HOLDITCH-TYPE THEOREMS FOR THE POLAR MOMENT OF INERTIA UNDER THE 1-PARAMETER CLOSED PLANAR HOMOTHETIC MOTION

MUTLU AKAR ${ }^{1}$, SALİM YÜCE ${ }^{1}$

Manuscript received: 18.03.2021; Accepted paper: 18.05.2021;
Published online: 30.06.2021.

Abstract

In this study, during the 1-parameter closed homothetic motion, the Holditch-Type Theorems are presented for the polar moments of inertia of the closed orbit curves of three non-collinear points.

Keywords: Holditch Theorem; Homothetic Motion; Polar Moment of Inertia.

1. INTRODUCTION

Harmonic evolute surface of quasi binormal surface associated with quasi frame was studied [1]. The N-Bishop frame for timelike curves in Minkowski space was investigated [2]. Authors defined Fermi-Walker derivative in Galilean space Fermi-Walker transport and non-rotating frame by using Fermi-Walker derivative were given [3].

Let E and E^{\prime} be moving and fixed Euclidean planes $\left(E=E^{\prime}=E^{2}\right)$ and $\left\{O ; \mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ and $\left\{O^{\prime} ; \mathbf{e}_{1}^{\prime}, \mathbf{e}_{2}^{\prime}\right\}$ be their rectangular coordinate systems, respectively. By taking $\mathbf{O O}^{\prime}=\mathbf{u}=u_{1} \mathbf{e}_{\mathbf{1}}+u_{2} \mathbf{e}_{2}$, the motion defined by the transformation

$$
\begin{equation*}
\mathbf{x}^{\prime}=h \mathbf{x}-\mathbf{u}, \tag{1}
\end{equation*}
$$

is called 1-parameter planar homothetic motion and denoted by $H=E / E^{\prime}$, where h is a homothetic scale of the motion $H=E / E^{\prime}$, and $\mathbf{x}, \mathbf{x}^{\prime}$ are the position vectors with respect to the moving and fixed rectangular coordinate systems of a point $X=\left(x_{1}, x_{2}\right) \in E$, respectively. The homothetic scale h and the vectors $\mathbf{x}, \mathbf{x}^{\prime}$ and \mathbf{u} are continuously differentiable functions of a real parameter t, (Fig. 1). Furthermore, at the initial time $t=t_{0}$ the coordinate systems $\left\{O ; \mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ and $\left\{O^{\prime} ; \mathbf{e}_{1}^{\prime}, \mathbf{e}_{2}^{\prime}\right\}$ are coincident [4].

Taking $\theta=\theta(t)$ as the rotation angle between \mathbf{e}_{1} and \mathbf{e}_{1}^{\prime}, the equation

$$
\begin{align*}
& \mathbf{e}_{1}=\cos \theta \mathbf{e}_{1}^{\prime}+\sin \theta \mathbf{e}_{2}^{\prime} \\
& \mathbf{e}_{2}=-\sin \theta \mathbf{e}_{1}^{\prime}+\cos \theta \mathbf{e}_{2}^{\prime} \tag{2}
\end{align*}
$$

can be written.
If the equation (1) is differentiated with respect to t, the sliding velocity of a fixed point $X=\left(x_{1}, x_{2}\right) \in E$ is gotten as

[^0]\[

$$
\begin{align*}
\mathbf{V}_{\mathbf{f}} & =\left\{-\dot{u}_{1}+\left(u_{2}-h x_{2}\right) \dot{\theta}+\dot{h} x_{1}\right\} \mathbf{e}_{\mathbf{1}} \tag{3}\\
& +\left\{-\dot{u}_{2}+\left(-u_{1}+h x_{1}\right) \dot{\theta}+\dot{h} x_{2}\right\} \mathbf{e}_{2} .
\end{align*}
$$
\]

To avoid the cases of the pure translation and the pure rotation, it must be assumed that $\dot{\theta}=\dot{\theta}(t) \neq 0, h=h(t) \neq$ constant.

