ORIGINAL PAPER

NEW EXPONENTIAL PROBABILITY INEQUALITY AND COMPLETE CONVERGENCE FOR $\mathcal{F}-L N Q D$ RANDOM VARIABLES SEQUENCE WITH APPLICATION TO AR(1)MODEL GENERATED BY $\mathcal{F}-L N Q D$ ERRORS

NADJIA AZZEDINE ${ }^{1}$, AMINA ZEBLAH ${ }^{1}$, SAMIR BENAISSA ${ }^{1}$
Manuscript received: 30.11.2020; Accepted paper: 28.03.2021;
Published online: 30.06.2021.

Abstract

The exponential probability inequalities have been important tools in probability and statistics. In this paper, we prove a new tail probability inequality for the distri-butions of sums of conditionally linearly negative quadrant dependent ($\mathcal{F}-L N Q D$, in short) random variables, and obtain a result dealing with conditionally complete convergence of first-order autoregressive processes with identically distributed ($\mathcal{F}-$ LNQD) innovations.

Keywords: autoregressive processes; random variables; $\mathcal{F}-L N Q D$ sequence; conditionally complete convergence; exponential inequalities.

1. INTRODUCTION

The exponential inequality plays an important role in various proofs of limit theorems. In particular, it provides a measure of the complete convergence for partial sums.

Firstly, we will recall the de nitions of conditionally negative quadrant dependent, condition-ally negatively associated, and conditionally linearly negative quadrant dependent sequence. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, and all random variables in this paper are defined on it unless otherwise mentioned. Let \mathcal{F} be a sub-algebra of \mathcal{A}, two random variables ζ_{1} and ζ_{2} are said to be conditionally negative quadrant dependent given $\mathcal{F}(\mathcal{F}-$ $N Q D$, in short if, for all $\epsilon 1, \epsilon 2 \in \mathbb{R}$

$$
\begin{equation*}
\mathbb{P}^{\mathcal{F}}\left(\zeta_{1} \leq \epsilon_{1}, \zeta_{2} \leq \epsilon_{2}\right) \leq \mathbb{P}^{\mathcal{F}}\left(\zeta_{1} \leq \epsilon_{1}\right) \mathbb{P}^{\mathcal{F}}\left(\zeta_{2} \leq \epsilon_{2}\right) \tag{1}
\end{equation*}
$$

One of the many possible multivariate generalizations of conditionally negative quadrant dependence is conditionally negatively association introduced by Yuan et al [1]. A finite collection of random variables $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}$ is said to be conditionally negatively associated $(\mathcal{F}-N A$, in short) if for every pair of disjoint subsets A, B of $\{1,2, \ldots, n\}$

$$
\operatorname{cov}^{\mathcal{F}}\left(f\left(\zeta_{i}: i \in A\right), g\left(\zeta_{j}: j \in B\right)\right) \leq 0
$$

whenever f and g are coordinatewise nondecreasing such that this covariance exists. An infinite sequence $\left\{\zeta_{n}, n \geq 1\right\}$ is $\mathcal{F}-N A$ if every finite subcollection is $\mathcal{F}-N A$.

[^0]We now propose another multivariate generalization of conditionally negative quadrant dependence called conditionally linearly negative quadrant dependence, which is weaker than $\mathcal{F}-N A$ property.

1.1. DEFINITION

A finite sequence of random variables $\left\{\zeta_{n}, n \geq 1\right\}$ is said to be conditionally linearly negative quadrant dependent given ($\mathcal{F}-L N Q D$, in short) if for any disjoint subsets $A, B \subset \mathbb{Z}$ and positive $r_{j}^{\prime} s$,

$$
\sum_{k \in A} r_{k} \zeta_{k} \text { and } \sum_{j \in B} r_{j} \zeta_{j} \text { are } \mathcal{F}-N Q D
$$

As mentioned earlier, it can be shown that the concepts of linearly negative quadrant dependent and conditional linearly negative quadrant dependent are not equivalent. See, for example, Yuan and Xie [2], where various of counterexamples are given.

A concrete example where conditional limit theorems are useful is the study of statistical inference for non-ergodic models as discussed in Bassawa and Prakasa Rao [3] and Basawa and Scott [4]. For instance, if one wants to estimate the mean off-spring for a Galton-Watson branching process, the asymptotic properties of the maximum likelihood estimator depend on the set of non-extinction.

As it was pointed out earlier, the conditional $L N Q D$ property does not imply the $L N Q D$ property and the opposite implication is also not true. Hence one does have to derive limit theorems under conditioning if there is a need for such results even through the results and proofs of such results may be analogous to those under the non-conditioning setup. This one of the reasons for developing results for sequences of $\mathcal{F}-L N Q D$ random variables in this paper.

As mentioned earlier, large numbers of results for $L N Q D$ random variables have been achieved. However, nothing is variable for conditional $L N Q D$ random variables. Yuan and Wu [5] extended many results from negative association to asymptotically negative association, Yuan and Yang [6] extended many results from association to conditional association, Yuan et al [1] extended many results from negative association to conditional negative association, and these motivate our original interest in conditional $L N Q D$.

On the other hand, the concept of complet convergence of a sequence of random variables was introduced by [7]. Note that complete convergence implies almost sure convergence in view of the Borel-Cantelli lemma. Now we extend this concept a conditionally converge completely given \mathcal{F} to a constant a if $\sum_{i=1}^{\infty} \mathrm{P}\left(\left|\mathrm{X}_{\mathrm{i}}-a\right|>\varepsilon / \mathcal{F}\right)<\infty$ for every $\varepsilon>0$, and we whrite $\mathrm{X}_{\mathrm{n}} \rightarrow a$ conditionally completely given \mathcal{F}.

The main purpose of this paper is to establish a new probability inequality and conditional complete convergence for the $\mathcal{F}-L N Q D$ random variables and to extend and improve the results of Wang et al [8].

Throughout the paper, let $S_{n}=\sum_{i=1}^{n} X_{i}$ for a sequence $\left\{X_{n}, n \geq 1\right\}$ of random variables defined on a probability space $(\Omega, \mathrm{A}, \mathrm{P})$. Let \mathcal{F} is a sub- σ-algebra of $\mathcal{A},\left\{X_{n}, n \geq 1\right\}$ will be called \mathcal{F}-centered if $\mathbb{E}^{\mathcal{F}} X_{n}=0$ for every $n \geq 0$. Denote $B_{n}=\sum_{i=1}^{n} \mathbb{E}^{\mathcal{F}}\left|X_{i}\right|^{2}$ for each $1 \leq i \leq n$.

