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Abstract. In this study, the first order nonlinear Volterra type integro-differential 

equations are used in order to identify approximate solutions concerning Euler polynomials of 

a matrix method based on collocation points. This method converts the mentioned nonlinear 

integro-differential equation into the matrix equation with the utilization of Euler polynomials 

along with collocation points. The matrix equation is a system of nonlinear algebraic equations 

with the unknown Euler coefficients. Additionally, this approach provides analytic solutions, if 

the exact solutions are polynomials. Furthermore, some illustrative examples are presented 

with the aid of an error estimation by using the Mean-Value Theorem and residual functions. 

The obtained results show that the developed method is efficient and simple enough to be 

applied. And also, convergence of the solutions of the problems were examined. In order to 

obtain the matrix equations and solutions for the selected problems, code was developed in 

MATLAB.  

Keywords: Euler and Taylor polynomials; collocation points; residual error analysis; 

matrix method; nonlinear terms; Volterra integro differential equation. 

 

 

1. INTRODUCTION  

 

 

Nonlinear Volterra type integro-differential equations are based on many problems such 

as quantum mechanics, electrodynamics, electronic systems, control problems, number theory, 

mechanics, astronomy, biology, economics, electrostatics and industry [1-7]. Since it is difficult 

to obtain analytical solutions of this type of equations, numerical methods are required. In last 

years, the mentioned problems have been numerically studied by other researchers [9-19].  In 

this study, Volterra integro-differential equation with nonlinear terms is shown as 
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where  pqQ t  and  g t  are functions defined on the interval  a t b ; ,jk jka b  and j  are 

appropriate constants;  y t  is an unknown solution function to be determined. For this aim, the 

Euler polynomials solution of the problem Eq.(1) – Eq.(2) in the finite series form is assumed  
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where  nE t  indicates the Euler-Taylor polynomials which are described as  
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Euler polynomials are strictly connected with Bernoulli ones, and are used in the Taylor 

expansion in a neighborhood of the origin of trigonometric and hyperbolic secant functions. 

Recursive computation of Euler polynomials can be obtained by using the following formula 

[8];  

 

0

( ) ( ) 2 , 1,2,...


 
   

 

n

n
n k

k

n
E t E t t n

k
. (5) 

 

Also, Euler polynomials  nE t  can be defined as polynomials of degree 0n  

satisfying the conditions  
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By means of (4), (5) or (6), the first Euler polynomials are described as 
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2. MATERIALS AND METHODS 

 

 

2.1. MATRIX RELATIONS FOR EULER POLYNOMIALS 

 

 

The nonlinear Volterra integro-differential Eq.(1) is considered to create the matrices of 

each term. The desired solution y(t) defined by the truncated Euler series Eq.(3) of Eq.(1) is 

modified to extract the matrix form, for n = 0, 1, 2, ..., N, as 
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On the other hand, using Euler polynomials and Taylor expansion, and by means of 

Eq.(5), the matrix relation between standard base matrix and Euler base matrix is constructed as 
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The relation between the matrix E(t) and its derivatives are 
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         =E A T B SA      , 0,1,2, .  
k k ky t t t k                             (9) 

 

In the similar manner, from Eq.(9), the matrix form of the nonlinear part 

       p q
y t y t  in Eq.(1) can be written as, for , 0,1 ,p q r  

 

                                        
             T B ST B SA R A 
p q p q

pqy t y t t t t                              (10) 

 

 
 

 

T

T
T

T

0

1

0 0

0 0

0

0 0

 
 
 
 
 
  N

t

t

t

,   

B

B
B

B

0 0

0 0

0

0 0

 
 
 

  
 
 
 

q

q
q

q

  

 

 A A    A        A0 1
T

Ndiag a a a  

 

Besides, the matrix form of the kernel function K(t, s) in Eq.(1) is computed as follows 
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By substituting the matrix relations Eq. (10) and Eq. (12) into Eq.(1) and then by using 

the collocation points  
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The system of matrix equations are obtained as follows: 
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where  
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and the fundamental matrix form 
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Besides, we can find for the condition Eq.(2), by using the relation Eq.(5),  
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Consequently, any one row of Eq.(14) by the row matrix Eq.(15) is replaced, hence the 

desired augmented matrix or the resulted matrix equation comes out as 

 

                                        W; V : G 
           or      W A VA G                                            (16) 

 



 Euler and Taylor polynomials method for …  Deniz Elmaci et al.  

