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Abstract. The aim of this study is to investigate and interpret the geometric properties 

of the harmonic evolute surfaces of the tubular surfaces in Euclidean 3-space. For this 

purpose, the harmonic evolute surface is defined by considering the definitions and theorems 

for the tubular surface constructed in the Euclidean 3-space. The characterizations of the s 

and ψ parameter curves of the harmonic evolute surface obtained are examined, and then 

parameter curves of the tubular surface and harmonic evolute surface are compared. Finally, 

the harmonic evolute surface of a tubular surface is given an example and the graphics of 

these surfaces are drawn. 

Keywords: tubular surfaces; harmonic evolute surface; geodesic curve; asymptotic 

curve; line of curvature. 
 

 

1. INTRODUCTION  

 
 

The harmonic evolute surface of a tubular surface is called the geometrical location of 

the points at the inverse distance in terms of multiplication of the mean curvature from the 

surface in the direction of the normal vector field of the surface. However, for a non-minimal 

surface, the harmonic evolute surface of a surface can be defined. Let  ,T s   be a surface in 

3E  which is no minimal, then the parametric equation of the harmonic evolute surface of a 

surface  ,T s   can be written with 
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where  ,H s   and  ,N s   are the mean curvature and the normal vector field of a surface 

 ,T s  , respectively. Many international studies have been conducted on the harmonic 

evolute surface of a surface, some of which are [1-5]. In this study, harmonic evolute surface 

of a tubular surface was investigated in order to give direction to the surfaces of differential 

geometry, which finds application in multiple disciplines. The tubular surface is a special 

form of canal surface. The canal surfaces, for the first time in 1850, were defined by Gaspard 

Monge as the envelope of the moving sphere of variable radius [6]. In addition, in 2006, the 

geometric and analytical properties of these canal surfaces were given by Xu, Feng and Sun. 

[7]. The tubular surfaces are obtained when the radius of the sphere forming the canal surface 

is constant. The tubular surface and the characterizations of the parameter curves of this 
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surface have been investigated in Euclidean space, see [8-13]; in Minkowski space, see [14-

16] and in Galilean space, see [17,18]. 

Our inspiration from the studies above is to investigate the geometric properties of the 

harmonic evolute surface of a tubular surface. Therefore, it is aimed to compare and interpret 

the tubular surface and the harmonic evolute surface obtained from this surface. Moreover, all 

computations in this study are performed on an intel i7-3630QM@2.40 Ghz/16gb computer 

using Mathematica 9 software. 
 

 

2. PRELIMINARIES 
 

 

In Euclidean 3-space, Euclidean inner product is given by
1 1 32 32,         , 

where     3

1 2 3 1 2 3, , , , , E          . The norm of 
3E   is ,     . If 

( ) 1s  , then the curve  is unit speed curve in 
3E . Let t , n  and b  be tangent, principal 

normal and binormal unit vectors at point ( )s  of the curve  ,then the well-known Frenet 

formulae are given by 
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where    and 
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 are the curvature and the torsion of the curve   with 

the arc-length s , respectively. 

Let sT  and T  be tangent vectors of a surface  ,T s  , then the normal vector field of 

the surface is calculated by as  

s

s

T T
N
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.                                                             (2) 

 

The coefficients of the first fundamental form and the second fundamental form 

 ,T s   are defined by 

 
2 22I Eds Fdsd Gd    , 

2 22II eds fdsd gd     

such that 
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   ,          (3) 

 

respectively. The Gaussian curvature and the mean curvature of the surface  ,T s  are  
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respectively. 
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Theorem 2.1. The surface is a minimal surface (developable surface) if and only if the mean 

curvature (Gaussian curvature) of the surface is vanish [6]. 
 

