k-ORDER FIBONACCI QUATERNIONS

MUSTAFA ASCI ${ }^{1}$, SULEYMAN AYDINYUZ ${ }^{1}$

Manuscript received: 06.09.2020; Accepted paper: 17.12.2020;
Published online: 30.03.2021.

Abstract

In this paper, we define and study another interesting generalization of the Fibonacci quaternions is called k-order Fibonacci quaternions. Then we obtain for $k=2$ Fibonacci quaternions, for $k=3$ Tribonacci quaternions and for $k=4$ Tetranacci quaternions. We give generating function, the summation formula and some properties about k-order Fibonacci quaternions. Also, we identify and prove the matrix representation for k order Fibonacci quaternions. The Q_{k} matrix given for k-order Fibonacci numbers is defined for k-order Fibonacci quaternions and after the matrices with the k-order Fibonacci quaternions is obtained with help of auxiliary matrices, important relationships and identities are established.

Keywords: Fibonacci numbers; k-Order Fibonacci numbers; quaternions; Fibonacci quaternions; matrix representations.

1. INTRODUCTION

Fibonacci numbers are defined on a interesting recurrence relation of $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$ with the initial conditions $F_{0}=0, F_{1}=1$. Fibonacci numbers and various generalizations have many interesting properties and applications to many fields of science. For more information, one can see [1-6].

Another generalization of the Fibonacci numbers is order-k Fibonacci numbers and

$$
\begin{equation*}
g_{n}^{i}=\sum_{j=1}^{k} g_{n-j}^{i}, \text { for } n>0 \text { and } 1 \leq i \leq k \tag{1.1}
\end{equation*}
$$

with boundary conditions for $1-k \leq n \leq 0$,

$$
g_{n}{ }^{i}=\left\{\begin{array}{cc}
1 & , \\
i=1-n \\
0 & , \\
\text { otherwise }
\end{array}\right\}
$$

is defined by the recurrence relation by Er in [7].
Kılıç and Tasci studied some properties about k-order Fibonacci numbers. They defined Binet formulas combinatorial representations of k-order Fibonacci numbers in [8]. Lee in [9-11] defined the generalized Binet formula for k-generalized Fibonacci sequence with a different perspective by using determinants.

[^0]Quaternion arithmetic has been used in many fields such as computer sciences, physics, applied mathematics, differential geometry and quaternion analysis in [12].

Irish Mathematician William Rowan Hamilton first introduced the real quaternions in 1843 in [13]. The set of real quaternions can be defined as

$$
H=\left\{q=q_{0} e_{0}+q_{1} e_{1}+q_{2} e_{2}+q_{3} e_{3}: q_{i} \in R, i=0,1,2,3\right\}
$$

as the four-dimensional vector space over R having a basis $\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}$ which satisfies the following multiplication rules:

Table 1. Multiplication Rules

\times	e_{0}	e_{1}	e_{2}	e_{3}
e_{0}	1	e_{1}	e_{2}	e_{3}
e_{1}	e_{1}	-1	e_{3}	$-e_{2}$
e_{2}	e_{2}	e_{3}	-1	e_{1}
e_{3}	e_{3}	e_{2}	$-e_{1}$	-1

A quaternion is a hyper-complex number and is shown by the following equation:

$$
q=q_{0} e_{0}+q_{1} e_{1}+q_{2} e_{2}+q_{3} e_{3}=\sum_{i=0}^{3} q_{i} e_{i} \in H
$$

The quaternion consists of two parts. The first part is called scalar part as $S_{q}=q_{0} e_{0}$ and second is called vectoral part as $\overrightarrow{V_{q}}=q_{1} e_{1}+q_{2} e_{2}+q_{3} e_{3}$. Then we can write $q=S_{q}+\overrightarrow{V_{q}}$. The conjugate of q is defined by

$$
q=S_{q}-\vec{V}_{q}=q_{0} e_{0}-\sum_{i=1}^{3} q_{i} e_{i} .
$$

Let q and p be two quaternions such that $q=\sum_{i=0}^{3} q_{i} e_{i}$ and $p=\sum_{i=0}^{3} p_{i} e_{i}$. The equality, addition and multiplication by scalar are defined by the following:
-Equality: $\quad q=p$ if and only if $q_{i}=p_{i}$ for $i=0,1,2,3$
-Addition:

