BICOMPLEX BALANCING AND BICOMPLEX LUCAS-BALANCING QUATERNIONS

DURSUN TASCI ${ }^{1}$

Manuscript received: 11.09.2020; Accepted paper: 15.12.2020;
Published online: 30.03.2021.

Abstract

In this paper, bicomplex balancing quaternions and bicomplex Lucasbalancing quaternions was defined. Moreover we give some properties involving these sequences. Finally, a different way to obtained the nth terms of these sequence is stated using the determinant of tridiagonal matrix whose entries are bicomplex balancing quaternions and bicomplex Lucas-balancing quaternions.

Keywords: bicomplex balancing; bicomplex balancing quaternions; bicomplex LucasBalancing quaternions.

1. INTRODUCTION

The bicomplex numbers are defined by the basis $\{1, i, j, i j\}$, where i, j and $i j$ satisfy the following properties:

$$
i^{2}=-1, \quad j^{2}=-1, \quad i j=j i
$$

A bicomplex number q can be expressed as follows:

$$
q=q_{1}+i q_{2}+j q_{3}+i j q_{4}
$$

or

$$
q=\left(q_{1}+i q_{2}\right)+j\left(q_{3}+i q_{4}\right)
$$

where q_{1}, q_{2}, q_{3} and q_{4} are reel numbers.
Also the set of bicomplex numbers can be expressed by a basis $\{1, i, j, i j\}$ as

$$
K=\left\{q=q_{1}+i q_{2}+j q_{3}+i j q_{4}: q_{1}, q_{2}, q_{3}, q_{4} \in I R\right\}
$$

A set of bicomplex numbers K is a real vector space with the addition and scalar multiplication operations. In addition, the vector space with the properties of scalar multiplication and the product of the bicomplex numbers is a commutative algebra. Again the bicomplex numbers form a commutative ring with unity which contain the complex numbers. For more details about this type numbers [1-2].

Quaternions were formally introduced by W.R. Hamilton in 1843. In [3] D. Tasci and N.F. Yalcin studied Fibonacci p-quaternions. Again in [4], D. Tasci studied k-Jacobsthal and k-Jacobsthal Lucas quaternions. In [5] F.T. Aydın studied bicomplex k- Fibonacci quaternions. Bicomplex numbers, just like quaternions, are a generalization of complex

[^0]numbers of entities specified by four real numbers. But quaternions are non-commutative, whereas, bicomplex numbers and bicomplex quaternions are commutative. An other difference is that, quaternions form a division algebra, but bicomplex quaternions do not form a division algebra.

Bicomplex numbers were introduced by C. Segre in 1892 [6]. Further G. B. Price, the bicomplex numbers gave in his book on multicomplex spaces and functions [7].

In recent years it has been stated that several properties of quantum mechanics can be generalized to the bicomplex numbers; the Schrödinger equation for a particle in one dimension was generalized [8]. Further the fractal structures of these numbers are studied [9]. In [10], Horadam introduced the Fibonacci quaternions sequence.

Behera and Panda introduced the concept of balancing numbers [11]. They defined a balancing number n as a solution of Diophantine equation. A positive integer n is called balancing number if

$$
1+2+\cdots+(n-1)=(n+1)+(n+2)+\cdots+(n+r)
$$

for some natural number r. Here r is called the balancer corresponding to the balancing number n. For example 6 and 35 are balancing numbers with balancers 2 and 14, respectively. Again some authors proved that the balancing numbers fulfil the following recurrence relation:

$$
B_{n+1}=6 B_{n}-B_{n-1}, n \geq 1
$$

where $\mathrm{B}_{0}=0$ and $\mathrm{B}_{1}=1$.
Panda [12] studied several fascinating properties of balancing numbers calling the positive square root of $8 x^{2}+1$, a Lucas- balancing number for each balancing number x . All balancing numbers x and corresponding Lucas-balancing numbers y are positive integer solutions of Diophantine equation $8 x^{2}+1=y^{2}$. Balancing and Lucas-balancing numbers share the same linear recurrence $x_{n+1}=6 x_{n}-x_{n-1}$, while initial values of balancing numbers are $\mathrm{x}_{0}=0, \mathrm{x}_{1}=1$ and for Lucas-balancing numbers $\mathrm{x}_{0}=1, \mathrm{x}_{1}=3$. Ray studied some Diophantine equations involving balancing and Lucas- balancing numbers [13-16].