 

3. PROPERTIES OF THE HARMONIC EVOLUTE SURFACES OF THE TUBULAR 

SURFACES IN EUCLIDEAN 3-SPACE 
 

 

In this section, we explore the harmonic evolute surface of the tubular surface whose 

mean curvature does not vanish in 
3E . The canal surface with a fixed radius is called tubular 

surface. The parametric equation of a tubular surface is given as follows 
 

   : , ( ) cos ( ) sin ( )T T s s s s      n b                               (5) 

 

where [0,2 )  , ( )s  is center curve and  is radius of the tubular surface. In addition, the 

circle cos ( ) sin ( )s s n b  is always perpendicular to the center curve   at point ( )s . The 

tubular surface is formed by moving of these circles around the center curve  . The tangent 

vectors sT  and T of the tubular surface T are found by 

 

   

 

1 cos sin cos ,

sin cos .

sT

T

    

  

    

  

t n b

n b
                           (6) 

 

From the equations (2) and (6), the normal vector field of the tubular surface T  gets as 

 cos sin .N     n b  In this study, the normal vector field of the tubular surface T  is 

considered 
 

 cos sin .N     n b                                                     (7) 

 

Corollary 3.1. The tubular surface T  is a regular surface if and only if  1 cos 0.    

 

Theorem 3.2. Let T  be a tubular surface given with the parametrization (5), then the 

Gaussian curvature and the mean curvature of the tubular surface T  are  
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  and 
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, 

 

 1 cos 0   , respectively. 

 

Proof: From the equations (3) and (6), the coefficients of the first fundamental form are found 

as 
 

 
2 2 2 2 21 cos ,  ,  .E F G                                             (8) 

 

The second order partial derivatives of the tubular surface T  are obtained by 
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Using the equations (3), (7) and (9), the coefficients of the second fundamental form 

are 

  2
,  g .cos 1 cos ,  e f                                         (10) 

 

Considering the equations (4), (8) and (10), the Gaussian curvature and the mean 

curvature of the tubular surface T  are obtained as  
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respectively. 

 

Corollary 3.3. The tubular surface T  is a minimal surface (developable surface) if and only if  
 

1

2 cos


 
 ( 0  ). 

 

Let's give some theorems about geometric interpretation of parametric curves of the 

tubular surface T . 
 

Theorem 3.4. Let T  be a tubular surface. the   parameter curves of the tubular surface T

are geodesic curve but the s  parameter curves of the tubular surface T  are not geodesic 

curves. 
 

Proof: Let T  be a tubular surface given by equation (5), then from the equation (7) and (9), 

we have 
 

0ssN T   and 0N T   

 

where   denotes the cross product. In that case, the proof is complete. 

 

Theorem 3.5. Let T  be a tubular surface, then the s  and   parameter curves of the surface 

T  are not asymptotic curves. 
 

Proof: Let T  be a tubular surface given by equation (5), then from the equation (7) and (9), 

we have  
 

, 0ssN T   and , 0N T  . 

 

Thus, the proof is complete. 

 

Theorem 3.6. Let's assume that T  is the tubular surface. The s  and   parameter curves of 

the tubular surface T  are lines of curvature if and only if  
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0  . 
 

Proof: Let T  be a tubular surface given by equation (5), then from the equation (8) and (10), 

we have  
 

2F    and f   

 

where 0  . 0F f   if and only if 0  . So, the proof is complete. 

From now on, we construct the harmonic evolute surface of a tubular surface which is 

no minimal surface. Suppose that tubular surface is no minimal surface, then using the 

equation (1), the harmonic evolute surface of a tubular represents  
 

    : , ( ) , cos ( ) sin ( )s s s s s       n b                                (11) 

 

where  
 

, 0
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 and 
1
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 .The tangent vectors s  and  of the 

harmonic evolute surface  are found by 
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From the equations (2) and (12), the normal vector field of the harmonic evolute 

surface  gets as  
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where  1 cos 0    and  
2

2 2 2 0s         . 

From the equations (3) and (12), the coefficients of the first fundamental form of the surface 

 are found as 
 

 
2 2 2 2 2 2 21 cos ,  ,  .s sE F G                                     (14) 

 

The second order partial derivatives of the surface  are obtained by 
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Using the equations (3), (13) and (15), the coefficients of the second fundamental form 

are 
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Considering the equations (4), (14) and (16), the Gaussian curvature and the mean 

curvature of the surface given by equation (11) are obtained as  
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respectively. 

Corollary 3.7. The harmonic evolute surface  of the tubular surface T  is not both a 

minimal surface and a developed surface. 