$$
q+p=\sum_{i=0}^{3}\left(q_{i}+p_{i}\right) e_{i}
$$

-Multiplication by scalar: $\quad k . q=k . \sum_{i=0}^{3} q_{i} e_{i}=\sum_{i=0}^{3}\left(k q_{i}\right) e_{i}$
The multiplication of q and p is defined as

$$
q \cdot p=S_{q} S_{p}+S_{q} \overrightarrow{V_{p}}+\overrightarrow{V_{q}} S_{p}-\overrightarrow{V_{q}} \cdot \overrightarrow{V_{p}}+\overrightarrow{V_{q}} \times \overrightarrow{V_{p}}
$$

where

$$
\overrightarrow{V_{q}} \cdot \overrightarrow{V_{p}}=\sum_{i=1}^{3} q_{i} p_{i}
$$

and

$$
\overrightarrow{V_{q}} \times \overrightarrow{V_{p}}=\left(q_{2} p_{3}-q_{3} p_{2}\right) e_{1}-\left(q_{1} p_{3}-q_{3} p_{1}\right) e_{2}+\left(q_{1} p_{2}-q_{2} p_{1}\right) e_{3} .
$$

The norm of q is defined as

$$
\|q\|=N(q)=q \bar{q}=q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}=\sum_{i=0}^{3} q_{i}^{2}
$$

F. Horadam in [14] introduced nth Fibonacci and Lucas quaternions in 1963 and examined in [15] the recurrence relations of quaternion in 1993. Also, he referred to defining Pell quaternions and generalized Pell quaternions. In [16] many interesting properties can be given about Fibonacci and Lucas quaternions. Halici in [17] examined Binet's formulas, generating functions and some properties about Fbonacci and Lucas quaternions. In [18] Cimen and Ipek introduced new kinds of sequences of quaternion number called as Pell quaternions and Pell-Lucas quaternions. Liana and Wloch in [19] defined the Jacobsthal quaternions and Jacobsthal-Lucas quaternions and gave some properties. In [20] Gamaliel CM generalized the Tribonacci quaternions and in [21] Kecilioglu and Akkus introduced Fibonacci octanions. Polatl, Kızılates and Kesim introduced split k-Fibonacci and k-Lucas quaternions in [22]. Tasci and Yalcin defined Fibonacci p-quaternions in [23] in 2015 and Tasci defined Padovan and Pell-quaternions in [24]. Also, Tasci generalized Jacobsthal and Jacobsthal-Lucas quaternions to k-Jacobsthal and k-Jacobsthal-Lucas quaternions in [25]. In 2017, Aydın, Koklu and Yuce defined the generalized dual Pell quaternions and gave some properties in [26].

In this paper we define and study another interesting generalization of Fibonacci quaternions is called k-order Fibonacci quaternions. Then we obtain for $k=2$ Fibonacci quaternions, for $k=3$ Tribonacci quaternions and for $k=4$ Tetranacci quaternions. We give generating function, the summation formula, some properties and describe the matrix representations about k - order Fibonacci quaternions.

2. k - ORDER FIBONACCI QUATERNIONS

Definition 2.1. The $n t h k$-order Fibonacci quaternion $Q F_{n}^{(k)}$ is defined

$$
\begin{align*}
Q F_{n}^{(k)} & =F_{n}^{(k)} e_{0}+F_{n+1}^{(k)} e_{1}+F_{n+2}^{(k)} e_{2}+F_{n+3}^{(k)} e_{3} \\
& =\sum_{i=0}^{3} F_{n+i}^{(k)} e_{i} \tag{2.1}
\end{align*}
$$

where $F_{n}^{(k)}$ is nth k-order Fibonacci numbers.
Let $Q F_{n}^{(k)}$ and $Q M_{n}^{(k)}$ be two k-order Fibonacci quaternions such that $Q F_{n}^{(k)}=\sum_{i=0}^{3} F_{n+i}^{(k)} e_{i}$ and $Q M_{n}^{(k)}=\sum_{i=0}^{3} M_{n+i}^{(k)} e_{i}$. The scalar part of k-order Fibonacci quaternions $Q F_{n}^{(k)}$ and $Q M_{n}^{(k)}$ are denoted by $S_{Q F_{n}^{(k)}}=F_{n}^{(k)} e_{0}$ and $S_{Q M_{n}^{(k)}}=M_{n}^{(k)} e_{0}$, respectively. Also,
$\overrightarrow{V_{Q F_{n}^{(k)}}}=\sum_{i=1}^{3} F_{n+i}^{(k)} e_{i}$ and $\overrightarrow{V_{Q M_{n}^{(k)}}}=\sum_{i=1}^{3} M_{n+i}^{(k)} e_{i}$ are called vectorial part of k-order Fibonacci quaternions.