We denote the n th balancing and Lucas-balancing numbers by B_{n} and C_{n}, respectively.

The sequences $\left\{B_{n}\right\}_{n=0}^{\infty}$ and $\left\{C_{n}\right\}_{n=0}^{\infty}$ satisfy the following recurrence relations:

$$
\begin{align*}
& B_{n+1}=6 B_{n}-B_{n-1},(n \geq 1), B_{0}=0, B_{1}=1 \tag{1}\\
& C_{n+1}=6 C_{n}-C_{n-1},(n \geq 1), C_{0}=1, C_{1}=3 \tag{2}
\end{align*}
$$

We note that the Binet-like formulas for balancing and Lucas- balancing numbers are

$$
\begin{equation*}
B_{n}=\frac{\alpha^{\mathrm{n}}-\beta^{\mathrm{n}}}{\alpha-\beta)} \text { and } C_{n}=\frac{\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}}{\alpha-\beta)} \tag{3}
\end{equation*}
$$

respectively. We remark that $\alpha=3+\sqrt{ } 8$ and $\beta=3-\sqrt{ } 8$.

2. BICOMPLEX BALANCING QUATERNIONS

Definition 1. The bicomplex balancing quaternions are defined by

$$
\begin{equation*}
Q B_{n}=B_{n}+i B_{n+1}+j B_{n+2}+i j B_{n+3} \tag{4}
\end{equation*}
$$

where B_{n} is the nth balancing number.
Lemma 2. For $\mathrm{n} \geq 1$, we have

$$
Q B_{n+1}+Q B_{n-1}=6 Q B_{n} .
$$

Proof: By the Definition 1, we write

$$
Q B_{n+1}+Q B_{n-1}=\left(B_{n+1}+B_{n-1}\right)+i\left(B_{n+2}+B_{n}\right)+j\left(B_{n+3}+B_{n}\right)+i j\left(\left(B_{n+4}+B_{n}\right)\right.
$$

Now, considering (1), we have

$$
B_{n+1}+B_{n-1}=6 B_{n} .
$$

So we write

$$
\begin{aligned}
Q B_{n+1}+Q B_{n-1} & =6 B_{n}+i\left(6 B_{n+1}\right)+j\left(B_{n+2}\right)+i j\left(\left(B_{n+3}\right)\right. \\
& =6\left(B_{n}+i B_{n+1}+j B_{n+2}+i j B_{n+3}\right) \\
& =6 Q B_{n} .
\end{aligned}
$$

Thus the proof is complete.
Considering the Lemma 2, we obtain the following recurrence relation:

$$
\begin{equation*}
Q B_{n+1}=6 Q B_{n}-Q B_{n-1},(\mathrm{n} \geq 1) \tag{5}
\end{equation*}
$$

with the initial values, $\mathrm{QB}_{0}=\mathrm{i}+6 \mathrm{j}+35 \mathrm{ij}$ and $\mathrm{QB}_{1}=1+6 \mathrm{i}+35 \mathrm{j}+204 \mathrm{ij}$.
Theorem 3. (The Binet-like formula for bicomplex balancing quaternions) For $\mathrm{n} \geq 0$

$$
\mathrm{QB}_{n}=\frac{\mathrm{a} \alpha^{\mathrm{n}}-\mathrm{b} \beta^{\mathrm{n}}}{\alpha-\beta}
$$

where a and b are bicomplex quaternions defined by $a=1+i \alpha+j \alpha^{2}+i j \alpha^{3}$ and $b=1+i \beta+j \beta^{2}+i j \beta^{3}$, respectively. Moreover α and β are the roots of the equation $r^{2}-6 r+1=0$, i.e., $\alpha=3+\sqrt{8}$ and $\beta=3-\sqrt{ } 8$.