Let's give some theorems about geometric interpretation of parametric curves of the 

harmonic evolute surface  of the tubular surface T . 
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Theorem 3.8. Let  be a harmonic evolute surface of the tubular surface T , then the 

following statements are satisfied: 

i. The s  parameter curves of the harmonic evolute surface  of the tubular 

surface T  are no geodesic curves. 

ii. The   parameter curves of harmonic evolute surface  of the tubular 

surface T  are geodesic curves if and only if   is constant. 

 

Proof: The parameter curve on the surface is called geodesic curve, if the acceleration vector 

of the parameter curve on the surface is parallel to the normal vector of the surface. In that 

case, 

i. Using the equations (13) and (15), we get 
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where    
2

2 2 21 sw Cos             . Since 0ssu  , the s  parameter 

curves of the harmonic evolute surface  of the tubular surface T  are no geodesic curves. 

 

ii. Using the equations (13) and (15), we have 
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If   is nonzero constant, considering ,  t n  and b  are linearly independent, 

0u   . So the   parameter curves the harmonic evolute surface  of the tubular 

surface T  are geodesic curves if and only if   is nonzero constant. 

 

Corollary 3.9. Let  be a harmonic evolute surface of the tubular surface T , then the 

following statements are satisfied: 

i. The s  parameter curves of both the harmonic evolute surface  and the tubular 

surface T  are not geodesic curves. 

ii. While the   parameter curves of the tubular surface T  are geodesic curves, the 

  parameter curves of the harmonic evolute surface  are not geodesic curves. 

 

Theorem 3.10. Let  be a harmonic evolute surface of the tubular surface T , then the 

following statements are satisfied; 

i. The s  parameter curves of the harmonic evolute surface  of the tubular 

surface T  are asymptotic curves if and only if  
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is nonzero constant.  

ii. The   parameter curves of the harmonic evolute surface  of the tubular 

surface T  cannot be asymptotic curves. 

 

Proof: The parameter curves on the surface are called asymptotic curve, if the normal 

curvature of the parameter curves is zero everywhere. In that case; 

i. From the equation (16), we know 
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 is nonzero constant. Thus, the proof is completed. 

ii. From the equation (16), we know that  
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 . Thus   parameter curves of 

the harmonic evolute surface  cannot be asymptotic curves. 
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Corollary 3.11. The s  and   parameter curves of both the harmonic evolute surface  and 

the tubular surface T  are not asymptotic curves. 

 

Theorem 3.12. Let  be a harmonic evolute surface of T . The s  and   parameter curves 

of harmonic evolute surface  are line of curvature if and only if  

 

0   and   

 

is nonzero constant. 

 

Proof: The parameter curves of the harmonic evolute surface  are lines of curvature if and 

only if F  and f  the coefficients of the first and second fundamental form, respectively, are 

vanish.From the equations (14) and (16), 0F f   if 0   and   is nonzero constant. Thus 

the proof is completed. 

 

 

4. APPLICATIONS 

 

 

Example 4.1. Let's show the graphics the harmonic evolute surface of a tubular surface. Let 

us consider the unit speed curve  s  given by the parametric equation  
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The Frenet apparatuses of the unit speed curve  s  are obtained as 
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The equation of the tubular surface T  are found as 
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where 1  . Besides, the normal vector field and the mean curvature of the tubular surface 

T  are determined by 
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where cos 2   and 8cos cos2 9   . From here, we express the harmonic evolute 

surface of the tubular surface T  the following as 
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Now let's draw the graphs of surfaces  

 

  
Figure 1.The graph of the tubular surface T  with 

 5,5s  and  0,2  . 

 
Figure 2. The graph of the harmonic evolute 

surface  with  5,5s   and  0,2  . 
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Figure 3. The harmonic evolute surface  given with in green and tubular surface T  given with in red 

for  5,5s   and  0,2  . 

 

 

5. CONCLUSION 

 

 

This article is about the harmonic evolute surface of a tubular surface in 3E . Firstly, 

the geometric properties of the tubular surface are given, and then the first and second 

fundamental form, the mean curvature and the Gaussian curvature of the harmonic evolute 

surface of this tubular surface are calculated. Besides, we give the conditions to be geodesic 

curve, asymptotic curve and curvature line of parameter curves of these new surfaces and we 

compare the parameter curves of these surfaces. Finally, the graphics are drawn with 

examples. 
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