Definition 2.2. The conjugate of $Q F_{n}^{(k)}$ is defined by

$$
\begin{equation*}
\overline{Q F_{n}^{(k)}}=F_{n}^{(k)} e_{0}-F_{n+1}^{(k)} e_{1}-F_{n+2}^{(k)} e_{2}-F_{n+3}^{(k)} e_{3}=F_{n}^{(k)} e_{0}-\sum_{i=1}^{3} F_{n+i}^{(k)} e_{i} \tag{2.2}
\end{equation*}
$$

Definition 2.3. The norm of $Q F_{n}^{(k)}$ is defined by

$$
\left\|Q F_{n}^{(k)}\right\|=N_{Q F_{n}^{(k)}}=\left(F_{n}^{(k)}\right)^{2}+\left(F_{n+1}^{(k)}\right)^{2}+\left(F_{n+2}^{(k)}\right)^{2}+\left(F_{n+3}^{(k)}\right)^{2}
$$

Theorem 2.4. The k-order Fibonacci quaternions are defined by the following recurrence relation

$$
\begin{equation*}
Q F_{n}^{(k)}=\sum_{j=1}^{k} Q F_{n-j}^{(k)} \text { for } n \text { integer and } k \geq 2 \tag{2.3}
\end{equation*}
$$

Proof: From (2.1), we get

$$
\sum_{j=1}^{k} Q F_{n-j}^{(k)}=\left(\sum_{i=0}^{k} Q F_{n+i-1}^{(k)} e_{i}\right)+\left(\sum_{i=0}^{k} Q F_{n+i-2}^{(k)} e_{i}\right)+\ldots+\left(\sum_{i=0}^{k} Q F_{n+i-k}^{(k)} e_{i}\right)
$$

and since from the recurrence relation of k - order Fibonacci numbers (1.1); we obtain (2.3)

$$
Q F_{n}^{(k)}=\sum_{j=1}^{k} Q F_{n-j}^{(k)} .
$$

Proposition 2.5. For $n>0$ and $k \geq 2$, we have the following properties:
(i) $Q F_{n}^{(k)}+\overline{Q F_{n}^{(k)}}=2 F_{n}^{(k)}$
(ii) $\quad\left(Q F_{n}^{(k)}\right)^{2}+Q F_{n}^{(k)} \cdot \overline{Q F_{n}^{(k)}}=2 F_{n}^{(k)} \cdot Q F_{n}^{(k)}$
(iii) $\quad Q F_{n}^{(k)} \cdot \overline{Q F_{n}^{(k)}}=\left(F_{n}^{(k)}\right)^{2}+\left(F_{n+1}^{(k)}\right)^{2}+\left(F_{n+2}^{(k)}\right)^{2}+\left(F_{n+3}^{(k)}\right)^{2}$
(iv) $Q F_{n+1}^{(k)}-Q F_{n}^{(k)}=Q F_{n}^{(k)}-Q F_{n-k}^{(k)}$
(v) $Q F_{n+1}^{(k)}+Q F_{n}^{(k)}=3 Q F_{n}^{(k)}-Q F_{n-k}^{(k)}$

Theorem 2.5. The generating function for the k-order Fibonacci quaternions is

$$
g(t)=\sum_{n=0}^{\infty} Q F_{n}^{(k)} t^{n}=\frac{Q F_{0}^{(k)}+t\left(Q F_{1}^{(k)}-Q F_{0}^{(k)}\right)+t^{2}\left(Q F_{2}^{(k)}-Q F_{1}^{(k)}-Q F_{0}^{(k)}\right)}{1-\sum_{j=1}^{k} t^{j}}
$$