Figure 1. Parameter planar homothetic motion.
Suppose that $\mathbf{V}_{\mathbf{f}}=\mathbf{0}$ in the motion $H=E / E^{\prime}$, then at the pole point $P=\left(p_{1}, p_{2}\right)$ of the motion

$$
\begin{align*}
& p_{1}=\frac{\dot{h}\left(\dot{u}_{1}-u_{2} \dot{\theta}\right)+h \dot{\theta}\left(\dot{u}_{2}+u_{1} \dot{\theta}\right)}{\dot{h}^{2}+h^{2} \dot{\theta}^{2}} \\
& p_{2}=\frac{\dot{h}\left(\dot{u}_{2}+u_{1} \dot{\theta}\right)-h \dot{\theta}\left(\dot{u}_{1}-u_{2} \dot{\theta}\right)}{\dot{h}^{2}+h^{2} \dot{\theta}^{2}} \tag{4}
\end{align*}
$$

are found. During the motion $H=E / E^{\prime}$, the locus of the pole points $P=\left(p_{1}, p_{2}\right) \in E$ (which are fixed in both planes at all " t ") are called moving and fixed pole curves and will be denoted by (P) and $\left(P^{\prime}\right)$, on moving and fixed planes, respectively.

If \dot{u}_{1} and \dot{u}_{2} are solved from the equation (4), then

$$
\begin{align*}
& \dot{u}_{1}=p_{1} \dot{h}-p_{2} h \dot{\theta}+u_{2} \dot{\theta} \tag{5}\\
& \dot{u}_{2}=p_{2} \dot{h}+p_{1} h \dot{\theta}-u_{1} \dot{\theta} .
\end{align*}
$$

is obtained. If these expressions are replaced in the equation (4), for the sliding velocity

$$
\begin{align*}
\mathbf{V}_{\mathbf{f}}= & \left\{\left(x_{1}-p_{1}\right) \dot{h}-\left(x_{2}-p_{2}\right) h \dot{\theta}\right\} \mathbf{e}_{1} \tag{6}\\
& +\left\{\left(x_{1}-p_{1}\right) h \dot{\theta}+\left(x_{2}-p_{2}\right) \dot{h}\right\} \mathbf{e}_{2}
\end{align*}
$$

is gotten [4,5]. During the 1-parameter planar homothetic motion, if there exists a number $T>0$ such that

$$
\begin{align*}
& u_{j}(t+T)=u_{j}(t), \quad j=1,2 \\
& \theta(t+T)=\theta(t)+2 \pi v, \quad v \in \mathbb{Z} \tag{7}\\
& h(t+T)=h(t), h(0)=h(T)=1, \quad \forall t \in \mathbb{R}
\end{align*}
$$

for all t (the smallest such number T is called the period of motion), then the motion $H=E / E^{\prime}$ is called a 1-parameter closed planar homothetic motion, where the integer v is the number of rotations of the motion $H=E / E^{\prime}$, [4].

Suppose that $v>0$ throughout this study.
The Steiner point S, which is the center of gravity of the moving pole curve (P) for the distribution of mass with density $h^{2} d \theta$, is given by

$$
\begin{equation*}
s_{j}=\frac{h^{2} p_{j} d \theta}{h^{2} d \theta}, \quad j=1,2 \tag{8}
\end{equation*}
$$

where the integrations are taken along the closed pole curve (P).
Furthermore, using the mean-value theorem for integration of a continuous function and the equation (7)

$$
\begin{equation*}
\int_{0}^{T} h^{2}(t) d \theta(t)=2 h^{2}\left(t_{0}\right) \pi \nu, \tag{9}
\end{equation*}
$$

is had where $h:=h\left(t_{0}\right), t_{0} \in[0, T]$ [4].