2. SOME LEMMAS

Lemma 2.1. [2] Let random variables X and Y be $\mathcal{F}-N Q D$. Then
i. $\quad \mathbb{E}^{\mathcal{F}}(X Y) \leq \mathbb{E}^{\mathcal{F}}(X) \mathbb{E}^{\mathcal{F}}(Y)$;
ii. $\quad \mathbb{P}^{\mathcal{F}}(X>x, Y>y) \leq \mathbb{P}^{\mathcal{F}}(X>x) \mathbb{P}^{\mathcal{F}}(Y>y)$;
iii. If c and g are both nondecreasing (or both nonincreasing) functions, then $f(X)$ and $g(Y)$ are $\mathcal{F}-N Q D$.

Corollary 2.1. [2] Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of $\mathcal{F}-L N Q D$ random variables and $t>0$, then for each $n \geq 1$,

$$
\begin{equation*}
\mathbb{E}^{\mathcal{F}}\left[\sum_{i=1}^{n} \exp \left(t X_{i}\right)\right] \leq \prod_{i=1}^{n} \mathbb{E}^{\mathcal{F}}\left(\exp \left(t X_{i}\right)\right) \tag{2}
\end{equation*}
$$

Lemma 2.2. [9] For any $x \in \mathbb{R}$, we have

$$
\exp (x) \leq 1+x+\frac{|x|}{2} \ln (1+|x|) \exp (2|x|)
$$

Lemma 2.3. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of $\mathcal{F}-L N Q D$ random variables with $\mathbb{E}^{\mathcal{F}}\left(X_{n}\right)=0$ for each $n \geq 1$. If there exists a sequence of positive numbers $\left\{c_{n}, n \geq 1\right\}$ such that $\left|X_{i}\right| \leq c_{i}$ for each $i \geq 1$, then for any $t>0$,

$$
\begin{equation*}
\mathrm{E}^{\mathrm{F}} \exp \left\{\mathrm{t} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}}\right\} \leq \exp \left\{\frac{\mathrm{t}^{2}}{2} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{e}^{2 \mathrm{tc}_{\mathrm{i}} \mathrm{E}^{\mathrm{F}}}\left|\mathrm{X}_{\mathrm{i}}\right|^{2}\right\} \tag{3}
\end{equation*}
$$

Proof: By Lemma 2.2, for all $x \in \mathbb{R}, \quad \exp (\mathrm{x}) \leq 1+\mathrm{x}+\frac{|\mathrm{x}|}{2} \ln (1+|\mathrm{x}|) \exp (2|\mathrm{x}|)$. Thus, by $\mathbb{E}^{\mathcal{F}}\left(X_{i}\right)=0$ and $\left|X_{i}\right| \leq c_{i}$ for each $i \geq 1$, we have

$$
\begin{gather*}
\mathrm{E}^{\mathrm{F}} \exp \left(\mathrm{tX}_{\mathrm{i}}\right) \leq \mathrm{E}^{\mathrm{F}}\left\{1+\mathrm{t} \mathrm{X}_{\mathrm{i}}+\frac{\mathrm{t}}{2}\left|\mathrm{X}_{\mathrm{i}}\right| \ln \left(1+\left|\mathrm{t} \mathrm{X}_{\mathrm{i}}\right|\right) \exp \left(2\left|\mathrm{t} \mathrm{X}_{\mathrm{i}}\right|\right)\right\} \\
=1+\mathrm{t}^{\mathrm{F}} \mathrm{X}_{\mathrm{i}}+\frac{\mathrm{t}}{2} \mathrm{E}^{\mathrm{F}}\left\{\left|\mathrm{X}_{\mathrm{i}}\right| \ln \left(1+\left|\mathrm{t} \mathrm{X}_{\mathrm{i}}\right|\right) \exp \left(2\left|\mathrm{tX} \mathrm{X}_{\mathrm{i}}\right|\right)\right\} \\
=1+\frac{\mathrm{t}}{2} \mathrm{E}^{\mathrm{F}}\left\{\left|\mathrm{X}_{\mathrm{i}}\right| \ln \left(1+\left|\mathrm{t} \mathrm{X}_{\mathrm{i}}\right|\right) \exp \left(2\left|\mathrm{t} \mathrm{X}_{\mathrm{i}}\right|\right)\right\} \\
=1+\frac{\mathrm{t}}{2} \mathrm{E}^{\mathrm{F}}\left\{\left|\mathrm{X}_{\mathrm{i}}\right| \ln \left(1+\left|\mathrm{t} \mathrm{X}_{\mathrm{i}}\right|\right) \exp \left(2 \mathrm{tc}_{\mathrm{i}}\right)\right\} \\
=1+\frac{\mathrm{t}}{2} \exp \left(2 \mathrm{tc}_{\mathrm{i}}\right) \mathrm{E}^{\mathrm{F}}\left\{\mathrm{t}\left|\mathrm{X}_{\mathrm{i}}\right|^{2}\right\} \\
=1+\frac{\mathrm{t}^{2}}{2} \exp \left(2 \mathrm{tc}_{\mathrm{i}}\right) \mathrm{E}^{\mathrm{F}}\left\{\mathrm{t}\left|\mathrm{X}_{\mathrm{i}}\right|^{2}\right\}
\end{gathered} \begin{gathered}
\left.\leq \exp \left\{\frac{\mathrm{t}^{2}}{2} \exp \left(2 \mathrm{tc}_{\mathrm{i}}\right) \mathrm{E}^{\mathrm{F}}\left\{\left|\mathrm{X}_{\mathrm{i}}\right|^{2}\right\}\right\} \quad \text { (using } 1+\mathrm{y} \leq \exp (\mathrm{y}) \text { for all } \mathrm{y} \in \mathrm{R}\right)
\end{gather*}
$$

for any $t>0$. By Lemma 2.1 and (4) we have can see that

$$
\begin{align*}
\mathbb{E}^{\mathcal{F}} \exp \{ & \left.t \sum_{i=1}^{n} X_{i}\right\} \leq \prod_{i=1}^{n} \mathbb{E}^{\mathcal{F}} \exp \left\{t X_{i}\right\} \tag{5}\\
& \leq \exp \left\{\frac{t^{2}}{2} \sum_{i=1}^{n} e^{2 t c_{i} \mathbb{E}^{\mathcal{F}}}\left|X_{i}\right|^{2}\right\} \tag{6}
\end{align*}
$$

The lemma is thus proved.
Lemma 2.4. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of $\mathcal{F}-L N Q D$ random variables with $\mathbb{E}^{\mathcal{F}}\left(X_{n}\right)=0$ for each $n \geq 1$. If there exists a sequence of positive numbers $\left\{c_{n}, n \geq 1\right\}$ such that $\left|X_{i}\right| \leq c_{i}$ for each $i \geq 1$, then for any $t>0$ and $\varepsilon>0$

$$
\begin{equation*}
\mathbb{P}^{\mathcal{F}}\left\{\left|\sum_{i=1}^{n} X_{i}\right| \geq \varepsilon\right\} \leq \exp \left\{-t \varepsilon+\frac{t^{2}}{2} \sum_{i=1}^{n} e^{2 t c_{i}} \mathbb{E}^{\mathcal{F}}\left|X_{i}\right|^{2}\right\} \tag{7}
\end{equation*}
$$