Proof: Let $g(t)$ be the generating function of the k - order Fibonacci quaternions $\left\{Q F_{n}^{(k)}\right\}$.

$$
\begin{aligned}
g(t)-\operatorname{tg}(t)-\ldots-t^{k} g(t)=Q F_{0}^{(k)} & +t\left(Q F_{1}^{(k)}-Q F_{0}^{(k)}\right)+t^{2}\left(Q F_{2}^{(k)}-Q F_{1}^{(k)}-Q F_{0}^{(k)}\right) \\
& +t^{3}\left(Q F_{3}^{(k)}-Q F_{2}^{(k)}-Q F_{1}^{(k)}-Q F_{0}^{(k)}\right)+\sum_{n=4}^{\infty} t^{n}\left(Q F_{n}^{(k)}-\sum_{j=0}^{n-1} Q F_{j}^{(k)}\right)
\end{aligned}
$$

By taking $g(t)$ parenthesis we get

$$
g(t)=\frac{Q F_{0}^{(k)}+t\left(Q F_{1}^{(k)}-Q F_{0}^{(k)}\right)+t^{2}\left(Q F_{2}^{(k)}-Q F_{1}^{(k)}-Q F_{0}^{(k)}\right)}{1-\sum_{j=1}^{k} t^{j}} .
$$

Corollary 2.6. For $k=2$, we obtain the generating function of the usual Fibonacci quaternions in [17] as follows:

$$
g(t)=\sum_{n=0}^{\infty} Q F_{n} t^{n}=\frac{Q F_{0}+t\left(Q F_{1}-Q F_{0}\right)}{1-t-t^{2}} .
$$

Corollary 2.7. For $k=3$, we obtain the generating function of the Tribonacci quaternions as

$$
g(t)=\sum_{n=0}^{\infty} Q T_{n} t^{n}=\frac{Q T_{0}+t\left(Q T_{1}-Q T_{0}\right)+t^{2}\left(Q T_{2}-Q T_{1}-Q T_{0}\right)}{1-t-t^{2}-t^{3}}
$$

Theorem 2.8. The sum of the k - order Fibonacci quaternions is given by

$$
\sum_{i=1}^{m} Q F_{i}^{(k)}=\frac{1}{k-1}\left(Q F_{k+m}^{(k)}-Q F_{k}^{(k)}+\sum_{i=1}^{k-2}(k-i-1)\left(Q F_{i}^{(k)}-Q F_{m+i}^{(k)}\right)\right) .
$$

Proof: By the recurrence relation of the k - order Fibonacci quaternions (2.1) we have

$$
Q F_{n-k}^{(k)}=Q F_{n}^{(k)}-\sum_{i=1}^{k-1} Q F_{n-i}^{(k)}
$$

From this equality

$$
\begin{gathered}
Q F_{1}^{(k)}=Q F_{k+1}^{(k)}-Q F_{k}^{(k)}-\ldots-Q F_{3}^{(k)}-Q F_{2}^{(k)} \\
Q F_{2}^{(k)}=Q F_{k+2}^{(k)}-Q F_{k+1}^{(k)}-\ldots-Q F_{4}^{(k)}-Q F_{3}^{(k)} \\
Q F_{3}^{(k)}=Q F_{k+3}^{(k)}-Q F_{k+2}^{(k)}-\ldots-Q F_{5}^{(k)}-Q F_{4}^{(k)} \\
\vdots \\
Q F_{m-1}^{(k)}=Q F_{k+m-1}^{(k)}-Q F_{k+m-2}^{(k)}-\ldots-Q F_{m+1}^{(k)}-Q F_{m}^{(k)} \\
Q F_{m}^{(k)}=Q F_{k+m}^{(k)}-Q F_{k+m-1}^{(k)}-\ldots-Q F_{m+2}^{(k)}-Q F_{m+1}^{(k)}
\end{gathered}
$$

