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Abstract. In this paper, bicomplex balancing quaternions and bicomplex Lucas-
balancing quaternions was defined. Moreover we give some properties involving these
sequences. Finally, a different way to obtained the n th terms of these sequence is stated using
the determinant of tridiagonal matrix whose entries are bicomplex balancing quaternions and
bicomplex Lucas-balancing quaternions.
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1. INTRODUCTION

The bicomplex numbers are defined by the basis {1, i, j, ij}, where i,j and ij satisfy
the following properties:

2

i2=-1, j*=-1, ij=ji
A bicomplex number g can be expressed as follows:

q=¢q1tiq;+jqsz +ijq,
or

q=(q1t+1iq;) +j(q3 +iqs)

where q4, q,, g3 and q, are reel numbers.
Also the set of bicomplex numbers can be expressed by a basis {1, 1, j, ij} as

K={q=q,+iq; +jq3 +ijqs : 91,92, q3,q4 € IR}.

A set of bicomplex numbers K is a real vector space with the addition and scalar
multiplication operations. In addition, the vector space with the properties of scalar
multiplication and the product of the bicomplex numbers is a commutative algebra. Again the
bicomplex numbers form a commutative ring with unity which contain the complex numbers.
For more details about this type numbers [1-2].

Quaternions were formally introduced by W.R. Hamilton in 1843. In [3] D. Tasci and
N.F. Yalcin studied Fibonacci p-quaternions. Again in [4], D. Tasci studied k-Jacobsthal and
k-Jacobsthal Lucas quaternions. In [5] F.T. Aydin studied bicomplex k- Fibonacci
quaternions. Bicomplex numbers, just like quaternions, are a generalization of complex
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numbers of entities specified by four real numbers. But quaternions are non-commutative,
whereas, bicomplex numbers and bicomplex quaternions are commutative. An other
difference is that, quaternions form a division algebra, but bicomplex quaternions do not form
a division algebra.

Bicomplex numbers were introduced by C. Segre in 1892 [6]. Further G. B. Price, the
bicomplex numbers gave in his book on multicomplex spaces and functions [7].

In recent years it has been stated that several properties of quantum mechanics can be
generalized to the bicomplex numbers; the Schrodinger equation for a particle in one
dimension was generalized [8]. Further the fractal structures of these numbers are studied [9].
In [10], Horadam introduced the Fibonacci quaternions sequence.

Behera and Panda introduced the concept of balancing numbers [11]. They defined a
balancing number n as a solution of Diophantine equation. A positive integer n is called
balancing number if

1+2++Mm-1)=m+1)+Mm+2)+--+(n+r)

for some natural number r. Here r is called the balancer corresponding to the balancing
number n. For example 6 and 35 are balancing numbers with balancers 2 and 14, respectively.
Again some authors proved that the balancing numbers fulfil the following recurrence
relation:

B 1+1=6B, - Bn1, n>1

where Bo=0 and B;=1.

Panda [12] studied several fascinating properties of balancing numbers calling the
positive square root of 8x2+1, a Lucas- balancing number for each balancing number x. All
balancing numbers x and corresponding Lucas-balancing numbers y are positive integer
solutions of Diophantine equation 8x2 + 1 = y2. Balancing and Lucas-balancing numbers share
the same linear recurrence x,,., = 6x, — x,,_1,While initial values of balancing numbers are
Xo=0, X;=1 and for Lucas-balancing numbers x,=1, x,=3. Ray studied some Diophantine
equations involving balancing and Lucas- balancing numbers [13-16].

We denote the n th balancing and Lucas-balancing numbers by B, and C,,
respectively.

The sequences {B, }y=o and {C, };=, satisfy the following recurrence relations:

Bn+1=6Bs - Bn.1, (n=1), Bo=0, B;=1 1)
C n+1=6Cy - Cpg, (n21), Co=1, C1=3 2
We note that the Binet-like formulas for balancing and Lucas- balancing numbers are

_ an_ﬁn

a—P)

a"+p"
a—B)

B, and C,, =

@)

respectively. We remark that a=3+V8 and p=3-V8.
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2. BICOMPLEX BALANCING QUATERNIONS

Definition 1. The bicomplex balancing quaternions are defined by
QB = By + iBpy1 + jBpiz + Byas 4)
where B,,is the n th balancing number.
Lemma 2. For n>1, we have
QBp+1 + QBn_1 = 6QB,
Proof: By the Definition 1, we write
QBny1 + QBp_y = (Bpyy + Bpo1) + i(Bnyz + Bp) + j(Bryz+Bn) + §((BnyatBy)
Now, considering (1), we have
Bpy1 + Bpo1 = 6By,

So we write

QBni1+ @By = 6B, + i(6Bn+1) j"j(Bn+2.). + ij((Bn+3)
= 6(Bn +iBp+1 + jBniz + jBny3)
= 60QB,.