2. THE POLAR MOMENT OF INERTIA OF THE ORBIT CURVE

Let $X=\left(x_{1}, x_{2}\right)$ be a fixed point in E and (X) be the orbit curve of X. Then, the polar moment of inertia (PMI) T_{X} of (X) is given by

$$
\begin{equation*}
T_{X}=\oint\left\|\mathbf{x}^{\prime}\right\|^{2} d \theta \tag{10}
\end{equation*}
$$

where \mathbf{x}^{\prime} is given by the equation (1) and the integration is taken along the closed orbit curve (X) in E^{\prime} [6].

Using the equation (1)

$$
\begin{align*}
T_{X} & =\left(x_{1}^{2}+x_{2}^{2}\right) \oint h^{2} d \theta-2 x_{1} \oint h u_{1} d \theta \tag{11}\\
& -2 x_{2} \oint h u_{2} d \theta+\oint\left(u_{1}^{2}+u_{2}^{2}\right) d \theta
\end{align*}
$$

is obtained. If $X=O\left(x_{1}=x_{2}=0\right)$ then, for the PMI of the origin point O

$$
\begin{equation*}
T_{o}=\oint\left(u_{1}^{2}+u_{2}^{2}\right) d \theta \tag{12}
\end{equation*}
$$

is had. However, from the equation (5)

$$
\begin{align*}
& u_{1} d \theta=p_{1} h d \theta+p_{2} d h-d u_{2} \\
& u_{2} d \theta=p_{2} h d \theta-p_{1} d h-d u_{1} \tag{13}
\end{align*}
$$

is gotten. Substituting the equations (8), (9), (12) and (13) into the equation (11) yields

$$
\begin{align*}
T_{X}= & T_{O}+2 h^{2}\left(t_{0}\right) \pi \nu\left(x_{1}^{2}+x_{2}^{2}-2 x_{1} s_{1}-2 x_{2} s_{2}\right) \tag{14}\\
& +2 x_{1} \eta_{1}+2 x_{2} \eta_{2}
\end{align*}
$$

where

$$
\begin{align*}
& \eta_{1}=\oint\left(-p_{2} h d h+h d u_{2}\right), \tag{15}\\
& \eta_{2}=\oint\left(p_{1} h d h-h d u_{1}\right) .
\end{align*}
$$

Then, it may be given the following theorem, [5].
Theorem 1. Let us consider the 1-parameter closed planar homothetic motions. All the fixed points of the moving plane E whose orbit curves have equal the PMI lie on the same circle with the center

$$
\begin{equation*}
C=\left(c_{1}, c_{2}\right)=\left(s_{1}-\frac{\eta_{1}}{2 h^{2}\left(t_{0}\right) \pi v}, s_{2}-\frac{\eta_{2}}{2 h^{2}\left(t_{0}\right) \pi v}\right) \tag{16}
\end{equation*}
$$

in the moving plane, [5].
Theorem 2. (Holditch Type Theorem): Let us consider a line segment XY with constant length. If the endpoints X and Y trace the same closed convex curve in the fixed plane during the 1-parameter planar homothetic motion $H=E / E^{\prime}$, then, the point Z on this line segment traces another closed curve. The difference between the polar moments of inertia (PMIs) of these curves depends on the distances of Z from the endpoints and the homothetic scale of the motion, [5].

Theorem 3. Let three collinear points X, Y and Z in the moving plane E such that $\overline{X Z}=\lambda a, \overline{Z Y}=\lambda b$. During the 1-parameter closed planar homothetic motion $H=E / E^{\prime}$, for the PMIs of the points,

$$
\begin{equation*}
T_{Z}=\frac{b T_{X}+a T_{Y}}{a+b}-2 h^{2}\left(t_{0}\right) \pi \nu \lambda^{2} a b \tag{17}
\end{equation*}
$$

is obtained [5].
Special Case 1. In the case of $h(t) \equiv 1, \eta_{1}=\eta_{2}=0$ is obtained. Thus,

$$
\begin{equation*}
T_{X}=T_{O}+2 \pi v\left(x_{1}^{2}+x_{2}^{2}-2 x_{1} s_{1}-2 x_{2} s_{2}\right) \tag{18}
\end{equation*}
$$

is gotten which was given by [4]. Also, the center C and the Steiner point S coincide, [6].