Proof: By Markov's inequality and Lemma 2.3, we can see that

$$
\begin{align*}
\mathbb{P}^{\mathcal{F}}\left(\sum_{i=1}^{n} X_{i} \geq \varepsilon\right) & \leq \exp (-t \varepsilon) \mathbb{E}^{\mathcal{F}} \exp \left\{t \sum_{i=1}^{n} X_{i}\right\} \\
& \leq \exp (-t \varepsilon) \prod_{i=1}^{n} \mathbb{E}^{\mathcal{F}} \exp \left\{t X_{i}\right\} \\
& \leq \exp \left\{-t \varepsilon+\frac{t^{2}}{2} \sum_{i=1}^{n} e^{2 t c_{i}} \mathbb{E}^{\mathcal{F}}\left|X_{i}\right|^{2}\right\} . \tag{8}
\end{align*}
$$

The desired result follows by remplacing X_{i} by $-X_{i}$ in (8). This completes the proof of the lemma.

3. MAIN RESULTS AND PROOFS

Theorem 3.1. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of $\mathcal{F}-L N Q D$ random variables with $\mathbb{E}^{\mathcal{F}}\left(X_{i}\right)=$ 0 . If there exists a positive number c such that $\left|X_{i}\right| \leq c_{i}, i \geq 1$ where $B_{n}=\sum_{i=1}^{n} \mathbb{E}^{\mathcal{F}} X_{i}{ }^{2}$, then for any $p>1, \varepsilon>0$ and $n>0$, then

$$
\begin{equation*}
\mathbb{P}^{\mathcal{F}}\left(S_{n} / B_{n} \geq \varepsilon\right) \leq \exp \left\{\frac{1}{q} b^{q / p} e\right\} \exp \left\{-\left(\frac{\varepsilon 2^{p-1} b p}{B_{n}^{p-1}}\right)^{\frac{1}{2 p-1}} \varepsilon B_{n}\left(1-\frac{1}{p-1}\right)\right\} \tag{9}
\end{equation*}
$$

Proof: By Markov's inequality, we have that for any $t>0$;

$$
\begin{align*}
\mathbb{P}^{\mathcal{F}}\left(S_{n} / B_{n} \geq \varepsilon\right)=\mathbb{P}^{\mathcal{F}}\left(e^{t S_{n}} \geq e^{t \varepsilon B_{n}}\right), \\
\leq e^{t \varepsilon B_{n}} \mathbb{E}^{\mathcal{F}}\left(\prod_{i=1}^{n} e^{t X_{i}}\right), \\
\leq \exp \left\{-t \varepsilon B_{n}+\frac{t^{2}}{2} e^{2 t \max _{1 \leq i \leq n} c_{i}} B_{n}\right\} . \tag{10}
\end{align*}
$$

Let $p>1$. It is well known that
$u v=\inf _{b>0}\left\{\frac{1}{p b} u^{p}+\frac{1}{q} b^{q / p} v^{q}\right\}$ for $u>0, v>0$ and $\frac{1}{p}+\frac{1}{q}=1$.

This yields the inequality

$$
\begin{equation*}
\frac{t^{2}}{2} e^{2 t \max _{1 \leq i \leq n} c_{i}} B_{n} \leq \frac{1}{p b} \frac{t^{2 p}}{2^{p}} B_{n}^{p}+\frac{1}{q} b^{q / p} e^{2 t q \max _{1 \leq i \leq n} c_{i}} \tag{11}
\end{equation*}
$$

We can thus conclude that for every $p>1$, there for all $t>0$, such that

$$
\begin{align*}
\mathbb{P}^{\mathcal{F}}\left(S_{n} / B_{n} \geq \varepsilon\right) & \leq \exp \left\{-t \varepsilon B_{n}+\frac{1}{p b} \frac{t^{2 p}}{2^{p}} B_{n}^{p}\right\} . \\
& \times \exp \left\{\frac{1}{q} b^{q / p} e^{2 t q \max _{1 \leq i \leq n} c_{i}}\right\} \\
& =\exp \left\{\frac{1}{q} b^{q} / p e^{2 t q \max _{1 \leq i \leq n} c_{i}}\right\} \exp (\Phi(t, n)) \tag{12}
\end{align*}
$$

The equation $\frac{\partial \Phi(t, n)}{\partial t}=0$ has the unique solution.

$$
\begin{equation*}
\mathrm{t}=\left(\frac{\varepsilon 2^{\mathrm{p}-1} \mathrm{bp}}{\mathrm{~B}_{\mathrm{n}}^{\mathrm{p}-1}}\right)^{\frac{1}{2 \mathrm{p}-1}} \tag{13}
\end{equation*}
$$

which minimizes $\Phi(t, n)$. Then from (12), (13)) and taking $2 t q \max _{1 \leq i \leq n} c_{i} \leq 1$ we obtain (9).

Theorem 3.2. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of $\mathcal{F}-L N Q D$ random variables $\mathbb{E}^{\mathcal{F}}\left(X_{i}\right)=0$. If there exists a positive number \boldsymbol{c} such that $\left|X_{i}\right| \leq c_{i}, i \geq 1$, then for any $p>1, \boldsymbol{\varepsilon}>0$ and $\boldsymbol{n} \geq \mathbf{1}$,

$$
\begin{equation*}
\mathbb{P}^{\mathcal{F}}\left(\left|S_{n}\right| \geq \varepsilon\right) \leq 2 \exp \left\{\frac{1}{q} b^{q / p} e\right\}\left\{-\left(\frac{\varepsilon 2^{p-1} b p}{B_{n}^{p}}\right)^{\frac{1}{2 p-1}} \varepsilon\left(1-\frac{1}{P-1}\right)\right\} \tag{14}
\end{equation*}
$$

Proof: From conditions $\mathbb{E}^{\mathcal{F}}\left(X_{i}\right)=0$ and $\left|X_{i}\right| \leq c_{i}$ for each $i \geq 1$. By Markov's inequality and Lemma 2.4, Corollary 2.1 with the fact that $1+x \leq e^{x}$, then

$$
\begin{align*}
\mathbb{P}^{\mathcal{F}}\left(S_{n} \geq \varepsilon\right) & \leq e^{-t \varepsilon} \mathbb{E}^{\mathcal{F}}\left(e^{t S_{n}}\right) \\
& \leq e^{-t \varepsilon} \prod_{i=1}^{n} \exp \left(\frac{t^{2}}{2} e^{2 t c_{i}} \mathbb{E}^{\mathcal{F}}\left|X_{i}\right|^{2}\right), \\
& \leq \exp \left\{-t \varepsilon+\frac{t^{2}}{2} e^{2 t \max _{1 \leq i \leq n} c_{i}} B_{n}\right\} \tag{15}
\end{align*}
$$