Thus the proof is complete.
Considering the Lemma 2, we obtain the following recurrence relation:

QBn+1 = 6QBn - QBn—ll (n = 1) (5)

with the initial values, QB, =i + 6j + 35ij and QB; = 1 + 6i + 35j + 204ij.
Theorem 3. (The Binet-like formula for bicomplex balancing quaternions) For n>0

_aa” —bp”

QB = ——5

where a and b are bicomplex quaternions defined by a=1+iatjo*+ijo® and b=1+if+jp>+ijp3,
respectively. Moreover o and  are the roots of the equation r2- 6r +1 =0, i.e., a = 3+V8 and

B =3-\8.
Proof: Using the Binet formula for balancing numbers, i.e.,

a® — "
B, = _B
a—p
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we find
QBn = By + iBpy1 + jBnsz + jBnys
o — Bn O(n+1 _ Bn+1 o(n+2 _ Bn+2 o(n+3 _ Bn+3
=< >+i—+j—+ij—
a—f a—f a—f a—f
(I +ia+ja? +ija®)a™ — (1+iB + jB? + ijp>)B"
= 8

aa™-ppm"

ap

Theorem 4. The generating function of the bicomplex balancing quaternions is

o0 n _ QBo+(QB1—6QBy)x
Y=o QBpx" = 1-6x+x?

where QBy =i+ 6j + 35ijand QB; = 1 + 6i + 35j + 204ij.
Proof: Let

f(x) = z QB,x" = QBo + QB1x + QBx* + -+ + QBpx" + -+

n=0
be the generating function of the bicomplex balancing quaternions. Since
6xf(x) = 6QBox + 6QB1x* + 6QB?x3 + -+ QBp_1x" + -+
and
x2f(x) = QBox? + QB1x3 + QB?*x* + -+ + QBp_,x" + -+
and considering the recurrence relation for bicomplex balancing quaternions we obtain
(1 — 6x + x*)f(x) = QBo + (QB; — 6QB,)x
or

QBo + (QB1 — 6QBo)x
(1—-6x+x)

f&x) =

So the theorem is proved.
Theorem 5. (The Catalan-like identity for bicomplex balancing quaternions)
QBy-rQBnsr — (QBy)* = —(ab)B,
wheren,r € Z* ,n>rand B, is the r th balancing number.

Proof: Using the Binet-like formula for the bicomplex balancing quaternions and taking into
account that a3 = 1, we have
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QBn_rQBnH.—(QBn)Z _ (aa"_;:Zﬁ"—r) (aan+r_bﬁn+r) _ (aaZ:Zﬁn)z

a-p
- (ail;)z (ap)" [(i_: + Z_:) - 2]
ab  (a?T+p?-2
T @-pr ( @p)” )
_ (a‘_”;)z (a” — B7)?
- (22
= —(ab)B,

Corollary 6. (Cassini's-like identity for bicomplex balancing quaternions)
QBn—rQBn+r_(QBn)2 = —(ab )-

Proof: Note that for r = 1, the equality (6) gives Cassini's identity. Further we remark that
B;2=1.

Theorem 7. (D'ocagne’s-like identity for bicomplex balancing quaternions) If m > n and
m,neZ* , then

QBnQBpy1 — QBp41QB, = —(ab ) Bmn.
where By, _, is (m-n) th balancing number.

Proof: Using the Binet-like formula for bicomplex balancing quaternions and off = 1,we have

O Qs = (ST (20 (s

— _(ab) [(Eza_ﬁﬁ)’;z] (—a™ "B — Mg 4 Mg 4 BMNR)

ab m-n m-n
= Lo [a™ M + @) — e — )]

ab m-n m-n
=g (@ = BPla™ " = g

- (=
= (ab)By—_p.

So the proof is complete.
Now we give the summation formula for bicomplex balancing quaternions.

Theorem 8.

QB; =-[5QB, — QB,,_; — (1 +1i+ 5j + 29ij)].

I

s

0

S
1l

Proof: From Lemma 2, we know that
QBn = 6QBn—1 + QBn—Z

So we write
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QBo = 6QB_1 —QB_;
@QB1 = 6QBo — QB4

QBn-1 =60QBy_; —QB,_3
@B, = 6QB,_; —QB,_,

Then summing the above equalities, we obtain

..[;

- _1
D QB; =£[5QB, — By, — 508, — 0B_,]
n=0
Now considering QB_; = —1 4+ j +6ij and QB_, = —6 — i + ij, we have

5

n=0

[5QB,, — QB,_1 — (1 +i+ 5j + 29ij)]

4>|»—x

Thus the theorem is proved..

