs tables and gives the further 

understanding of numerical results by others. The convergence of the method is illustrated 

numerical and their physical significance is discussed. 

Keywords: Conformable fractional derivative; conformable variational iteration 

method; modified Boussinesq equation; Hirota-Satsuma coupled KdV equation; long wave 

equation; Drinfeld-Sokolov-Wilson (DSW) equation; solitary wave solution. 

 

 

1. INTRODUCTION  

 

 

The nonlinear coupled mathematical models are used to model most of the natural 

problems, such as ocean engineering, optical fibers, chemical-physics, fluid dynamics, 

biology, plasma physics and other fields of engineering. For diagnosing these mathematical 

models as well as in addition follow these physical models in realistic mathematical studies, it 

is essential to discover their approximate and exact solutions that support in understanding the 

phenomena. In fractional calculus a lot of numerical, analytical and approximate methods are 

developed for handling nonlinear models [1-7]. 

There are miscellaneous researches correlated to this fractional derivative. Atangana et 

al. [8] give a few definitions of the conformable derivative (CD). The importance and 

applications of conformable fractional derivatives have been addressed by many researchers 

[9-11]. The Time-space fractional heat differential equations are being resolved with the aid 

of the CD delivered by Cenesiz and Kurt [12]. New exact solutions of conformable Burgers’ 

type equations obtained by Çenesiz et al. [13]. Some new solutions were presented of 

Boussinesq and combined KdV-mKdV equations, Drinfeld-Sokolov-Wilson system in 

shallow water waves and generalized Hirota-Satsuma system of equations by Tasbozan et al. 

[14-16].  

The HS equations ware familiarized in [17] and these equations examine the 

collaboration of two long waves with diverse dispersion associations and happen as a specific 

case of the Toda lattice equation, and these models possessive many potential applications in 
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many nonlinear science fields. The solutions of these equations are studied by using many 

methods such as modified simple equation method [18], new iterative method [19], homotopy 

perturbation method (HPM) [20] and many other schemes. 

Whitham, Broer and Kaup [21-24] put the Whitham-Broer-Kaup (WBK) equations as 

an expansion of shallow water waves and are of the form 

 

                               

(1) 

 

Drinfeld, Solokov and Wilson derived an equation known as DSW equation which is 

based on the model of water waves [25-26]. Generalized time fractional DSW equation is 

written in the form of  

 

                                                                          (2) 

 

where             are nonzero parameters and α and β are the order of fractional derivative. 

By taking α = β the Eq. (2) reduce to Eq. (3), which was presented in [27]. 

 

                                                                                           (3) 

 

These equations are premeditated by numerous authors through different techniques 

like, Laplace ADM [28], q-homotopy analysis transform method [29] and other techniques. 

The paper is organized as follows: Numerical implementation of methods for solving Hirota-

Satsuma coupled KdV equations, modified Boussinesq (MB) equation, approximate long 

wave (ALW) equation and Drinfeld-Sokolov-Wilson (DSW) equation in section 1. Results 

and discussion is given in section 2. Lastly, a conclusion section is given in section 3. 

In literature, primary definitions of fractional calculus are given which can be practiced in the 

calculation. It is famous that there are precise definitions of fractional Integral and fractional 

derivatives, which includes, Grünwald-Letnikov, Riesz, Riemann-Liouville (RL), Caputo, 

Hadamard and Erdélyi-Kober and lots of others [30-32]. The fractional CVIM has been 

carried out in many models with the aid of many authors [33-35]. In this work we shall 

mainly focus on behavior of CVIM. The conformable fractional derivative (CFD) takes into 

consideration for this examine because it is simple for the calculation. He [36-38] presented 

the standard VIM and implemented on many differential equations. CVIM is built on the CD 

for fractional ODEs and CVIM for FPDEs is presented in [39]. 

 

 

2. MATERIALS AND METHODS 

 

 

2.1. MATERIALS 

 

 

Some primary definitions of fractional calculus are recalled which can be practiced in 

the calculation. 
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Definition 1. The fractional integral operator of RL of order    of a function        
   is defined as 

                                                              (4) 

                                                                                                             (5) 

 

Definition 2. The Caputo’s fractional derivative is [32] 

 

                                        (6) 

. 