Let $p>1$. It is well known that

$$
u v=\inf _{b>0}\left\{\frac{1}{p b} u^{p}+\frac{1}{q} b^{q} / p_{v^{q}}\right\} \text { for } u>0, v>0 \text { and } 1 / p+1 / q=1 .
$$

This yields the inequality

$$
\begin{equation*}
\frac{t^{2}}{2} e^{2 t \max _{1 \leq i \leq n} c_{i}} B_{n} \leq \frac{1}{p b} \frac{t^{2 p}}{2^{p}} B_{n}^{p}+\frac{1}{q} b^{q} / p e^{2 t q} \max _{1 \leq i \leq n} c_{i} \tag{16}
\end{equation*}
$$

We can thus conclude that for every $p>1$, there for all $t>0$, such that

$$
\begin{align*}
\mathbb{P}^{\mathcal{F}}\left(\left|S_{n}\right| \geq \varepsilon\right) & \leq 2 \exp \left\{-t \varepsilon+\frac{1}{p b} \frac{t^{2 p}}{2^{p}} B_{n}^{p}\right\} . \\
& \times \exp \left\{\frac{1}{q} b^{q / p} e^{2 t q \max _{1 \leq i \leq n} c_{i}}\right\} \\
& =2 \exp \left\{\frac{1}{q} b^{q} / p e^{2 t q \max _{1 \leq i \leq n} c_{i}}\right\} \exp (\Phi(t, n)) \tag{17}
\end{align*}
$$

The equation $\frac{\partial \Phi(t, n)}{\partial t}=0$ has the unique solution

$$
\begin{equation*}
t=\left(\frac{\varepsilon 2^{p-1} b p}{B_{n}^{p}}\right)^{\frac{1}{2 p-1}} \tag{18}
\end{equation*}
$$

which minimizes $\Phi(t, n)$. Then from (17),(18)) and taking $2 t q \max _{1 \leq i \leq n} c_{i} \leq 1$ we obtain upper bound for the tail probability as

$$
\begin{equation*}
\mathrm{p}^{\mathrm{F}}\left(\left|\mathrm{~S}_{\mathrm{n}}\right| \geq \varepsilon\right) \leq 2 \exp \left\{\frac{1}{\mathrm{q}} \mathrm{~b}^{\mathrm{q} / \mathrm{p}} \mathrm{e}\right\} \exp \left\{-\left(\frac{\varepsilon 2^{p-1} \mathrm{bp}}{\mathrm{~B}_{\mathrm{n}}^{\mathrm{p}}}\right)^{\frac{1}{2 \mathrm{p}-1}} \varepsilon\left(1-\frac{1}{\mathrm{P}-1}\right)\right\} \tag{19}
\end{equation*}
$$

Since $\left\{-X_{n}, n \geq 1\right\}$ is also a sequense of $\mathcal{F}-L N Q D$ random variables it follows from (19) that

$$
\begin{align*}
& \mathrm{p}^{\mathrm{F}}\left(\mathrm{~S}_{\mathrm{n}} \leq-\varepsilon\right)=\mathrm{p}^{\mathrm{F}}\left(-\mathrm{S}_{\mathrm{n}} \geq \varepsilon\right) \leq \exp \left\{\frac{1}{\mathrm{q}} \mathrm{~b}^{\mathrm{q} / \mathrm{p} \mathrm{e}}\right\} \\
& \quad \times \exp \left\{-\left(\frac{\varepsilon 2^{p-1} \mathrm{bp}}{\mathrm{~B}_{\mathrm{n}}^{\mathrm{p}}}\right)^{\frac{1}{2 \mathrm{p}-1}} \varepsilon\left(1-\frac{1}{\mathrm{P}-1}\right)\right\} \tag{20}
\end{align*}
$$

From (19) and (20) we obtain

$$
\begin{gather*}
\mathbb{P}^{\mathcal{F}}\left(\left|S_{n}\right| \geq \varepsilon\right)=\mathbb{P}^{\mathcal{F}}\left(S_{n} \geq-\varepsilon\right)+\mathbb{P}^{\mathcal{F}}\left(S_{n} \leq \varepsilon\right) \leq 2 \exp \left\{\frac{1}{q} b^{q} / p e\right\} \\
\times \exp \left\{-\left(\frac{\varepsilon 2^{p-1} b p}{B_{n}^{p}}\right)^{\frac{1}{2 p-1}} \varepsilon\left(1-\frac{1}{P-1}\right)\right\} \tag{21}
\end{gather*}
$$

Theorem 3.3. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of $\mathcal{F}-L N Q D$ random variables with mean zero and finite variances. If there exists a positive number c such that $\left|X_{i}\right| \leq c_{i}, i \geq 1$, where $\left\{c_{n}, n \geq 1\right\}$ is a sequence of positive numbers. Then for any $p>1, \varepsilon>0$ and $n \geq 1$,

$$
\begin{equation*}
p^{F}\left(\left|S_{n}-E^{F} S_{n}\right| \geq \varepsilon\right) \leq 2 \exp \left\{\frac{1}{q} b^{q / p} e\right\} \exp \left\{-\left(\frac{\varepsilon 2^{p-1} b p}{B_{n}^{p}}\right)^{\frac{1}{2 p-1}} \varepsilon\left(1-\frac{1}{P-1}\right)\right\} \tag{22}
\end{equation*}
$$

Proof: By Markov's inequality and Lemma (2.2), we have that for any $t>0$,

$$
\begin{align*}
\mathrm{p}^{\mathrm{F}}\left(\mathrm{~S}_{\mathrm{n}}-\mathrm{E}^{\mathrm{F}} \mathrm{~S}_{\mathrm{n}} \geq\right. & \varepsilon) \leq \mathrm{e}^{-\mathrm{t} \varepsilon} \mathrm{E}^{\mathrm{F}}\left[\exp \left(\mathrm{t} \sum_{i=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\mathrm{E}^{\mathrm{F}} \mathrm{X}_{\mathrm{i}}\right)\right)\right], \\
& \leq \mathrm{e}^{-\mathrm{t} \varepsilon} \mathrm{E}^{\mathrm{F}} \prod_{\mathrm{i}=1}^{\mathrm{n}}\left[\mathrm{e}^{-\mathrm{t}\left(\mathrm{X}_{\mathrm{i}}-\mathrm{E}^{\mathrm{F}} \mathrm{X}_{\mathrm{i}}\right)}\right] \\
& \leq \exp \left\{-\mathrm{t} \varepsilon+\frac{\mathrm{t}^{2}}{2} \mathrm{e}^{2 \mathrm{tmax} \max _{1 \leq i \leq n} \mathrm{c}_{\mathrm{i}}} \mathrm{~B}_{\mathrm{n}}\right\} . \tag{23}
\end{align*}
$$