So, we obtain

$$
\begin{aligned}
\sum_{i=1}^{m} Q F_{i}^{(k)} & =Q F_{k+m}^{(k)}-Q F_{2}^{(k)}-2 Q F_{3}^{(k)}-3 Q F_{4}^{(k)} \\
& -\ldots-(k-2) Q F_{k-1}^{(k)}-(k-1) Q F_{k}^{(k)} \\
& -(k-2) \sum_{i=k+1}^{m+1} Q F_{i}^{(k)}-(k-3) Q F_{m+2}^{(k)} \\
& -(k-4) Q F_{m+3}^{(k)}-\ldots-3 Q F_{k+m-4}^{(k)} \\
& -2 Q F_{k+m-3}^{(k)}-Q F_{k+m-2}^{(k)}
\end{aligned}
$$

Adding and subtracting the following terms to above statement

$$
(k-2) Q F_{1}^{(k)}+(k-2) Q F_{2}^{(k)}+(k-2) Q F_{3}^{(k)}+\ldots+(k-2) Q F_{k}^{(k)}
$$

we get

$$
\begin{aligned}
\sum_{i=1}^{m} Q F_{i}^{(k)} & =Q F_{k+m}^{(k)}+(k-2) Q F_{1}^{(k)}+(k-3) Q F_{2}^{(k)} \\
& +\ldots+2 Q F_{k-3}^{(k)}+Q F_{k-2}^{(k)}-Q F_{k}^{(k)}-(k-2) \sum_{i=1}^{m} Q F_{i}^{(k)} \\
& -(k-2) Q F_{m+1}^{(k)}-(k-3) Q F_{m+2}^{(k)}-\ldots-3 Q F_{k+m-4}^{(k)} \\
& -2 Q F_{k+m-3}^{(k)}-Q F_{k+m-2}^{(k)}
\end{aligned}
$$

Finally we have

$$
\begin{aligned}
(k-1) \sum_{i=1}^{m} Q F_{i}^{(k)} & =Q F_{k+m}^{(k)}-Q F_{k}^{(k)}+\sum_{i=1}^{k-2}(k-i-1) Q F_{i}^{(k)} \\
& -\sum_{i=1}^{k-2}(k-i-1) Q F_{m+i}^{(k)}
\end{aligned}
$$

Consequently, we get

$$
\sum_{i=1}^{m} Q F_{i}^{(k)}=\frac{1}{k-1}\left(Q F_{k+m}^{(k)}-Q F_{k}^{(k)}+\sum_{i=1}^{k-2}(k-i-1)\left(Q F_{i}^{(k)}-Q F_{m+i}^{(k)}\right)\right) .
$$

Corollary 2.9. For $k=2$, we obtain the sum of the Fibonacci quaternions in [17] as

$$
\begin{aligned}
\sum_{i=1}^{m} Q F_{i} & =Q F_{m+2}-Q F_{2} \\
& =Q F_{m+2}-\left(e_{0}+2 e_{1}+3 e_{2}+5 e_{3}\right)
\end{aligned}
$$

Corollary 2.10. For $k=3$, we obtain the sum of the Tribonacci quaternions as

$$
\sum_{i=1}^{m} Q T_{i}=\frac{1}{2}\left(Q T_{m+3}+Q T_{m+1}-Q T_{3}-Q T_{1}\right)
$$

$$
=\frac{1}{2}\left(Q T_{m+3}+Q T_{m+1}-\left(3 e_{0}+5 e_{1}+9 e_{2}+17 e_{3}\right)\right) .
$$

Now we introduce the matrices Q_{k}, A_{k} and $E_{k, n}$ that plays the role of the Q-matrix for Fibonacci numbers. Let Q_{k}, A_{k} and $E_{k, n}$ determine the $k \times k$ matrices defined as