Proof: Using the Binet formula for balancing numbers, i.e.,

$$
\mathrm{B}_{n}=\frac{\alpha^{\mathrm{n}}-\beta^{\mathrm{n}}}{\alpha-\beta}
$$

we find

$$
\begin{aligned}
& Q B_{n}=B_{n}+i B_{n+1}+j B_{n+2}+i j B_{n+3} \\
& =\left(\frac{\alpha^{\mathrm{n}}-\beta^{\mathrm{n}}}{\alpha-\beta}\right)+i\left(\frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta}\right)+j\left(\frac{\alpha^{n+2}-\beta^{n+2}}{\alpha-\beta}\right)+i j\left(\frac{\alpha^{n+3}-\beta^{n+3}}{\alpha-\beta}\right) \\
& =\frac{\left(1+i \alpha+j \alpha^{2}+i j \alpha^{3}\right) \alpha^{n}-\left(1+i \beta+j \beta^{2}+i j \beta^{3}\right) \beta^{n}}{\alpha-\beta} \\
& =\frac{a \alpha^{n}-b \beta^{n}}{\alpha-\beta} .
\end{aligned}
$$

Theorem 4. The generating function of the bicomplex balancing quaternions is

$$
\sum_{n=0}^{\infty} \mathrm{QB}_{n} \mathrm{x}^{\mathrm{n}}=\frac{\mathrm{QB}_{0}+\left(\mathrm{QB}_{1}-6 \mathrm{QB}_{0}\right) \mathrm{x}}{1-6 \mathrm{x}+\mathrm{x}^{2}},
$$

where $\mathrm{QB}_{0}=\mathrm{i}+6 \mathrm{j}+35 \mathrm{ij}$ and $\mathrm{QB}_{1}=1+6 \mathrm{i}+35 \mathrm{j}+204 \mathrm{ij}$.
Proof: Let

$$
f(x)=\sum_{n=0}^{\infty} \mathrm{QB}_{n} \mathrm{x}^{\mathrm{n}}=Q B_{0}+Q B_{1} x+Q B_{2} x^{2}+\cdots+Q B_{n} x^{\mathrm{n}}+\cdots
$$

be the generating function of the bicomplex balancing quaternions. Since

$$
6 x f(x)=6 Q B_{0} x+6 Q B_{1} x^{2}+6 Q B^{2} x^{3}+\cdots+Q B_{n-1} x^{\mathrm{n}}+\cdots
$$

and

$$
x^{2} f(x)=Q B_{0} x^{2}+Q B_{1} x^{3}+Q B^{2} x^{4}+\cdots+Q B_{n-2} x^{\mathrm{n}}+\cdots
$$

and considering the recurrence relation for bicomplex balancing quaternions we obtain

$$
\left(1-6 x+x^{2}\right) f(x)=Q_{0}+\left(\mathrm{QB}_{1}-6 \mathrm{QB}_{0}\right) x
$$

or

$$
f(x)=\frac{\mathrm{QB}_{0}+\left(\mathrm{QB}_{1}-6 \mathrm{QB}_{0}\right) \mathrm{x}}{(1-6 \mathrm{x}+\mathrm{x})}
$$

So the theorem is proved.
Theorem 5. (The Catalan-like identity for bicomplex balancing quaternions)

$$
Q B_{\mathrm{n}-\mathrm{r}} \mathrm{QB}_{\mathrm{n}+\mathrm{r}}-\left(\mathrm{QB}_{\mathrm{n}}\right)^{2}=-(\mathrm{ab}) \mathrm{B}_{\mathrm{r}}^{2}
$$

where $\mathrm{n}, \mathrm{r} \in \mathbb{Z}^{+}, \mathrm{n}>\mathrm{r}$ and B_{r} is the r th balancing number.
Proof: Using the Binet-like formula for the bicomplex balancing quaternions and taking into account that $\alpha \beta=1$, we have