3. THE HOLDITCH TYPE THEOREMS FOR POLAR MOMENTS OF INERTIA

PART I

Let the endpoints X and Y of a line segment with constant length d trace the closed curves k_{X} and k_{Y}, respectively, during the closed planar homothetic motion. Now, let's
construct a frame $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$ by means of the normal vector \mathbf{a}_{3} of the moving plane E as follows (Fig. 2):

$$
\mathbf{a}_{1}:=\frac{\mathbf{y}-\mathbf{x}}{d}, \quad \mathbf{a}_{2}=\mathbf{a}_{3} \times \mathbf{a}_{1} .
$$

Then,

$$
\oint\left\langle d \mathbf{a}_{1}, \mathbf{a}_{2}\right\rangle=-\oint\left\langle d \mathbf{a}_{2}, \mathbf{a}_{1}\right\rangle=2 \pi v
$$

is had.

Figure 2. The Holditch type theorems for polar moments of inertia.
For Hessian form of line segment $\mathbf{X Y}$ in the moving plane E, it can be written $\mathbf{X Y} . . . x \cos \psi+y \sin \psi=p, \quad p=\overline{O M}$.

Let us choose a fixed point $Z\left(\overline{Z M}=c_{2}, \overline{X M}=\mu d, \overline{M Y}=\lambda d, \overline{O V}=h p, \overline{O^{\prime} N}=h p^{\prime}\right)$. Then

$$
\begin{align*}
& \mathbf{z}=\lambda \mathbf{x}+\mu \mathbf{y}+c_{2} \mathbf{a}_{2}, \tag{19}\\
& \lambda+\mu=1, \quad \lambda, \mu, \mathrm{c}_{2}=\text { constant. }
\end{align*}
$$

can be written. If the equation (19) is substituted in the equation (1),

$$
\begin{equation*}
\mathbf{z}^{\prime}=\lambda \mathbf{x}^{\prime}+\mu \mathbf{y}^{\prime}+h c_{2} \mathbf{a}_{\mathbf{2}} \tag{20}
\end{equation*}
$$

is obtained. Then, for the PMI of the closed orbit curve k_{Z},

$$
T_{Z}=\oint\left\|\mathbf{z}^{\prime}\right\|^{2} d \theta
$$

is gotten or

$$
\begin{align*}
T_{Z} & =\lambda^{2} T_{X}+2 \lambda \mu T_{X Y}+\mu^{2} T_{Y}+2 h^{2}\left(t_{0}\right) \pi v c_{2}^{2} \\
& +2 c_{2} \oint\left\langle\lambda \mathbf{x}^{\prime}+\mu \mathbf{y}^{\prime}, h \mathbf{a}_{2}\right\rangle d \theta \tag{21}
\end{align*}
$$

where $T_{X Y}=T_{Y X}=\oint\left\langle\mathbf{x}^{\prime}, \mathbf{y}^{\prime}\right\rangle d \theta$ is the mixture the PMIs of the curves k_{X} and k_{Y}.
Let $\left(g_{1}\right)$ be the closed envelope curve of the line g_{1} which is parallel to the line segment XY. For Hessian form of the line g_{1}

$$
x \cos \psi+y \sin \psi=h p
$$

can be written. Then, the length of $\left(g_{1}\right)$ is given by

$$
\begin{equation*}
L_{g_{1}}=\oint h p^{\prime} d \theta=\oint\left\langle\lambda \mathbf{x}^{\prime}+\mu \mathbf{y}^{\prime}, h \mathbf{a}_{2}\right\rangle d \theta \tag{22}
\end{equation*}
$$