$$
\begin{aligned}
Q_{k}= & {\left[\begin{array}{cccccc}
1 & 1 & 1 & \cdots & 1 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 1 & 0
\end{array}\right]_{k \times k}, \quad A_{k}=\left[\begin{array}{ccccccc}
Q F_{k-1}^{(k)} & Q F_{k-2}^{(k)} & Q F_{k-3}^{(k)} & \cdots & Q F_{1}^{(k)} & Q F_{0}^{(k)} \\
Q F_{k-2}^{(k)} & Q F_{k-3}^{(k)} & Q F_{k-4}^{(k)} & \cdots & Q F_{0}^{(k)} & Q F_{-1}^{(k)} \\
Q F_{k-3}^{(k)} & Q F_{k-4}^{(k)} & Q F_{k-5}^{(k)} & \cdots & Q F_{-1}^{(k)} & Q F_{-2}^{(k)} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
Q F_{1}^{(k)} & Q F_{0}^{(k)} & Q F_{-1}^{(k)} & \cdots & Q F_{3-k}^{(k)} & Q F_{2-k}^{(k)} \\
Q F_{0}^{(k)} & Q F_{-1}^{(k)} & Q F_{-2}^{(k)} & \cdots & Q F_{2-k}^{(k)} & Q F_{1-k}^{(k)}
\end{array}\right]_{k \times k} } \\
E_{k, n} & =\left[\begin{array}{cccccc}
Q F_{n+k-1}^{(k)} & Q F_{n+k-2}^{(k)} & Q F_{n+k-3}^{(k)} & \cdots & Q F_{n+1}^{(k)} & Q F_{n}^{(k)} \\
Q F_{n+k-2}^{(k)} & Q F_{n+k-3}^{(k)} & Q F_{n+k-4}^{(k)} & \cdots & Q F_{n}^{(k)} & Q F_{n-1}^{(k)} \\
Q F_{n+k-3}^{(k)} & Q F_{n+k-4}^{(k)} & Q F_{n+k-5}^{(k)} & \cdots & Q F_{n-1}^{(k)} & Q F_{n-2}^{(k)} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
Q F_{n+1}^{(k)} & Q F_{n}^{(k)} & Q F_{n-1}^{(k)} & \cdots & Q F_{n+3-k}^{(k)} & Q F_{n+2-k}^{(k)} \\
Q F_{n}^{(k)} & Q F_{n-1}^{(k)} & Q F_{n-2}^{(k)} & \cdots & Q F_{n+2-k}^{(k)} & Q F_{n+1-k}^{(k)}
\end{array}\right]_{k \times k}
\end{aligned}
$$

Now we can give the following lemma and theorem:
Lemma 2.11. Let $n \geq 1$. Then

$$
E_{k, n+1}=Q_{k} \cdot E_{k, n} .
$$

Theorem 2.12. Let $n \geq 1$. Then

$$
\begin{equation*}
E_{k, n}=Q_{k}^{n} \cdot A_{k} \tag{2.4}
\end{equation*}
$$

Proof: We can proof by induction method on n. If $n=1$, then from the definition of the matrix $E_{k, n}$ and k-order Fibonacci quaternions

$$
E_{k, 1}=Q_{k} \cdot A_{k}
$$

Assume that the theorem holds for n

$$
E_{k, n}=Q_{k}^{n} \cdot A_{k}
$$

Then for $n+1$ we get

$$
\begin{aligned}
Q_{k}^{n+1} \cdot A_{k} & =Q_{k} \cdot Q_{k}^{n} \cdot A_{k} \\
& =Q_{k} \cdot E_{k, n} \\
& =E_{k, n+1} \cdot
\end{aligned}
$$

Corollary 2.13. For $k=2$, we get the matrix representation of the usual Fibonacci quaternions in [17] as follows:

$$
\begin{aligned}
Q_{2}^{n} \cdot A_{2} & =\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{n}\left[\begin{array}{cc}
Q F_{1} & Q F_{0} \\
Q F_{0} & Q F_{-1}
\end{array}\right] \\
& =\left[\begin{array}{cc}
Q F_{n+1} & Q F_{n} \\
Q F_{n} & Q F_{n-1}
\end{array}\right]=E_{2, n}
\end{aligned}
$$

Corollary 2.14. For $k=3$, we get the matrix representation of the usual Tribonacci quaternions as follows:

$$
\begin{aligned}
Q_{3}^{n} \cdot A_{3} & =\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
Q T_{2} & Q T_{1} & Q T_{0} \\
Q T_{1} & Q T_{0} & Q T_{-1} \\
Q T_{0} & Q T_{-1} & Q T_{-2}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
Q T_{n+2} & Q T_{n+1} & Q T_{n} \\
Q T_{n+1} & Q T_{n} & Q T_{n-1} \\
Q T_{n} & Q T_{n-1} & Q T_{n-2}
\end{array}\right]=E_{3, n}
\end{aligned}
$$