$$
\begin{aligned}
Q B_{\mathrm{n}-\mathrm{r}} \mathrm{QB}_{\mathrm{n}+\mathrm{r}}- & \left(\mathrm{QB}_{\mathrm{n}}\right)^{2}=\left(\frac{a \alpha^{n-r}-b \beta^{n-r}}{\alpha-\beta}\right)\left(\frac{a \alpha^{n+r}-b \beta^{n+r}}{\alpha-\beta}\right)-\left(\frac{a \alpha^{n}-b \beta^{n}}{\alpha-\beta}\right)^{2} \\
& =-\frac{a b}{(\alpha-\beta)^{2}}(\alpha \beta)^{n}\left[\left(\frac{\beta^{r}}{\alpha^{r}}+\frac{\alpha^{r}}{\beta^{r}}\right)-2\right] \\
& =-\frac{a b}{(\alpha-\beta)^{2}}\left(\frac{\alpha^{2 r}+\beta^{2 r}-2}{(\alpha \beta)^{r}}\right) \\
& =-\frac{a b}{(\alpha-\beta)^{2}}\left(\alpha^{r}-\beta^{r}\right)^{2} \\
& =-(a b)\left(\frac{\alpha^{r}-\beta^{r}}{\alpha-\beta}\right)^{2} \\
& =-(a b) \mathrm{B}_{\mathrm{r}}^{2}
\end{aligned}
$$

Corollary 6. (Cassini's-like identity for bicomplex balancing quaternions)

$$
Q B_{\mathrm{n}-\mathrm{r}} \mathrm{QB}_{\mathrm{n}+\mathrm{r}}-\left(\mathrm{QB}_{\mathrm{n}}\right)^{2}=-(\mathrm{ab}) .
$$

Proof: Note that for $\mathrm{r}=1$, the equality (6) gives Cassini's identity. Further we remark that $B_{1}{ }^{2}=1$.

Theorem 7. (D'ocagne's-like identity for bicomplex balancing quaternions) If $m>n$ and $m, n \in \mathbb{Z}^{+}$, then

$$
Q B_{\mathrm{m}} \mathrm{QB}_{\mathrm{n}+1}-Q B_{\mathrm{m}+1} \mathrm{QB}_{\mathrm{n}}=-(\mathrm{ab}) B_{\mathrm{m}-\mathrm{n}}
$$

where $B_{\mathrm{m}-\mathrm{n}}$ is (m-n) th balancing number.
Proof: Using the Binet-like formula for bicomplex balancing quaternions and $\alpha \beta=1$, we have

$$
\begin{aligned}
Q B_{\mathrm{m}} \mathrm{QB}_{\mathrm{n}+1}-Q B_{\mathrm{m}+1} \mathrm{QB}_{\mathrm{n}} & =\left(\frac{a \alpha^{m}-b \beta^{m}}{\alpha-\beta}\right)\left(\frac{a \alpha^{n+1}-b \beta^{n+1}}{\alpha-\beta}\right)-\left(\frac{a \alpha^{m+1}-b \beta^{m+1}}{\alpha-\beta}\right)\left(\frac{a \alpha^{m+1}-b \beta^{m+1}}{\alpha-\beta}\right) \\
& =-(a b)\left[\frac{(\alpha \beta)^{n}}{(\alpha-\beta)^{2}}\right]\left(-\alpha^{m-n} \beta-\beta^{m-n} \alpha+\alpha^{m-n} \alpha+\beta^{m-n} \beta\right) \\
& =\frac{a b}{(\alpha-\beta)^{2}}\left[\alpha^{m-n}(-\beta+\alpha)-\beta^{m-n}(\alpha-\beta)\right] \\
& =\frac{a b}{(\alpha-\beta)^{2}}(\alpha-\beta)\left[\alpha^{m-n}-\beta^{m-n}\right] \\
& =(a b)\left(\frac{\alpha^{m-n}-\beta^{m-n}}{\alpha-\beta}\right) \\
& =(a b) B_{\mathrm{m}-\mathrm{n}} .
\end{aligned}
$$

So the proof is complete.
Now we give the summation formula for bicomplex balancing quaternions.