Let $p>1$. It is well known that

$$
u v=\inf _{b>0}\left\{\frac{1}{p b} u^{p}+\frac{1}{q} b^{q} / p_{v^{q}}\right\} \text { for } u>0, v>0 \text { and } 1 / p+1 / q=1 .
$$

This yields the inequality

$$
\begin{equation*}
\frac{t^{2}}{2} e^{2 t \max _{1 \leq i \leq n} c_{i}} B_{n} \leq \frac{1}{p b} \frac{t^{2 p}}{2^{p}} B_{n}^{p}+\frac{1}{q} b^{q / p} e^{2 t q \max _{1 \leq i \leq n} c_{i}} \tag{24}
\end{equation*}
$$

We can thus conclude that for every $p>1$, there for all $t>0$, such that

$$
\begin{align*}
& \mathbb{P}^{\mathcal{F}}\left(\left|S_{n}-\mathbb{E}^{\mathcal{F}} S_{n}\right| \geq \varepsilon\right) \leq 2 \exp \left\{-t \varepsilon+\frac{1}{p b} \frac{t^{2 p}}{2^{p}} B_{n}^{p}\right\} \\
& \times \exp \left\{\frac{1}{q} b^{q} / p e^{2 t q \max _{1 \leq i \leq n} c_{i}}\right\} \\
&= 2 \exp \left\{\frac{1}{\mathrm{q}} \mathrm{~b}^{\mathrm{q} / \mathrm{p}^{2 t q} \max _{1 \leq i \leq \mathrm{n}} c_{\mathrm{i}}}\right\} \exp (\Phi(\mathrm{t}, \mathrm{n})) \tag{25}
\end{align*}
$$

The equation $\frac{\partial \Phi(t, n)}{\partial t}=0$ has the unique solution.
Taking $t=\left(\frac{\varepsilon 2^{p-1} b p}{B_{n}^{p}}\right)^{\frac{1}{2 p-1}}$. Hence it follows from (23) that

$$
\begin{equation*}
p^{F}\left(S_{n}-E^{F} S_{n} \geq \varepsilon\right) \leq \exp \left\{\frac{1}{q} b^{q / p} e\right\} \exp \left\{-\left(\frac{\varepsilon 2^{p-1} b p}{B_{n}^{p}}\right)^{\frac{1}{2 p-1}} \varepsilon\left(1-\frac{1}{p-1}\right)\right\} \tag{26}
\end{equation*}
$$

Let $-S_{n}=T_{n}=\sum_{i=1}^{n}\left(-X_{n}\right)$. Since $\left\{-X_{n}, n \geq 1\right\}$ is also a sequence of $\mathcal{F}-L N Q D$ random variables we also have

$$
\begin{align*}
\mathbb{P}^{\mathcal{F}}\left(S_{n}-\mathbb{E}^{\mathcal{F}} S_{n}\right. & \leq-\varepsilon)=\mathbb{P}^{\mathcal{F}}\left(T_{n}-\mathbb{E}^{\mathcal{F}} T_{n} \geq \varepsilon\right) \leq \exp \left\{\frac{1}{q} b^{q / p} e\right\} \\
& \times \exp \left\{-\left(\frac{\varepsilon 2^{\mathrm{p}-1} \mathrm{bp}}{\mathrm{~B}_{\mathrm{n}}^{\mathrm{p}}}\right)^{\frac{1}{2 \mathrm{p}-1}} \varepsilon\left(1-\frac{1}{\mathrm{P}-1}\right)\right\} \tag{27}
\end{align*}
$$

by Combining (26) and(27) we get (22)

Corollary 3.1. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of $\mathcal{F}-L N Q D$ random variables. Assume that there exists a positive integer n_{0} such that $\left|X_{i}\right| \leq c_{n}$, for each $1 \leq i \leq n, n \geq n_{0}$, where $\left\{c_{n}, n \geq 1\right\}$ is a sequence of positive numbers. Then for any $\varepsilon>0$ and $p>1$

$$
\begin{equation*}
\mathrm{p}^{\mathrm{F}}\left(\left|\mathrm{~S}_{\mathrm{n}}-\mathrm{E}^{\mathrm{F}} \mathrm{~S}_{\mathrm{n}}\right| \geq \mathrm{n} \varepsilon\right) \leq 2 \exp \left\{\frac{1}{\mathrm{q}} \mathrm{~b}^{\mathrm{q} / \mathrm{p}} \mathrm{e}\right\} \exp \left\{-\left(\frac{\mathrm{n} \varepsilon 2^{p-1} \mathrm{bp}}{\mathrm{~B}_{\mathrm{n}}^{p}}\right)^{\frac{1}{2 p-1}} \mathrm{n} \varepsilon\left(1-\frac{1}{\mathrm{P}-1}\right)\right\} \tag{28}
\end{equation*}
$$

Theorem 3.4. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of $\mathcal{F}-L N Q D$ random variables with $\mathbb{E}^{\mathcal{F}}\left(X_{i}\right)=0$. If there exists a positive numbers c such that $\left|X_{i}\right| \leq c_{i}, i \geq 1$. Then for any $r>0$

$$
\begin{equation*}
\mathrm{n}^{-\mathrm{r}} \mathrm{~S}_{\mathrm{n}} \rightarrow 0 \text { completely, } \mathrm{n} \rightarrow \infty \tag{29}
\end{equation*}
$$

Proof: Let $B=\sum_{n=1}^{\infty} \mathbb{E}^{\mathcal{F}}\left(X_{n}\right)^{2} \leq \infty$. For any $\varepsilon>0$, it follows from Theorem 3.2 we have

$$
\begin{align*}
& \sum_{\mathrm{n}=1}^{\infty} \mathrm{p}^{\mathrm{F}}\left(\left|\mathrm{~S}_{\mathrm{n}}\right| \geq\right.\left.\mathrm{n}^{\mathrm{r}} \varepsilon\right) \leq 2 \sum_{\mathrm{n}=1}^{\infty} \exp \left\{\frac{1}{\mathrm{q}} \mathrm{~b}^{\mathrm{q} / \mathrm{p}} \mathrm{e}\right\} \exp \left\{-\left(\frac{\mathrm{n}^{\mathrm{r}} \varepsilon 2^{\mathrm{p}-1} \mathrm{bp}}{\mathrm{~B}_{\mathrm{n}}^{\mathrm{p}}}\right)^{\frac{1}{2 \mathrm{p}-1}} \mathrm{n}^{\mathrm{r}}(1-\right. \\
& 1 \mathrm{P}-1
\end{align*} \quad \begin{gathered}
\leq 2 \sum_{n=1}^{\infty} \exp \left\{\frac{1}{q} b^{q} / p e\right\} \exp \left\{-\left(\frac{\varepsilon 2^{p-1} b p}{B_{n}^{p}}\right)^{\frac{1}{2 p-1}} \varepsilon\left(1-\frac{1}{P-1}\right)\right\}^{\frac{2 r p}{n^{2 p-1}}} \\
\leq 2 \exp \left\{\frac{1}{q} b^{q / p} e\right\} \sum_{n=1}^{\infty}[\exp (-c)]^{\frac{2 r p}{n^{2 p-1}}}
\end{gathered}
$$