Theorem 2.15. Let for $n \geq 1$ be integer. Then

$$
\left[\begin{array}{cccccc}
1 & 1 & 1 & \cdots & 1 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 1 & 0
\end{array}\right]^{n}\left[\begin{array}{l}
Q F_{k-1}^{(k)} \\
Q F_{k-2}^{(k)} \\
Q F_{k-3}^{(k)} \\
\\
Q F_{1}^{(k)} \\
Q F_{0}^{(k)}
\end{array}\right]=\left[\begin{array}{c}
Q F_{n+k-1}^{(k)} \\
Q F_{n+k-2}^{(k)} \\
Q F_{n+k-3}^{(k)} \\
\\
Q F_{n+1}^{(k)} \\
Q F_{n}^{(k)}
\end{array}\right]
$$

Theorem 2.16. For any positive integer m and n

$$
Q F_{n+m}^{(k)}=F_{n+1}^{(k)} Q F_{m}^{(k)}+\sum_{j=0}^{k-2}\left(Q F_{m-(k-j-1)}^{(k)} \sum_{p=0}^{j} F_{n-p}^{(k)}\right)
$$

where $F_{n}^{(k)}$ is the $n t h k$-order Fibonacci number.
Proof: For $k \geq 2$

$$
Q_{k}=\left[\begin{array}{cccccc}
1 & 1 & 1 & \cdots & 1 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 1 & 0
\end{array}\right]
$$

In (1.1),

$$
Q_{k}^{n}=\left[\begin{array}{ccccc}
F_{n+1}^{(k)} & \cdots & F_{n}^{(k)}+F_{n-1}^{(k)}+F_{n-2}^{(k)} & F_{n}^{(k)}+F_{n-1}^{(k)} & F_{n}^{(k)} \\
F_{n}^{(k)} & \cdots & F_{n-1}^{(k)}+F_{n-2}^{(k)}+F_{n-3}^{(k)} & F_{n+1}^{(k)}+F_{n}^{(k)} & F_{n-1}^{(k)} \\
\vdots & \ddots & \vdots & \vdots & \vdots \\
F_{n-k+3}^{(k)} & \cdots & F_{n-k+2}^{(k)}+F_{n-k+1}^{(k)}+F_{n-k}^{(k)} & F_{n-k+2}^{(k)}+F_{n-k+1}^{(k)} & \vdots \\
F_{n-k+2}^{(k)} & \cdots & F_{n+k+1}^{(k)}+F_{n-k}^{(k)}+F_{n-k-1}^{(k-1} & F_{n-k+3}^{(k)}+F_{n-k+2}^{(k)} & F_{n-k+1}^{(k)}
\end{array}\right]
$$

If we use (2.4), we get as follows

$$
Q_{k}^{n+m}=Q_{k}^{n} Q_{k}^{m}
$$

and

$$
Q_{k}^{n} A_{k}=E_{k, n}
$$

Then we have

$$
E_{k, n+m}=Q_{k}^{n+m} A_{k}=Q_{k}^{n} Q_{k}^{m} A_{k}=Q_{k}^{n} E_{k, m}
$$

If the equality of matrices is used, we get for

$$
\begin{aligned}
Q F_{n+m}^{(k)} & =F_{n}^{(k)} Q F_{m+1-k}^{(k)}+\left(F_{n}^{(k)}+F_{n-1}^{(k)}\right) Q F_{m+2-k}^{(k)} \\
& +\left(F_{n}^{(k)}+F_{n-1}^{(k)}+F_{n-2}^{(k)}\right) Q F_{m+3-k}^{(k)}+\ldots \\
& +\left(F_{n}^{(k)}+F_{n-1}^{(k)}+\ldots+F_{n+2-k}^{(k)}\right) Q F_{m-1}^{(k)}+F_{n+1}^{(k)} Q F_{m}^{(k)}
\end{aligned}
$$

and the proof is complete.
Corollary 2.17: For $k=2$, then

$$
Q F_{n+m}=F_{n+1} Q F_{m}+Q F_{m-1} F_{n}
$$

where F_{n} is $n t h$ Fibonacci number.
Corollary 2.18. For $k=3$, then

$$
Q T_{n+m}=T_{n+1} Q T_{m}+T_{n} Q T_{m-2}+\left(T_{n}+T_{n-1}\right) Q T_{m-1}
$$

where T_{n} is $n t h$ Tribonacci number.