Theorem 9. For the integer n>1, we have

6 —11"[0B; 0): QBn+1
[ el
0 QBl QBn+1 r1

Proof: (By the induction on n). If n = 1, then the result is obvious. We assume that it is true
forn-1, i.e.,

[6 —1]n_1 [QBZ QB1] _[CBris QBn]
1 0 0B: @B, 0B,  @By-1l

By simple calculation using induction's hypothesis we have

[6 —1]”[QBZ QB1]_16 —1][6 ]”‘1 @B, QBy]
0l l@B, @B, 11 0 QB1 0): M
:_6 —1] [QBn+1 ]
¥l n QBn 1
_ [6@Bni1 — @Bn  6QBy — @By
QBn+1 QBn
— QBn+2 QBn+1
[0Bn+1 @By

which ends the proof.
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3. TRIDIAGONAL MATRIXWITH BICOMPLEX BALANCING QUATERNIONS

In this section, we give another way to obtain the n th term of the bicomplex balancing
quaternion sequence as the computation of a tridiagonal matrix.

Theorem 10. [4] Let {x,,};=, be any second order linear sequence defined recursively by the

following ;

Xpt1 = Ax,tBx,_; n>1,

with Xo = C, X; =D. Then for alln >0

C DO0O
-1 0 B0

x, = | 0 —14B

0000
0000

Proposition 11. For alln>0

|QB0 QB, 0 0
-1 0 -10

00
00
00
AB
—1A s )x(n+1)

(o)) oo O
oS O O

-1
=1 6 'm+)xm+1)

Proof: In Theorem 10, consider A = 6, B = -1, C = QBy and D = QB;, then the proof is

immediately seen.

4. BICOMPLEX LUCAS-BALANCING QUATERNIONS

Definition 12. The bicomplex Lucas-balancing quaternions are defined by

QCp, = Cp +iCpyq +jCryy +1jChys (7)

where C,, is the n th Lucas-balancing number.

Theorem 13. Forn>1,n€Z"*

QCpy1 + QCh_1 = 6QC,.

Proof: Considering the equality (7) and

Cny1 = 60 —Chq,(n 2 1)
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then the proof is immediately seen.
We note that by the Theorem 13, we obtain the following recurrence relation:

QCh41 = 6QC,—QCpy,(n21),n2>1
with the initial values QCo = 1 + 3i + 17j + 99ij and QC; = 3 + 17i + 99j + 577ij.

Theorem 14. The Binet- like formula for bicomplex Lucas-balancing quaternions is

QCn:aa“;—bﬁ“
where a = 1+ ia +ja® +ija3 b=1+if +jp?> +ijplanda =3 ++/8, p=3—8.

Proof: Using the following Binet-like formula for the Lucas- balancing numbers

and considering the equality (7), the proof is easily seen.

Theorem 15. The generating function for bicomplex Lucas-balancing quaternions is

i 00" = QCo + (QC;1 — 6QCo)x
i e 1 — 6% + x°

Proof: The proof of this theorem is similar to the proof of Theorem 4.

Theorem 16. (The Catalan's formula for bicomplex Lucas-balancing quaternions) For n > r
andn,rezZ* , we have

QCy—QChir — (an)z = 2abB§ (8)

where a =1 +ia+jo? +ija®and b=1+iB +jp*+ijf*and B, is the r th balancing
number.

Proof: Using the Binet-like formula for the bicomplex Lucas-balancing quaternions, the proof
is immediately seen.

Corollary 17. The Cassini's-like formula for bicomplex Lucas-balancing quaternions is

QCn—lQCn+1 - (an)z = 2ab (9)

Proof: We note that for r = 1, the equality (8) gives the formula (9). Further we remark that
B,2=1.

Theorem 18. (D'ocagne's-like identity for bicomplex Lucas-balancing quaternions) If m > n
andm,neZ* ,then
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QCmQChy1 — QCn41QC, = —8(ab)By,_,
where B,,_,} is (m-n)th balancing number.

Proof: Considering the Binet-like formula for bicomplex Lucas-balancing quaternions, the
proof is easily seen.

Theorem 19. The following equalities are valid:

i) Z(QBn)Cn — QB3 = %

ii) 2(QC,)By — QBan = 272

where a = 1 +ia + jo? + ija® andb = 1 +ip + jB? + ijB°.
Proof: Using the following formulas

_aa” —bp”

a—p

and off = 1, the proof is immediately seen.

_ocn—B“ _aa“+b[3“ a” + p"

2 T YT T

Proposition 20. For n > 0, we have

12Co QC; 0 0 00
1.0 -10 00
oc, =| 0 -1 6 -1 00
000 0 _ 6-1
0 0 0 O =1 6 'm+nxm+1)

Proof: In Theorem 3.1 considering A=1, B =-6, C=QC, and D = QC, , then the proof is
easily seen.

5. CONCLUSION

In this paper, we presented new two sequences, these are bicomplex balancing
quaternions and bicomplex Lucas- balancing quaternions. Moreover we obtained some
formulas for example; Binet formula, Catalan formula, Cassini formula etc. Furthermore we
presented n-th term of bicomplex balancing quaternion sequences as computation of a
tridiagonal matrix.
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