Theorem 8.

$$
\sum_{n=0}^{\infty} \mathrm{QB}_{i}=\frac{1}{4}\left[5 \mathrm{QB}_{n}-Q B_{n-1}-(1+\mathrm{i}+5 \mathrm{j}+29 \mathrm{ij})\right]
$$

Proof: From Lemma 2, we know that

$$
Q B_{n}=6 Q B_{n-1}+Q B_{n-2}
$$

So we write
$\mathrm{QB}_{0}=6 \mathrm{QB}_{-1}-\mathrm{QB}_{-2}$
$Q B_{1}=6 \mathrm{QB}_{0}-\mathrm{QB}_{-1}$
\vdots
$Q B_{n-1}=6 Q B_{n-2}-Q B_{n-3}$
$Q B_{n}=6 Q B_{n-1}-Q B_{n-2}$
Then summing the above equalities, we obtain

$$
\sum_{n=0}^{\infty} \mathrm{QB}_{i}=\frac{1}{4}\left[5 \mathrm{QB}_{n}-Q B_{n-1}-5 Q B_{-1}-Q B_{-2}\right]
$$

Now considering $\mathrm{QB}_{-1}=-1+\mathrm{j}+6 \mathrm{ij}$ and $\mathrm{QB}_{-2}=-6-\mathrm{i}+\mathrm{ij}$, we have

$$
\sum_{n=0}^{\infty} \mathrm{QB}_{i}=\frac{1}{4}\left[5 \mathrm{QB}_{n}-Q B_{n-1}-(1+\mathrm{i}+5 \mathrm{j}+29 \mathrm{ij})\right]
$$

Thus the theorem is proved..
Theorem 9. For the integer $n \geq 1$, we have

$$
\left[\begin{array}{cc}
6 & -1 \\
1 & 0
\end{array}\right]^{n}\left[\begin{array}{ll}
Q \mathrm{~B}_{2} & Q \mathrm{~B}_{1} \\
Q \mathrm{~B}_{1} & Q \mathrm{~B}_{\mathrm{n}}
\end{array}\right]=\left[\begin{array}{cc}
Q \mathrm{~B}_{n+2} & Q \mathrm{~B}_{\mathrm{n}+1} \\
Q \mathrm{~B}_{n+1} & Q \mathrm{~B}_{\mathrm{n}}
\end{array}\right]
$$

Proof: (By the induction on n). If $\mathrm{n}=1$, then the result is obvious. We assume that it is true for n-1, i.e.,

$$
\left[\begin{array}{cc}
6 & -1 \\
1 & 0
\end{array}\right]^{n-1}\left[\begin{array}{ll}
Q \mathrm{~B}_{2} & Q \mathrm{~B}_{1} \\
Q \mathrm{~B}_{1} & Q \mathrm{~B}_{\mathrm{n}}
\end{array}\right]=\left[\begin{array}{cc}
Q \mathrm{~B}_{n+1} & Q \mathrm{~B}_{\mathrm{n}} \\
Q \mathrm{~B}_{n} & Q \mathrm{~B}_{\mathrm{n}-1}
\end{array}\right] .
$$