where C is positive number not depending on n. (by the inequality $e^{-y} \leq\left(\frac{a}{e y}\right)^{a}$), choosing $a=\frac{2 p-1}{r p}$, since $a>0, y>0$. Then the right-hand side of (30) become,

$$
\begin{align*}
\sum_{\mathrm{n}=1}^{\infty} \mathrm{p}^{\mathrm{F}}\left(\left|\mathrm{~S}_{\mathrm{n}}\right| \geq \mathrm{n}^{\mathrm{r}} \varepsilon\right) & \leq 2 \exp \left\{\frac{1}{\mathrm{q}} \mathrm{~b}^{\mathrm{q} / \mathrm{p}} \mathrm{e}\right\} \sum_{\mathrm{n}=1}^{\infty}\left(\frac{\mathrm{a}}{\mathrm{ec}}\right)^{\mathrm{a}}\left(\frac{1}{\mathrm{n}}\right)^{\left(\frac{2 \mathrm{rp}}{\mathrm{n}^{2} \mathrm{p}-1}\right)^{\mathrm{a}}} \\
& \leq 2 \exp \left\{\frac{1}{q} b^{q / p} e\right\} \frac{a^{a}}{(e c)^{a}} \sum_{n=1}^{\infty} \frac{1}{\frac{2 r p a}{n^{2 p-1}}} \\
& \leq 2 \exp \left\{\frac{1}{q} b^{q / p} e\right\} \frac{a^{a}}{(e c)^{a}} \sum_{n=1}^{\infty} \frac{1}{n^{2}}, \\
& \leq 2 \exp \left\{\frac{1}{q} b^{q / p} e\right\} \frac{a^{a}}{(e c)^{a}} \frac{\pi^{2}}{6}, \\
& <\infty \tag{31}
\end{align*}
$$

Theorem 3.5. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of $\mathcal{F}-L N Q D$ random variables. Assume that there exists a positive integer n_{0} such that $\left|X_{i}\right| \leq c_{n}$, for each $1 \leq i \leq n, n \geq n_{0}$, where $\left\{c_{n}, n \geq 1\right\}$ is a sequence of positive numbers. Then,

$$
\begin{equation*}
\sum_{n=1}^{\infty} p^{F}\left(\frac{1}{n}\left|S_{n}-E^{F} S_{n}\right| \geq \varepsilon_{n}\right)<\infty \tag{32}
\end{equation*}
$$

Theorem 3.6. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of $\mathcal{F}-L N Q D$ random variables with $\mathbb{E}^{\mathcal{F}}\left(X_{i}\right)=0$. If there exists a positive number c such that $\left|X_{i}\right| \leq c_{n i}, i \geq 1$. Then for any $r>0$

$$
\begin{equation*}
\mathrm{n}^{-\mathrm{r}}\left(\mathrm{~S}_{\mathrm{n}}-\mathrm{E}^{\mathrm{F}} \mathrm{~S}_{\mathrm{n}}\right) \rightarrow 0 \text { completely, } \mathrm{n} \rightarrow \infty . \tag{33}
\end{equation*}
$$

Proof: For any $\varepsilon>0$, it follows from Corollary 3.1 that

$$
\begin{align*}
& \sum_{n=1}^{\infty} \mathbb{P}^{\mathcal{F}}\left(\left|S_{n}-\mathbb{E}^{\mathcal{F}} S_{n}\right| \geq n^{r} \varepsilon\right) \leq \\
&\left.2 \sum_{\mathrm{n}=1}^{\infty} \exp \left\{\frac{1}{\mathrm{q}} \mathrm{~b}^{\mathrm{q} / \mathrm{p}}\right\}\right\} \exp \left\{-\left(\frac{\mathrm{n}^{\mathrm{r}} \varepsilon 2^{\mathrm{p}-1} \mathrm{bp}}{\mathrm{~B}_{\mathrm{n}}^{\mathrm{p}}}\right)^{\frac{1}{2 \mathrm{p}-1}} \varepsilon \mathrm{n}^{\mathrm{r}}\left(1-\frac{1}{\mathrm{P}-1}\right)\right\} \\
& \leq 2 \sum_{n=1}^{\infty}\left[\exp \left\{\frac{1}{q} b^{q} / p e\right\}\right] \\
& \times\left[\exp \left\{-\left(\frac{\varepsilon 2^{\mathrm{p}-1} \mathrm{bp}}{\mathrm{~B}_{\mathrm{n}}^{\mathrm{p}}}\right)^{\frac{1}{2 \mathrm{p}-1}} \varepsilon\left(1-\frac{1}{\mathrm{P}-1}\right)\right\}\right]^{\frac{2 \mathrm{rp}}{\mathrm{n}^{2 p-1}}} \tag{34}
\end{align*}
$$

By this result we get (33).

4. APPLICATIONS TO THE RESULTS TO AR(1) MODEL

The basic object of this section is applying the results to first-order autoregressive processes ($A R(1)$).

We consider an autoregressive time series of first order AR(1) defined by this

$$
\begin{equation*}
X_{n+1}=\theta X_{n}+\zeta_{n+1}, \quad n=1,2, \ldots, \tag{35}
\end{equation*}
$$

where $\left\{\zeta_{n}, n \geq 0\right\}$ is a sequence of identically distributed $\mathcal{F}-L N Q D$ random variables with $\zeta_{0}=X_{0}=0,0<\mathbb{E}^{\mathcal{F}} \zeta_{k}^{4}<\infty, k=1,2, \ldots$, and where θ is a parameter with $|\theta|<1$. Here, we can rewrite X_{n+1} in (35) as follows:

$$
\begin{equation*}
X_{n+1}=\theta^{n+1} X_{0}+\theta^{n} \zeta_{1}+\theta^{n-1} \zeta_{2}+\cdots+\zeta_{n+1} \tag{36}
\end{equation*}
$$

The coefficient θ is fitted least squares, giving the estimator

$$
\begin{equation*}
\widehat{\theta_{n}}=\frac{\sum_{j=1}^{n} X_{j} X_{j-1}}{\sum_{j=1}^{n} X_{j-1}^{2}} \tag{37}
\end{equation*}
$$

It immediately follows from (35) and (37) that

$$
\begin{equation*}
\widehat{\theta_{n}}-\theta=\frac{\sum_{j=1}^{n} \zeta_{j} X_{j-1}}{\sum_{j=1}^{n} X_{j_{-}}^{2}} \tag{38}
\end{equation*}
$$