 

www.josa.ro                                                                                                                                                   Mathematics Section  

400 

which suits to the system of nonlinear algebraic equations with the Euler coefficients 

0,1,...,Na N . The solution of this system provides the matrix A  and the solution of Eq.(1) – 

Eq.(2) is  

   E A T SA( ) ( ) ( )Ny t t t  

 

2.2. RESIDUAL ERROR ANALYSIS 

 

 

We define the residual function using both the linear and nonlinear parts of (1) for the 

present method as [9-12] 
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By means of the residual function defined by  NR t  and the mean value of the function 

 NR t  on the interval [a, b], the accuracy of the solution can be controlled and the error can 

be estimated [6-7,10-12]. Thus, we can estimate the upper bound of the mean error NR  as 

follows: 
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Kürkçü and Coworkers developed the convergence of Dickson polynomial solution of 

the nonlinear model problem using the residual function in Banach space [9]. We reveal the 

following convergence criteria for Euler polynomial solutions. Now, we can use the following 

theorem for our investigation. 
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Theorem 1.  [9] Let B be a Banach space. The residual function sequence   
2



N N
R t

is convergent in B and the following inequality is satisfied so that 0 1 N . Here N  is 

constant in B: 

                                                                1  N N NR t R t                                        (18) 

N  values are obtained by using estimated upper bound of the mean error which is 

found above. If N  values are in (0, 1) as N increases, the residual error will be convergent. 

 

 

3. NUMERİCAL EXAMPLES 

 

In this section, some numerical examples of the problem Eq. (1) are given to illustrate 

the accuracy and effectiveness properties of the method. 

 

Example 3.1.  Consider the first order Volterra integro-differential equation with 

nonlinear terms, 
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From Eq. (14), the fundamental matrix equation of the problem becomes 
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The augmented matrix for this fundamental matrix equation is calculated as  
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Hence, the new augmented matrix based on condition can be obtained as follows 
1 1

0 0 0 1 0 1 0
0 0 0 02 2

1 1 1 1 1 1 1 1 1
   ;   0 1 0 0     :    

4 16 24 4 16 4 16 64 2

01 0 0 0 0 0 0 0 0 0
1 0

2

 
  

 
       

   
 
 
  

W    ;     V    : G
 

 

By solving this system, substituting the resulting unknown Euler coefficients matrix 

into Eq. (3) we obtain the exact solution for N = 2 as  y t t . 

 

Example 3.2.  Consider the first order Volterra integro-differential equation with 

nonlinear terms, 
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The augmented matrix based on condition can be obtained as previous example  
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While the exact solution is    ty t e , the proposed method is applied and the 

approximate solutions are obtained as 
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for N = 2, 3, 4, 5, 6 respectively. The comparison of the exact solution and the approximate 

solutions is given in Fig.1, also the comparative solutions are given in Table 1. The upper error 

bounds are obtained as  

 

2 0.012281R , 3 0.365716R , 4 0.394521R , 5 0.248215R , 6 0.241687R . 

 



Euler and Taylor polynomials method for …  Deniz Elmaci et al. 

ISSN: 1844 – 9581                                                                                                                                         Mathematics Section 

403 

 
Figure 1. The comparison of the exact solution y(t) = e

t
, approximate solutions yN(t) for N = 2, 3, 4, 5, 6. 

 

Table 1. Exact and approximated solutions of Example 2 for the value of t. 

t 
Exact 

Solution 
y2 y3 y4 y5 y6 R2 R3 R4 R5 R6 

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.1 1.1052 1.1071 1.1048 1.1051 1.1052 1.1052 4.30e-02 -6.32e-03 -7.91e-04 2.51e-04 -7.77e-04 

0.2 1.2214 1.2284 1.2208 1.2215 1.2213 1.2212 8.61e-02 1.77e-03 8.01e-03 -5.31e-03 -5.34e-03 

0.3 1.3499 1.3639 1.3503 1.3513 1.3491 1.3490 1.25e-01 2.93e-02 3.22e-02 -1.32e-02 -1.26e-02 

0.4 1.4918 1.5136 1.4958 1.4967 1.4901 1.4901 1.55e-01 8.30e-02 8.00e-02 -1.57e-02 -1.57e-02 

0.5 1.6487 1.6775 1.6596 1.6601 1.6466 1.6465 1.64e-01 1.71e-01 1.62e-01 6.79e-04 -1.48e-09 

0.6 1.8221 1.8557 1.8441 1.8440 1.8216 1.8215 1.38e-01 3.04e-01 2.95e-01 5.92e-02 5.91e-02 

0.7 2.0138 2.0480 2.0518 2.0515 2.0191 2.0191 5.67e-02 4.93e-01 4.97e-01 1.97e-01 1.99e-01 

0.8 2.2255 2.2545 2.2849 2.2856 2.2441 2.2442 -1.10e-01 7.54e-01 7.96e-01 4.71e-01 4.71e-01 

0.9 2.4596 2.4752 2.5459 2.5495 2.5027 2.5024 -4.00e-01 1.0988 1.2234 9.69e-01 9.46e-01 

1.0 2.7183 2.7102 2.8372 2.8468 2.8023 2.8000 -8.64e-01 1.5422 1.8205 1.8192 1.7093 

 

Example 3.3.  Consider the first order Volterra integro-differential equation with 

nonlinear terms, 

 