3. CONCLUSIONS

In this paper we defined and studied another interesting generalization of Fibonacci quaternions are called k-order Fibonacci quaternions. Then we obtained for $k=2$ Fiboncci quaternions, for $k=3$ Tribonacci quaternions and for $k=4$ Tetranacci quaternions. We gave generating function, the summation formula and some properties about k-order Fibonacci
quaternions. Also, we identified and proved the matrix representation for k - order Fibonacci quaternions. The Q_{k} matrix given for k-order Fibonacci numbers was defined for k-order Fibonacci quaternions and after the matrices with the k-order Fibonacci quaternions were obtained with help of auxiliary matrices, important relationships and identities were established.

Acknowledgement: The authors thank to the anonymous referees for his/her comments and valuable suggestions that improved the presentation of the manuscript and this work is supported by the Scientific Research Project (BAP) 2020FEBE003, Pamukkale University, Denizli, Turkey.

REFERENCES

[1] Gould, H.W., The Fibonacci Quarterly, 19(3), 250, 1981.
[2] Hoggat, V. E., Fibonacci and Lucas Numbers, Houghton-Mifflin, Palo Alto, 1969.
[3] Koshy, T., Fibonacci and Lucas Numbers with Applications, A Wiley-Interscience Publication, 2001.
[4] Stakhov, A.P., Reports of the National Academy of Sciences of Ukraine, 9, 46, 1999.
[5] Stakhov, A.P., Massinggue, V., Sluchenkov, A., Introduction into Fibonacci Coding and Cryptography, Osnova, Kharkov, 1999.
[6] Vajda, S., Fibonacci and Lucas Numbers and the Golden Section Theory and Applications, Ellis Harwood Limitted, 1969.
[7] Er, M.C., The Fibonacci Quarterly, 22(3), 204, 1984.
[8] Kilic, E., Dursun, T., Rocky Mountain Journal of Mathematics, 36(6), 1915, 2006.
[9] Lee, G.Y., Lee, S.G., Kim, J.S., Shin, H.K., The Fibonacci Quarterly, 158, 2001.
[10] Lee, G.Y., Linear Algebra and Its Applications, 320(1), 51, 2000.
[11] Lee, G.Y., Lee, S.G., The Fibonacci Quarterly, 33, 273, 1995.
[12] Gurlebeck, K., Sprossing, W., Quaternionic and Clifford Calculus for Physicists and Engineers, Wiley, New York, 1997.
[13] Hamilton, W.R., Elements of Quaternions Longmans, Green and Co., London, 1866.
[14] Horadam, A.F., American Mathematical Monthly, 70, 289, 1963.
[15] Horadam, A.F., Ulam Quaterly, 2, 23, 993.
[16] Iyer, M.R., The Fibonacci Quaterly / A note on Fibonacci Quaternions", 3, 225, 1969.
[17] Halici, S., Advances in Applied Clifford Algebras, 22, 321, 2012.
[18] Cimen, B.C., Ipek, A., Advances in Applied Clifford Algebras, 26 (1), 39, 2016.
[19] Szynal-Lianna, A., Wloch, I., Advances in Applied Clifford Algebras, 26, 441, 2016.
[20] Gameliel, C.M., Mediterranean Journal of Mathematics, 14, 239, 2017.
[21] Keçilioğlu, O., Akkus, I., Advances in Applied Clifford Algebras, 25, 151, 2015.
[22] Polatli, E., Kızılateş, E., Kesim, S., Advances in Applied Clifford Algebras, 26(1), 37, 2015.
[23] Tasci, D., Yalcin, F., Advances in Applied Clifford Algebras, 25, 245, 2015.
[24] Tasci, D., Journal of Science and Arts, 1(42), 125, 2018.
[25] Tasci, D., Journal of Science and Arts, 3(40), 469, 2017.
[26] Aydin, T.F., Koklu, K., Notes on Number Theory and Discrete Mathematics, 23(4), 66, 2017.

[^0]: ${ }^{1}$ Pamukkale University, Science and Arts Faculty, Department of Mathematics, 20160 Denizli, Turkey
 E-mail: mustafa.asci@yahoo.com; aydinyuzsuleyman@gmail.com.