Theorem 4.1. Let the conditions of Theorem 3.3 be satisfied then for any $\frac{\left(\mathbb{E}^{\mathcal{F}} \zeta_{1}^{2}\right)^{1 / 2}}{\rho^{2}}<\xi$ positive, we have
$\mathbb{P}^{\mathcal{F}}\left(\sqrt{n}\left|\widehat{\theta_{n}}-\theta\right|>\rho\right) \leq 2 \exp \left\{-\left(\frac{\left(\rho^{2} \xi^{2}-\mathrm{E}^{\mathrm{F}} \zeta_{1}^{2}\right) \mathrm{n}^{\mathrm{p}-1} \mathrm{bp}}{\mathrm{B}_{\mathrm{n}}^{\mathrm{p}}}\right)^{\frac{1}{2 \mathrm{p}-1}}\left(\rho^{2} \xi^{2}-\mathrm{E}^{\mathrm{F}} \zeta_{1}^{2}\right) \mathrm{n}(1-\right.$
$\left.\left.\frac{1}{n-1}\right)\right\}$

$$
\times \exp \left\{\frac{1}{q} b^{q} / p e\right\}+\left\{-\frac{1}{2} n \frac{\left(K_{1}-n \xi^{2}\right)^{2}}{K_{2}}\right\}
$$

where $K_{1}=\mathbb{E}^{\mathcal{F}}\left(X_{i}^{2}\right)<\infty, K_{2}=\mathbb{E}^{\mathcal{F}}\left(X_{i}^{4}\right)<\infty$.
Proof: Firstly, we notice that:

$$
\widehat{\theta_{n}}-\theta=\frac{\sum_{j=1}^{n} \zeta_{j} X_{j-1}}{\sum_{j=1}^{n} X_{j-1}^{2}}
$$

It follows that

$$
\mathbb{P}^{\mathcal{F}}\left(\sqrt{n}\left|\widehat{\theta_{n}}-\theta\right|>\rho\right) \leq \mathbb{P}^{\mathcal{F}}\left(\left|\frac{1 / \sqrt{n} \sum_{j=1}^{n} \zeta_{j} X_{j-1}}{1 / n \sum_{j=1}^{n} X_{j_{-}}^{2}}\right|>\rho\right)
$$

By virtue of the probability properties and Hölder's inequality, we have for any ξ positive

$$
\begin{aligned}
\mathbb{P}^{\mathcal{F}}\left(\sqrt{n}\left|\widehat{\theta_{n}}-\theta\right|>\rho\right) & \leq \mathbb{P}^{\mathcal{F}}\left(1 / n \sum_{j=1}^{n} \zeta_{j}^{2} \geq \rho^{2} \xi^{2}\right)+\mathbb{P}^{\mathcal{F}}\left(1 / n^{2} \sum_{j=1}^{n} X_{j_{-} 1}^{2} \leq \xi^{2}\right) \\
& =\mathbb{P}^{\mathcal{F}}\left(\sum_{j=1}^{n} \zeta_{j}^{2} \geq\left(\rho^{2} \xi^{2}\right) n\right)+\mathbb{P}^{\mathcal{F}}\left(\sum_{j=1}^{n} X_{j_{-}}^{2} \leq n^{2} \xi^{2}\right) \\
& =I_{1 n}+I_{2 n} .
\end{aligned}
$$

Next we estimate $I_{1 n}$ and $I_{2 n}$.

$$
\begin{align*}
I_{1 n} & =\mathbb{P}^{\mathcal{F}}\left(\sum_{j=1}^{n} \zeta_{j}^{2} \geq\left(\rho^{2} \xi^{2}\right) n\right) \\
& =\mathbb{p}^{\mathcal{F}}\left(\sum_{j=1}^{n}\left(\zeta_{j}^{2}-\mathbb{E}^{\mathcal{F}} \zeta_{j}^{2}+\mathbb{E}^{\mathcal{F}} \zeta_{j}^{2}\right) \geq\left(\rho^{2} \xi^{2}\right) n\right) \\
& =\mathbb{P}^{\mathcal{F}}\left(\sum_{j=1}^{n}\left(\zeta_{j}^{2}-\mathbb{E}^{\mathcal{F}} \zeta_{j}^{2}\right) \geq\left(\rho^{2} \xi^{2}-\mathbb{E}^{\mathcal{F}} \zeta_{j}^{2}\right) n\right) \\
& \leq \mathbb{P}^{\mathcal{F}}\left(\left|\sum_{j=1}^{n}\left(\zeta_{j}^{2}-\mathbb{E}^{\mathcal{F}} \zeta_{j}^{2}\right)\right| \geq\left(\rho^{2} \xi^{2}-\mathbb{E}^{\mathcal{F}} \zeta_{j}^{2}\right) n\right) \tag{40}
\end{align*}
$$

By using the Theorem 3.3 the right hand side of (40) become

$$
\begin{align*}
& \quad I_{1 n}=\mathbb{P}^{\mathcal{F}}\left(\sum_{j=1}^{n} \zeta_{j}^{2} \geq\left(\rho^{2} \xi^{2}\right) n\right) \\
& \leq 2 \exp \left\{-\left(\frac{\left(\rho^{2} \xi^{2}-\mathbb{E}^{\mathcal{F}} \zeta_{1}^{2}\right) n 2^{p-1} b p}{B_{n}^{p}}\right)^{\frac{1}{2 p-1}}\left(\rho^{2} \xi^{2}-\mathbb{E}^{\mathcal{F}} \zeta_{1}^{2}\right) n\left(1-\frac{1}{p-1}\right)\right\} \\
& \times \exp \left\{\frac{1}{q} b^{q / p} e\right\} \tag{41}
\end{align*}
$$

We will bound now, the second probability of the right-hand side of the expression $I_{2 n}$. According to the Markov's inequality, it follows for any positive t.

$$
\begin{aligned}
I_{2 n} & =\mathbb{p}^{\mathcal{F}}\left(\frac{1}{n^{2}} \sum_{i=1}^{n} X_{i_{1}}^{2} \leq \xi^{2}\right) \\
& =\mathbb{p}^{\mathcal{F}}\left(\xi^{2} n^{2}-\sum_{i=1}^{n} X_{i_{-}}^{2} \geq 0\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\mathbb{E}^{\mathcal{F}}\left(\|_{\left\{n^{2}-\sum_{i=1}^{n} X_{i-1}^{2} \geq 0\right\}}\right) \\
& \leq \mathbb{E}^{\mathcal{F}}\left(\operatorname{expt}\left(n^{2} \xi^{2}-\sum_{i=1}^{n} X_{i_{-}}^{2}\right)\right) \quad(t>0) \\
& \leq e^{t n^{2} \xi^{2}} \mathbb{E}^{\mathcal{F}}\left(\exp -t \sum_{i=1}^{n} X_{i-1}^{2}\right) \\
& \leq e^{t n^{2} \xi^{2}} \prod_{i=1}^{n} \mathbb{E}^{\mathcal{F}}\left(\exp -t X_{i_{1}}^{2}\right) .
\end{aligned}
$$