            
2

0

1 ,      0 1,      0 1         
t

ty t y t y t t e t s y s ds y t  

 

The augmented matrix based on condition can be obtained as previous examples 

 

1/2

1 1
0 0 0 1 1 1 1

0 0 0 2 2 0
1 1 1 1

   ;   0 0 0 1 1 0 0 0     :    1
8 24 64 4

1
0 0 0 0 0 0 0 0 00 0 0

e

 
   

 
       

   
 
 
  

W    ;     V    : G
 

 

While the exact solution is    ty t e , the proposed method is applied and the 

approximate solutions are obtained as  
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  2

2 1 0.50741  y t t t , 

  2 3

3 1 0.48647 0.12156   y t t t t , 

  2 3 4

4 1 0.49864 0.15956 0.02901    y t t t t t , 

  2 3 4 5

5 1 0.49989 0.16588 0.03950 0.00564     y t t t t t t  

  2 3 4 5 6

6  1 0.49999 0.16660  0.04141 0.00785 0.00092      y t t t t t t t  

 

for N = 2, 3, 4, 5, 6 respectively. The comparison of the exact and the approximate solutions is 

given in Fig.2. In addition, the comparative solutions are given in Table 2. 

The upper error bounds are obtained as 2 0.04414R , 3 0.00152R , 4 7.468 05 R e

, 5 5.849 06 R e , 6 2.495 07 R e .  

By using the Theorem 1,  

 

 3 5 64

2 3 4 5

, , , ,... 0.034436, 0.049131, 0.078315, 0.042660, ...    
  

  
  

N

R R RR

R R R R
 

so, 

1
1




N

N

R

R
 

 

It can be concluded that the residual error decreases as N values are increasing. 

 
Figure 2. The comparison of the exact solution y(t) = e

-t
, approximate solutions yN(t) for N = 2, 3, 4, 5, 6. 
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Table 2. Exact and approximated solutions of Example 3 for the value of t. 

t 
Exact 

Solution 
y2 y3 y4 y5 y6 R2 R3 R4 R5 R6 

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.1 0.9048 0.9051 0.9047 0.9048 0.9048 0.9048 -5.89e-03 1.46e-03 1.02e-04 5.36e-06 2.16e-07 

0.2 0.8187 0.8203 0.8185 0.8187 0.8187 0.8187 -1.85e-02 1.24e-03 3.92e-05 -3.00e-09 -5.96e-08 

0.3 0.7408 0.7457 0.7405 0.7408 0.7408 0.7408 -3.49e-02 3.31e-04 -2.90e-05 -1.89e-06 -3.57e-08 

0.4 0.6703 0.6812 0.6701 0.6703 0.6703 0.6703 -5.19e-02 -5.79e-04 -4.08e-05 -3.16e-08 4.45e-08 

0.5 0.6065 0.6269 0.6064 0.6065 0.6065 0.6065 -6.64e-02 -1.02e-03 4.75e-08 1.49e-06 0.0000 

0.6 0.5488 0.5827 0.5489 0.5488 0.5488 0.5488 -7.56e-02 -7.10e-04 5.01e-05 -6.41e-08 -5.46e-08 

0.7 0.4966 0.5486 0.4967 0.4966 0.4966 0.4966 -7.64e-02 5.17e-04 4.53e-05 -2.99e-06 5.58e-08 

0.8 0.4493 0.5247 0.4491 0.4493 0.4493 0.4493 -6.60e-02 2.75e-03 -8.62e-05 4.98e-09 1.31e-07 

0.9 0.4066 0.5110 0.4054 0.4066 0.4066 0.4066 -4.15e-02 6.07e-03 -4.13e-04 2.18e-05 -8.73e-07 

1.0 0.3679 0.5074 0.3649 0.3681 0.3679 0.3679 2.37e-07 1.06e-02 -9.94e-04 8.01e-05 -5.24e-06 

 

 
Figure 3. The residual errors of Example 3 for N = 2, 3, 4, 5, 6. 

 

As shown in Table 2 and Fig.3, even if the N value slightly increases the exact can be 

reached quickly.  

 

 

4. CONCLUSIONS 

 

 

In this research, a collocation calculation model based on Euler polynomial for solutions 

of the Volterra type integro-differential equations with nonlinear terms is presented. 

Furthermore,  the control of the solutions is performed with the utilization of defined 

techniques. If the exact solution of the problem is a polynomial for instance, then the exact 

solution can be calculated by applying this technique.  The results of presented method are 

found very close to exact solution’s results. Another advantage of  the proposed technique is 

the utilization for testing reliability of the solutions of different problems. The Euler 

polynomial solutions approach to the exact solution, as N is increased. This situation reflects on 

the residual functions of problems. Euler matrix method provides two main advantages: first, it 

is simple to construct the main matrix equations and  increasing the efficiency and easiness in 
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the programming. Second considerable advantage is the duration of computation of this 

method.   
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