(see [7]).
Then, it may be given the following theorem using the equations (21) and (22).
Theorem 4. During the closed planar homothetic motion $H=E / E^{\prime}$ with homothetic scale h, if the endpoints of a line segment $\mathbf{X Y}$ with constant length d move along the closed curves k_{X} and k_{Y}, respectively, then a point Z which is fixed according to the line segment $\mathbf{X Y}$ traces another closed curve k_{Z}. The PMI- T_{Z} of k_{Z} depends not only T_{X} and T_{Y} but also the lengths of the line segment $\mathbf{X Y}$ and the envelope curve of the line g_{1} which is parallel to the line segment XY. That is,

$$
\begin{align*}
T_{Z} & =\lambda T_{X}+\mu T_{Y}-2 h^{2}\left(t_{0}\right) \lambda \mu \pi \nu d^{2} \\
& +2 c_{2}\left(\pi v c_{2}+L_{g_{1}}\right), \tag{23}
\end{align*}
$$

where c_{2} is the distance between point Z and point M and $L_{g_{1}}$ is the length of closed envelope curve of the line g_{1}.

Special Case 2. In the case of $h(t) \equiv 1$, the result given by [8] is gotten. Also, $L_{g_{1}}=L_{X Y}$ is obtained [8].

Special Case 3. In the case of $c_{2}=0$, i.e. the points X, Y and Z are collinear, the result given by [5] is obtained.

PART II

Under the closed planar homothetic motion $H=E / E^{\prime}$, if there non-collinear points $X, Y, Z \in E$ move along the same closed trajectory curve k (with orientation), then $T_{X}=T_{Y}=T_{Z}=T$ can be written and the circumcenter of the triangle $\triangle X Y Z$ is the point C.
If the point C is chosen instead of the origin of the moving orthonormal frame on the moving plane E, then from equation (14), for the PMIs of the points $X=(r, 0), Q=(x, y) \in E$

$$
T_{Q}=T_{C}+2 h^{2}\left(t_{0}\right) \pi v\left(x^{2}+y^{2}\right)
$$

is obtained and

$$
T_{X}=T_{C}+2 h^{2}\left(t_{0}\right) \pi v r^{2} .
$$

Theorem 5. During the closed planar homothetic motion $H=E / E^{\prime}$, let three non-collinear points $X, Y, Z \in E$ trace the same closed curve with the PMI- T. Then for the PMI of any point $Q=(x, y) \in E$

$$
T-T_{Q}=2 h^{2}\left(t_{0}\right) \pi v\left(r^{2}-R^{2}\right)
$$

is gotten where r is the circumradius of triangle with the vertices X, Y, Z and R is the distance between the points Q and circumcenter.

Special Case 4. In the case of $h(t) \equiv 1$, the result given by [8] is gotten.
Now, it can be given the following theorem which is the general form of Holditch Theorem for closed planar homothetic motion:

Theorem 6. During the closed planar homothetic motion $H=E / E^{\prime}$, let T_{X}, T_{Y} and T_{Z} be the PMIs of the $X=(0,0), Y=(b, 0), Z=(c, d) \in E$, respectively.

Then for the PMI of any point $Q=(x, y) \in E$

$$
\begin{align*}
T_{Q}= & \left(1-\frac{x}{b}+\frac{c-b}{b d} y\right) T_{X}+\left(\frac{x}{b}-\frac{c y}{b d}\right) T_{Y} \\
& +\frac{y}{d} T_{Z}+2 h^{2}\left(t_{0}\right) \pi v \tag{24}\\
& \left(x^{2}+y^{2}-b x-\frac{c^{2}+d^{2}}{d} y+\frac{b c}{d} y\right)
\end{align*}
$$

is obtained.
Proof: One can also prove the theorem 6, using the equation (14) for T_{X}, T_{Y}, T_{Z} and T_{Q}.
Special Case 5. In the case of $h(t) \equiv 1$, the result given by [8] is had.