Since

$$
I_{2 n} \leq e^{t n^{2} \xi^{2}} \prod_{i=1}^{n} \mathbb{E}^{\mathcal{F}}\left(\exp -t X_{i_{1}}^{2}\right)
$$

we first claim that for $x \geq 0$

$$
\begin{equation*}
e^{-x} \leq 1-x+\frac{1}{2} x^{2} \tag{42}
\end{equation*}
$$

To see this let $\psi(x)=e^{-x}$ and $\phi(x)=1-x+\frac{1}{2} x^{2},\left(\psi(x)^{\prime}=-e^{-x}\right)$ and recall that for every x

$$
\begin{equation*}
e^{x} \geq 1+x \quad \forall x, \tag{43}
\end{equation*}
$$

so that $\psi(x)^{\prime}=-e^{-x} \leq-1+x=\phi(x)^{\prime}$. Since $\psi(0)=1=\phi(0)$ this implies $\psi(x) \leq$ $\phi(x)$ for all $x \geq 0$ and (42) is claimed.

From (42) and (43) it follows that for $t>0$

$$
\begin{align*}
& e^{{t n^{2} \xi^{2}}_{\prod_{i=1}^{n}}^{n} \mathbb{E}^{\mathcal{F}}\left(\exp \left(-t X_{i_{1}}^{2}\right)\right) \leq e^{t n^{2} \xi^{2}}\left(1-t K_{1}+\frac{t^{2}}{2} K_{2}\right)^{n}} \\
& \leq e^{t n^{2} \xi^{2}}\left(\exp \left(-t K_{1}+\frac{t^{2}}{2} K_{2}\right)\right)^{n} \\
& \leq e^{t n^{2} \xi^{2}} \exp \left(-n t K_{1}+\frac{t^{2}}{2} n K_{2}\right) \tag{44}
\end{align*}
$$

where $K_{1}=\mathbb{E}^{\mathcal{F}}\left(X_{i}^{2}\right)<\infty, K_{2}=\mathbb{E}^{\mathcal{F}}\left(X_{i}^{4}\right)<\infty$.
Hence

$$
I_{2 n}=\mathbb{P}^{\mathcal{F}}\left(\sum_{i=1}^{n} X_{i_{-}}^{2} \leq n^{2} \xi^{2}\right) \leq\left[t\left(n^{2} \xi^{2}-n K_{1}\right)+\frac{n t^{2} K_{2}}{2}\right]
$$

with $h(t)=n^{2} \xi^{2}-n K_{1}+\frac{n t^{2} K_{2}}{2}$ and $t>0$, the equation $h^{\prime}(t)=0$ has the unique solution $t=\frac{K_{1}-n \xi^{2}}{K_{2}}$ which minimize $h(t)$. Hence

$$
\begin{equation*}
\mathbb{P}^{\mathcal{F}}\left(\sum_{i=1}^{n} X_{i-1}^{2} \leq n^{2} \xi^{2}\right) \leq \exp \left\{-\frac{1}{2} n \frac{\left(K_{1}-n \xi^{2}\right)^{2}}{K_{2}}\right\} \tag{45}
\end{equation*}
$$

Then for every $\rho>0, K_{1}<\infty, K_{2}<\infty$, and by the assumption
$\mathbb{P}^{\mathcal{F}}\left(\sqrt{n}\left|\widehat{\theta_{n}}-\theta\right|>\rho\right) \leq 2 \exp \left\{-\left(\frac{\left(\rho^{2} \xi^{2}-\mathrm{E}^{\mathrm{F}} \zeta_{1}^{2}\right) \mathrm{n} 2^{\mathrm{p}-1} \mathrm{bp}}{\mathrm{B}_{\mathrm{n}}^{\mathrm{p}}}\right)^{\frac{1}{2 \mathrm{p}-1}}\left(\rho^{2} \xi^{2}-\mathrm{E}^{\mathrm{F}} \zeta_{1}^{2}\right) \mathrm{n}\left(1-\frac{1}{\mathrm{p}-1}\right)\right\}$

$$
\times \exp \left\{\frac{1}{q} b^{q / p} e\right\}+\left\{-\frac{1}{2} n \frac{\left(K_{1}-n \xi^{2}\right)^{2}}{K_{2}}\right\}
$$

This completes the proof.
Corollary 4.1. The sequence $\left(\widehat{\theta_{n}}\right)_{n \in \mathbb{N}}$ is completels converges to the parameter θ of autoregressive process $A R(1)$ model. Then we have

$$
\begin{equation*}
\sum_{\mathrm{n}=1}^{\infty} \mathrm{p}^{\mathrm{F}}\left(\sqrt{\mathrm{n}}\left|\widehat{\theta_{\mathrm{n}}}-\theta\right|>\rho\right)<\infty . \tag{47}
\end{equation*}
$$

Proof: By using Theorem 3.6 and $\mathbb{E}^{\mathcal{F}}\left(X_{i}^{2}\right)<\infty, \mathbb{E}^{\mathcal{F}}\left(X_{i}^{4}\right)<\infty$ we get the result of (47) immediately.

5. CONCLUSION

Our work consists in establishing some new exponential inequalities for the distribution of sums of $\mathcal{F}-L N Q D$ random variables. Using these inequalities, we proved the conditionally complete convergence of first-order autoregressive processes $\operatorname{AR}(1)$ with identically distributed ($\mathcal{F}-$ LNQD) errors.

REFERENCES

[1] Yuan, D-M, An, J, Wu, X-S, Monatshefte Math., 161, 449, 2010.
[2] Yuan, D-M, Xie, Y, Monatshefte Math., 166, 281, 2012.
[3] Basawa, I.V, Parakasa Rao, B.L.S, Statistical Inference for Stochastic Processes, Academic press, London, 1980.
[4] Basawa, I.V, Scott, D, Asymptotic Optimal inference for non-ergodic models, Lecture Note in Statistics, vol. 17. Springer, New York, 1983.
[5] Yuan, D.M., Wu, X.S., J. Stat. Plan. Infer., 140, 2395, 2010.
[6] Yuan, D.M., Yang, Y.K., J. Math. Anal. Appl., 376, 282, 2011.
[7] Hsu, P.L., Robbins, H., Complete convergence and the law of large numbers, Proceedings of the National Academy of Sciences, USA, 33, 25-31, 1947.
[8] Wang, X.J., Hu, S.H., Yang, W.Z., Li, X.Q., J. Korean Statist. Soc., 39, 555, 2010.
[9] Cheng, Hu., Statistics and Probability Letters, 119, 248, 2016.

[^0]: ${ }^{1}$ Djillali Liabes University, Laboratory of Statistics and Processes Stochastic, 22000 Sidi Bel Abbes, Algeria. E-mail: n_azzedine@yahoo.fr; zeblahamina21@gmail.com; benaissamir@yahoo.fr.