 

Definition 3. Let be an n time differentiable at  then the CFD is well-defined by [40] 

 

                               (7) 

 

If the above limit exists, then  is called α-differentiable. Let and  be α-

differentiable at a point x > 0, then  satisfies the following properties: 

(i)  

(ii)  

(iii) for all constant functions  

(iv)  

(v)  

In addition, is differentiable . 

 

 

2.2. METHOD 

 

 

Firstly the CVIM is discussed for the solution of the following non-linear FPDE  

 

                          

(8) 

 

where L and N is linear and non-linear operator respectively, h(x) is source term and  is 

CFD of order α. To solve differential Eq. (8) via CFVIM write in the form 

 

                                                          (9) 
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As in CVIM, the CF for Equation (8) can be erected as 

   (10) 

 

Finally, the solution is 

 

                                                                        (11) 

 

 

3. RESULTS AND DISCUSSION 

 

 

In this section, the CVIM has been attributed to seeking the traveling wave solution of 

the Hirota-Satsuma coupled KdV equations, modified Boussinesq (MB) equation, 

approximate long wave (ALW) equation and Drinfeld-Sokolov-Wilson (DSW) equation. 

 

 

3.1. HS COUPLED KDV EQUATION 
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where and  are arbitrary constants. If  then these are the traveling wave 

solutions [41]. The corresponding exact solution is given by 
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                          (15) 

  

   (16) 
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   (17) 

 

Continuing in the similar manners, the higher order approximate solution can be 

calculated using Mathematica version 10.4 

   
  (a)            (b) 

     
 (c)                                                                                   (d) 
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Figure 1. Comparison of three dimensional surface plots of solitary wave solution (17) for differential 

values of relevant parameters and α with the exact solution (14). 
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Table 1. Numerical analysis of solution (17) and solution (14) when α =0.5, α =0.75, α =1 and         
                  for u(x, t). 
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Table 2. Comparison of CVIM solution and exact when α =0.5, α =0.75, α =1 and                

           for v(x, t) of Eq. (17) and Eq. (14). 
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Table 3. Comparison of CVIM solution (17) and exact solution (14) when α =0.5, α =0.75, α =1 and 
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3.2. THE MB EQUATIONS 
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 (a)                                                                                          (b) 

           
 (c)                                                                                   (d) 

Figure 2. Comparison of three dimensional surface plots of solitary wave solution (23) for differential 

values of parameters and α with the exact solution (20). 
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Table 5. Comparison when α =0.5, α =0.75,α =1 and                   for v(x, t) of Eq. (20) and 

Eq. (23) 

 

t 

 

X 

CVIM Solution  

Exact Solution α =0.5 α =0.75 α =1 

 

0.2 

0 

0.5 

1 

          

          

          

          

          

          

          

          

          

          

          

          

 

0.4 

0 

0.5 

1 

          

          

          

          

          

          

          

          

          

          

          

          



 Solitary wave solutions of … Aniqa Zulfiqar and Jamshad Ahmad 

 

www.josa.ro                                                                                                                                                   Mathematics Section  

496 

 

t 

 

X 

CVIM Solution  

Exact Solution α =0.5 α =0.75 α =1 

 

0.6 

0 

0.5 

1 

          

          

          

          

          

          

          

          

          

          

          

           

 

0.8 

0 

0.5 

1 

          

          

          

          

          

          

          

          

          

          

          

          

 

 

3.3. THE LONG WAVE (ALW) EQUATIONS 
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(29) 

 

The higher order approximate solution can be calculated using Mathematica version 

10.4. 

 

                   
    (a)                                                                               (b) 

           
       (c)                                                                                     (d) 

Figure 3. Comparison of three dimensional surface plots of (29) for differential values of parameters and 

α with the exact solution (26) 
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Table 6. Numerical analysis of solution (29) and (26) when α =0.5, α =0.75, α =1 and           
         for u(x, t). 
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Table 7. Numerical analysis of CVIM solution (29) and exact solution (26) when α =0.5, α =0.75, α =1 and 

                   for v(x, t). 
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3.4. THE DSW EQUATION 
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                                                                                                      (33) 

 

                               (34) 

                         (35) 
 

The higher order approximate solution can be calculated using Mathematica version 

10.4. 