4. MAPLE EXAMPLES

Let $X=(2,4)$ be a fixed point in E and (X) be the orbit curve of X during 1parameter closed planar homothetic motion such that $u_{1}(t)=\cos t, u_{2}(t)=\sin t$, $h(t)=\cos (6 t), \theta(t)=t, v=1$. Here are (X) and PMI of T_{X} using by Maple Software:

```
> restart:with(plottools):with(plots):
>Motion:=proc(x1,x2,u1,u2,h,b,c,d) local k1;
>k1:=animate(plot,[[h*(x1* cos(b) -x2*sin(b))-
u1*\operatorname{cos (b) +u2*}\operatorname{sin}(\textrm{b}),h* (x\mp@subsup{1}{}{*}\operatorname{sin}(\textrm{b})+x2*\operatorname{cos}(b))-u1*}\operatorname{sin}(\textrm{b})
u2*}\operatorname{cos(b),t=c..A], color=red],A=c..0+d,color=red,scaling=CONSTRAINED);
> end proc:
>Motion(2,4,\operatorname{cos}(t),\operatorname{sin}(t),\operatorname{cos}(6*t),t,0,
2*Pi);
```



```
> restart:
> PMI:=proc(x1,x2,ul,u2,h,b,n,c,d) local T,H;
>
H:=evalf(int((ul**2+u2**2)*diff (b,t),t=c..d) +2* (int(h**2*diff(b,t),t=c..d)/
(2*Pi*n))* (Pi*n)* (x1**2+x2**2-2*x1*(int((()
u2*diff(b,t)) +h*diff(b,t)*(diff(u2,t)+ul*diff(b,t)))/(diff(h,t)** 2+(h*diff(
b,t))**2) )*h**2* diff(b,t),t=c..d) /(int (h**2*diff (b,t),t=c..d)) -
2*x2*int((((diff(h,t))*(diff (u2,t) +ul*diff(b,t)) -h*diff(b,t)*(diff (ul,t) -
u2*diff(b,t)))/(diff(h,t)**2+(h*diff(b,t))**2))*h**2*diff(b,t),t=c..d)/int(
h**2*diff(b,t),t=c..d)))+2*x1*(int(-
(((diff(h,t))*(diff(u2,t) +ul*diff(b,t))-h*diff(b,t)*(diff(ul,t) -
u2*diff(b,t)) ) /(diff(h,t)**2+(h* diff (b,t))**2))*h*diff (h,t),t=c..d) +int(h*d
iff(u2,t),t=c..d)) +2*x2*(int((((diff(h,t))*(diff(ul,t) -
u2*diff(b,t)) +h*diff(b,t)*(diff(u2,t)+ul*diff(b,t)))/(diff(h,t)**2+(h*diff(
b,t))**2) )*h*diff(h,t),t=c..d)+int(-h*diff(u1,t),t=c..d))):
>print(T[X]=H) ;
> end:
> PMI (2,4,\operatorname{cos}(t),sin(t),\operatorname{cos}(6*t),t,1,0,2*Pi);
```

$$
T_{X}=69.11503839
$$

Acknowledgement: The first author would like to thank Coordinatorship of Scientific Research Projects at the Yildiz Technical University for their financial supports during his doctorate studies (Grant No: 2010-01-03-DOP01).

REFERENCES

[1] Kaymanlı, G.U., Korpınar, T., Journal of Science and Arts, 4(53), 881, 2020.
[2] Samanc1, H.K., Journal of Science and Arts, 3(52), 519, 2020.
[3] Şahin, T., Karakuş, F., Orbay, K., Journal of Science and Arts, 1(50), 13, 2020.
[4] Tutar, A., Kuruoğlu, N., Mechanism and Machine Theory, 34(1), 1, 1999.
[5] Düldül, M., Kuruoğlu, N., Applied Mathematics E-Notes, 8, 271, 2008.
[6] Müller, H.R., Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft, band, 29, 115, 1978.
[7] Yüce, S., Kuruoğlu, N., Italian Journal of Pure and Applied Mathematics, 21, 105, 2007.
[8] Yüce, S., Düldül, M., Kuruoğlu, N., Studia Scientiarum Mathematicarum Hungarica, 42(1), 73, 2005.

[^0]: ${ }^{1}$ Yildiz Technical University, College of Arts and Sciences, Department of Mathematics, Esenler, 34210, Istanbul, Turkey. E-mail: makar@yildiz.edu.tr; sayuce@yildiz.edu.tr.