By simple calculation using induction's hypothesis we have

$$
\begin{aligned}
{\left[\begin{array}{cc}
6 & -1 \\
1 & 0
\end{array}\right]^{n}\left[\begin{array}{ll}
Q \mathrm{~B}_{2} & Q \mathrm{~B}_{1} \\
Q \mathrm{~B}_{1} & Q \mathrm{~B}_{\mathrm{n}}
\end{array}\right] } & =\left[\begin{array}{cc}
6 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
6 & -1 \\
1 & 0
\end{array}\right]^{n-1}\left[\begin{array}{ll}
Q \mathrm{~B}_{2} & Q \mathrm{~B}_{1} \\
Q \mathrm{~B}_{1} & Q \mathrm{~B}_{\mathrm{n}}
\end{array}\right] \\
& =\left[\begin{array}{cc}
6 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
Q \mathrm{~B}_{n+1} & Q \mathrm{~B}_{\mathrm{n}} \\
Q \mathrm{~B}_{n} & Q \mathrm{~B}_{\mathrm{n}-1}
\end{array}\right] \\
& =\left[\begin{array}{cc}
6 Q \mathrm{~B}_{n+1}-Q \mathrm{~B}_{\mathrm{n}} & 6 Q \mathrm{~B}_{n}-Q \mathrm{~B}_{\mathrm{n}-1} \\
Q \mathrm{~B}_{n+1} & Q \mathrm{~B}_{\mathrm{n}}
\end{array}\right] \\
& =\left[\begin{array}{cc}
Q \mathrm{~B}_{n+2} & Q \mathrm{~B}_{\mathrm{n}+1} \\
Q \mathrm{~B}_{n+1} & Q \mathrm{~B}_{\mathrm{n}}
\end{array}\right]
\end{aligned}
$$

which ends the proof.

3. TRIDIAGONAL MATRIX WITH BICOMPLEX BALANCING QUATERNIONS

In this section, we give another way to obtain the n th term of the bicomplex balancing quaternion sequence as the computation of a tridiagonal matrix.

Theorem 10. [4] Let $\left\{x_{n}\right\}_{n=0}^{\infty}$ be any second order linear sequence defined recursively by the following ;

$$
x_{n+1}=\mathrm{A} x_{n}+\mathrm{B} x_{n-1} \quad \mathrm{n} \geq 1,
$$

with $\mathrm{x}_{0}=\mathrm{C}, \mathrm{x}_{1}=\mathrm{D}$. Then for all $\mathrm{n} \geq 0$

$$
x_{n}=\left|\begin{array}{ccccc}
C & D & 0 & 0 & \\
-1 & 0 & B & 0 & \cdots \\
0 & 00 \\
0 & -1 & A B & & 00 \\
\vdots & \ddots & 0 \\
0000 & & A B \\
0000 & \cdots & -1 A
\end{array}\right|_{(n+1) \times(n+1)}
$$

Proposition 11. For all $n \geq 0$

$$
Q \mathrm{~B}_{\mathrm{n}}=\left|\begin{array}{ccccccc}
Q \mathrm{~B}_{0} & Q \mathrm{~B}_{1} & 0 & 0 & & 0 & 0 \\
-1 & 0 & -1 & 0 & \cdots & 0 & 0 \\
0 & -1 & 6 & -1 & & 0 & 0 \\
0 & 0 & & 0 & 0 & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 6 & -1
\end{array}\right|_{(n+1) \times(n+1)}
$$

Proof: In Theorem 10, consider $\mathrm{A}=6, \mathrm{~B}=-1, \mathrm{C}=\mathrm{QB}_{0}$ and $\mathrm{D}=\mathrm{QB}_{1}$, then the proof is immediately seen.

4. BICOMPLEX LUCAS-BALANCING QUATERNIONS

Definition 12. The bicomplex Lucas-balancing quaternions are defined by

$$
\begin{equation*}
Q C_{n}=C_{n}+i C_{n+1}+j C_{n+2}+i j C_{n+3} \tag{7}
\end{equation*}
$$

where C_{n} is the n th Lucas-balancing number.
Theorem 13. For $n \geq 1, n \in \mathbb{Z}^{+}$

$$
Q C_{n+1}+Q C_{n-1}=6 Q C_{n}
$$

Proof: Considering the equality (7) and

$$
C_{n+1}=6 C_{n}-C_{n-1},(\mathrm{n} \geq 1)
$$

then the proof is immediately seen.
We note that by the Theorem 13, we obtain the following recurrence relation:

$$
Q C_{n+1}=6 Q C_{n}-Q C_{n-1},(\mathrm{n} \geq 1), \mathrm{n} \geq 1
$$

with the initial values $\mathrm{QC}_{0}=1+3 \mathrm{i}+17 \mathrm{j}+99 \mathrm{ij}$ and $\mathrm{QC}_{1}=3+17 \mathrm{i}+99 \mathrm{j}+577 \mathrm{ij}$.
Theorem 14. The Binet- like formula for bicomplex Lucas-balancing quaternions is

$$
Q C_{n}=\frac{a \alpha^{\mathrm{n}}+b \beta^{\mathrm{n}}}{2}
$$

where $\mathrm{a}=1+\mathrm{i} \alpha+\mathrm{j} \alpha^{2}+\mathrm{ij} \alpha^{3}, \mathrm{~b}=1+\mathrm{i} \beta+\mathrm{j} \beta^{2}+\mathrm{ij} \beta^{3}$ and $\alpha=3+\sqrt{8}, \quad \beta=3-\sqrt{8}$.
Proof: Using the following Binet-like formula for the Lucas- balancing numbers

$$
C_{n}=\frac{\alpha^{n}+\beta^{n}}{2}
$$

and considering the equality (7), the proof is easily seen.
Theorem 15. The generating function for bicomplex Lucas-balancing quaternions is

$$
\sum_{n=0}^{\infty} \mathrm{QC}_{n} \mathrm{x}^{\mathrm{n}}=\frac{\mathrm{QC}_{0}+\left(\mathrm{QC}_{1}-6 \mathrm{QC}_{0}\right) \mathrm{x}}{1-6 \mathrm{x}+\mathrm{x}^{2}}
$$

Proof: The proof of this theorem is similar to the proof of Theorem 4.
Theorem 16. (The Catalan's formula for bicomplex Lucas-balancing quaternions) For $n>r$ and $n, r \in \mathbb{Z}^{+}$, we have

$$
\begin{equation*}
Q C_{\mathrm{n}-\mathrm{r}} \mathrm{QC}_{\mathrm{n}+\mathrm{r}}-\left(\mathrm{QC}_{\mathrm{n}}\right)^{2}=2 \mathrm{abB}_{\mathrm{r}}^{2} \tag{8}
\end{equation*}
$$

where $\mathrm{a}=1+\mathrm{i} \alpha+\mathrm{j} \alpha^{2}+\mathrm{ij} \alpha^{3}$ and $\mathrm{b}=1+\mathrm{i} \beta+\mathrm{j} \beta^{2}+\mathrm{ij} \beta^{3}$ and B_{r} is the r th balancing number.

Proof: Using the Binet-like formula for the bicomplex Lucas-balancing quaternions, the proof is immediately seen.

Corollary 17. The Cassini's-like formula for bicomplex Lucas-balancing quaternions is

$$
\begin{equation*}
\mathrm{QC}_{\mathrm{n}-1} \mathrm{QC}_{\mathrm{n}+1}-\left(\mathrm{QC}_{\mathrm{n}}\right)^{2}=2 \mathrm{ab} \tag{9}
\end{equation*}
$$

Proof: We note that for $\mathrm{r}=1$, the equality (8) gives the formula (9). Further we remark that $\mathrm{B}_{1}{ }^{2}=1$.

Theorem 18. (D'ocagne's-like identity for bicomplex Lucas-balancing quaternions) If $\mathrm{m}>\mathrm{n}$ and $m, n \in \mathbb{Z}^{+}$, then

$$
Q C_{\mathrm{m}} Q C_{n+1}-Q C_{\mathrm{m}+1} Q C_{n}=-8(\mathrm{ab}) \mathrm{B}_{m-n}
$$

where $\left.\mathrm{B}_{m-n}\right\}$ is (m-n)th balancing number.
Proof: Considering the Binet-like formula for bicomplex Lucas-balancing quaternions, the proof is easily seen.