                
(a)                                                                                  (b) 

             
(c)                                                                                      (d) 

Figure 4. Comparison of three dimensional surface plots of solitary wave solution in (35) for differential 

values of relevant parameters and α with the exact solution (32).  
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Table 8. Comparison of CVIM solution (35) and exact solution (32) when α =0.5, α =0.75, α =1 and 

                for u(x, t). 
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Table 9: Comparison of CVIM solution (35) and exact solution (32) when α =0.5, α =0.75, α =1 and 

                for v(x, t). 

 

t 

 

X 

CVIM Solution  

Exact Solution α =0.5 α =0.75 α =1 

 

0.01 

0 

0.5 

1 

         

         

         

         

         

         

         

         

         

         

         

         

 

0.001 

0 

0.5 

1 

         

         

         

         

         

         

         

         

         

         

         

         

 

0.0001 

0 

0.5 

1 

         

         

         

         

         

         

         

         

         

         

         

         

 

0.00001 

0 

0.5 

1 

         

         

         

         

         

         

         

         

         

         

         

         
 

 

3.5. DISCUSSION 
 

 

The four coupled systems of fractional PDEs (18), (24), (30), and (35) with described 

ICs are solved with the help of symbolic software Mathematica.  The comparison with the 

previous studied exact solution is discussed in Tables 1-8 for various values of relevant 

parameters. Through graphical demonstrations, we observe that the soliton is a wave that 

keeps its shape, preserve after colliding by some other similar wave. Four examples are 

presented in this work to explore the effectiveness of CVIM. We can see that from obtaining 

results, the evaluated method gives incredible exactness in comparison to the techniques 

presented in the literature. Fig. 1 (a)-(f) corresponding to CVIM’s results and the exact 

solution for Solitary wave solution , and at                

           and α =1 for HSCKdV equation. Fig. 1 (a) and (b) shows the surfaces of 

approximate solution and exact solution respectively of Eq. (1) which is of bell shaped for

Fig1 (c) and (d) are the response to CVIM’s results and the exact solution for

which is of kink-type. Fig 1. (e) and (f) show the CVIM’s results and the exact solution for

which is also of kink- type. It is significant to observe that some of the acquired 

solutions give greater comparability with earlier established solutions.  

),( txu ),( txv ),( txw

).,( txu ),( txv

),( txw
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Fig. 2 (a)–(f) demonstrate the solitary wave solutions behavior for ,  at 

parameters values                    and α =1 for MB and ALW equations. Fig 2 (a) 

and (b) shows the CVIM’s results and the exact solution for . Fig. 2 (c) and (d) are 

responding to CVIM’s results and the exact solution for .  

Fig 3 (a) and (b) shows the behavior solitary wave solution and the closed form solution for

 Fig 3 (c) and (d) are responding to CVIM’s results and the closed form solution for

. Fig 4 (a) and (b) illustrates behavior of CVIM’s results and the closed form solution 

for solitary wave solution for and Fig. 4 (c) and (d)  at               

  and α =1.  

Tables 1-3 numerically explore the comparison of obtaining solutions with the exact 

solution for α =0.5, α =0.75 and α =1 at                          . Table 4-7 

numerically present the comparison of obtaining solutions with the exact solution for α =0.5, 

α =0.75 and α =1 at                   . Tables 8 and 9 numerically present the 

comparison of obtaining solutions with the exact solution for α =0.5, α =0.75 and α =1 at  

               . In all instances, we achieve identical solitary wave solutions for 

various values of parameters which absolutely show that the final solution is not always based 

on these parameters effectively. Therefore, we can consider random values of these 

parameters as input into our solutions. 
 

 

4. CONCLUSIONS 
 

 

In this paper, the fundamental objective of CVIM has been utilized to search the new 

solitary wave solutions and has been efficaciously applied to study HS coupled KdV, MB 

equations, ALW equations and DSW equations of time-fractional order. The consequences of 

comparison of the exact solutions with those acquired by CVIM show that CVIM is 

influential, compatible and proficient technique for physical phenomena of nonlinear PDEs of 

fractional order. Some surface plots have been given to demonstrate the dynamical behavior 

of the obtained solutions when the parameters take some special values.  

It is observed that the obtained approximate solutions are very close to the exact 

solution [40-41] at particularly α =1. And we also explained the physical meaning of each one 

estimated wave behavior through figures. It is apparent from the analysis that these models 

give rise to a variety of solitary wave solutions that clarify the complex physical phenomena. 

The outcomes attained through this new technique are straight forward and very encouraging 

to determine solitary wave solutions of other NLDEs. 
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