Theorem 19. The following equalities are valid:
i) $\quad 2\left(Q B_{n}\right) C_{n}-Q B_{2 n}=\frac{a-b}{2 \sqrt{8}}$
ii) $2\left(Q \mathrm{C}_{n}\right) \mathrm{B}_{\mathrm{n}}-Q \mathrm{~B}_{2 \mathrm{n}}=\frac{\mathrm{b}-\mathrm{a}}{2 \sqrt{8}}$
where $\mathrm{a}=1+\mathrm{i} \alpha+\mathrm{j} \alpha^{2}+\mathrm{ij} \alpha^{3}$ andb $=1+\mathrm{i} \beta+\mathrm{j} \beta^{2}+\mathrm{ij} \beta^{3}$.
Proof: Using the following formulas

$$
Q B_{n}=\frac{\mathrm{a} \alpha^{\mathrm{n}}-\mathrm{b} \beta^{\mathrm{n}}}{\alpha-\beta}, B_{n}=\frac{\alpha^{\mathrm{n}}-\beta^{\mathrm{n}}}{\alpha-\beta}, Q C_{n}=\frac{\mathrm{a} \alpha^{\mathrm{n}}+\mathrm{b} \beta^{\mathrm{n}}}{2}, C_{n}=\frac{\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}}{2}
$$

and $\alpha \beta=1$, the proof is immediately seen.
Proposition 20. For $\mathrm{n} \geq 0$, we have

Proof: In Theorem 3.1 considering $\mathrm{A}=1, \mathrm{~B}=-6, \mathrm{C}=\mathrm{QC}_{0}$ and $\mathrm{D}=\mathrm{QC}_{1}$, then the proof is easily seen.

5. CONCLUSION

In this paper, we presented new two sequences, these are bicomplex balancing quaternions and bicomplex Lucas- balancing quaternions. Moreover we obtained some formulas for example; Binet formula, Catalan formula, Cassini formula etc. Furthermore we presented n-th term of bicomplex balancing quaternion sequences as computation of a tridiagonal matrix.

REFERENCES

[1] Luna- Elizarraras, M.E., Shapiro, M., Struppa, D.C., Vajiac, A., Cubo A Mathematical Journal, 44(2), 61, 2012.
[2] Hamilton, W.R., Elements of quaternions, Longmans, Green and Company, London, p. 45, 1866.
[3] Tasci, D., Journal of Sciences and Arts, 17(3), 469, 2017.
[4] Tasci, D., Yalcin, N.F., Advances in Applied Clifford Algebras, 25(1), 245, 2015.
[5] Aydin, T.F., Chaos Solutions and Fractals, 106, 147, 2018.
[6] Segre, C., Mathematische Annalen, 40(3), 413, 1892.
[7] Price, G.B., Handbook of Electronic, M. Dekker, New York, p. 48, 1991.
[8] Ray, P.K., Integers, 14, A8, 2014.
[9] Ray, P.K., Bulletin of Parana's Mathematical Society, 31(2), 161, 2013.
[10] Horadam, A.F., Ulam Quarterly, 2(2), 23, 1993.
[11] Behera, A., Panda, G.K., Fibonacci Quarterly, 37(2), 98, 1999.
[12] Panda, G.K., Some fascinating properties of balancing numbers. In: Webb, W.A. (Ed.), Congressus Numerantium, Vol. 194 - Proceedings of the Eleventh International Conference on Fibonacci Numbers and Their Applications, Utilitas Mathematica Pub., Winnipeg, p. 185, 2009.
[13] Kiliç, E., Tasci, D., Haukkanen, P., Ars Combinatoria, 95, 383, 2010.
[14] Ray, P.K., PhD Thesis - Balancing and cobalancing numbers, Department of Mathematics, National Institute of Technology, India, 2009.
[15] Rochon, D., Fractals, 8(4), 355, 2000.
[16] Rochon, D., Advances in Applied Clifford Algebras, 14, 231, 2004.

[^0]: ${ }^{1}$ Gazi University, Faculty of Science, Department of Mathematics, Ankara, Turkey.
 E-mail: dtasci@gazi.edu.tr.

