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Abstract. This paper deals with some new definite integrals of newly defined k Bessel 

function of first kind due to Gehlot [1]. The Laplace transform of the k Bessel function is also 

obtained. Certain new integral representation of k Bessel function are also investigated. The 

known results of classical Bessel functions are seen to follow as special cases. 
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1. INTRODUCTION  

 

 

Bessel functions need no introduction as they are very useful in mathematical 

literature especially in finding the solutions of certain differential equations. Like many other 

special function, Bessel function also get generalised in different ways. One useful 

generalization of Bessel function, called k Bessel function of first kind is recently done by [1] 

as 
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is the solution of k Bessel equation  
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It is noted that for 1,k  the k Bessel function (1.1) reduces to classical Bessel 

function. The symbol  k x is k Gamma function which is a generalization of classical 

gamma function introduced by Diaz and Pariguan [2], whose integral form defined as  
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The improper integral is convergent for  Re 0z  . The k Gamma function reduced to 

classical Gamma function [3] i.e. k   as 1.k   A simple change of variable reveals the 

relationship between k Gamma function and classical Gamma function: 
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 (1.4) 

 

In particular the k Bessel function of order zero is  
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Making use of (1.4), we get  
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Similarly, 
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Remarks: It can be readily seen that  
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The following properties are well known and of particular interest [4] 
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2. MAIN RESULTS   

 

 

In this section, we will establish some definite integrals involving k Bessel function of 

first kind.  

 

Theorem 2.1: For 0k  and , , 0a b a  the following integral holds  
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Integrating both sides the above equation with respect to   from 0 to 2  
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using the formula  
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Into (2.2), we get  
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After simplification the series on the right of (2.4), we can write  
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Using (1.5) we can write  
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Equating the real part, we get  
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or we can write equivalently 
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Since     
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we replace b by 
cosb

k


into (2.6) to get 
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Integrating both sides of (2.7) with respect to   from 0 to 
2
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 Since the integrand on LHS of (2.8) is uniform continuous function, we can write  
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 Using (2.5) we can write  
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 Evaluating the integral on the right of (2.10), we the required integral (2.1).  

 

Remark 2.2: Letting 0a  in (2.1) we get for 0b   
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 In particular  
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Theorem 2.3: For 0k  and ,a c the following integrals hold 
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Proof: Interchanging a and b in (2.1) and extending b to be a complex number we get 
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 Hence, for  0b    
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where  

 

 
22A iB ka b ic         (2.17) 

 

 Equating real and imaginary parts of (2.16), we get two definite integrals as below  
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 From (2.17) we can write  
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 Eliminating A and B from (2.20), we readily see that  
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 Now suppose 0, 0a c  then from (2.17) both 0, 0A B  . If we let 0b then, if 

,ka c  then from (2.17) it is obvious that
2 2 , 0A ka c B   but if ,ka c

2 20,A B c ka   Therefore from (2.17) and (2.18), we conclude that integral (2.13) and 

(2.14) hold.  

 

Special Case 2.4: If we let 0a  in (2.17), we get A b and B c then from (2.18) and 

(2.19), we deduce, for 1,k   the following well known integrals [5] 
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Theorem 2.5: Show that for A defined as in (2.21),  
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Proof: Integrating (2.18) with respect to c and noting that the integrand is uniformly 

convergent so we can integrate under the integral sign, we get  
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 Now taking differentials of (2.20),  
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 Solving the system of linear equations in dA and dB in (2.25), and employing second 

equation of (2.20), we get  
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 So that 
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 Hence using (2.27) into (2.24) we get (2.23) as claimed.  
 

Special case 2.6: If we let 0a  in (2.23), we deduce, for 1,k   the following well known 

integrals [5] 
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Corollary 2.7: Suppose 0, 0a c  in (2.23). If we let 0b then, if ,ka c then from (2.17) 
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Remark 2.8: If 0c  , then the integral (2.28) vanishes. If 0c  , then the integral (2.28) is an 

odd function of c. In case 0a   then the integral (2.28) turns to be 
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3. LAPLACE TRANSFORM OF k BESSEL FUNCTION 

 

 

 In this section, we will derive the Laplace transform of k Bessel function. Recall that 

the Laplace transform of a piece wise continuous function is denoted and defined as  
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 Before we derive the Laplace transform of k Bessel function, we need to establish 

integral representation of k Bessel function as below: 

 

Theorem 3.1: For 00,k n   the following integral holds 
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Proof: From complex analysis, due to the residue theorem we know that if a function  f z

defined on the complex plane has the Laurent Series representation  
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and if C is a contour with positive orientation in the complex plane containing the point 0z

then  
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  12
C

f z dz ia                                    (3.4) 

 

where 
1a
is called the residue of  f z at

0z . Now dividing (2.1) by 
1nz 
 and then taking 

integral over C 

 

 
2

1

1

x z k

zk k

k m n

mkn
mC C

e
dz J x z dz

z

 
  

 
 




    

                              

 Using (3.4), we can write  
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 in the LHS of (3.5), we get  
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 On simplifying we get the (3.2) and this completes the proof.  

 

Corollary 3.2: For 00,k n  
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 From (3.2), we see that  
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Theorem 3.3: For 00,k n   the Laplace transform of k Bessel function is given by 
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Proof: Taking Laplace of (3.2), we get  
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 Rearranging the integrals we get  
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 Evaluating the inner integral 
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 Taking unit circle as our contour so that 
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  then the RHS of (3.11) takes the 

form 
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 On simplifying we get  
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 The integrand has simple poles at 2 2

1z sk s k k    and 2 2

2z sk s k k     and 

for , 0s k   only 1z lies inside of the unit circle 1z  , so by residue theorem we can write  
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Substituting the values we get (3.8).  
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Remark 3.4: For 1k  we get the Laplace transform of classical Bessel functions [6] 
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Proposition 3.5: Show that  
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Substituting 1n  in (3.8), and then 
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letting 0s  we get (3.16) 

     

Corollary 3.6: Substituting n  in (3.17), we get nice representation of   
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Proposition 3.7: Show that 
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Proposition 3.9: Show that 
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where dot represents the differentiation with respect to x. 
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Proposition 3.10: Show that 
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kJ x is the solution of zero order k Bessel differential equation 
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 Now integrating (3.22) with respect to x from 0 to  and using (2.12) and (3.21) 
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 By using the relation    0
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   we get the desired result.   
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Theorem 3.11: If , ,u v wdenote the integrals   
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then the following equations hold.  
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(3.25b), differentiate the integral of u from (3.24) with respect to a, and employing Leibniz 

rule of integration under integral sign, we get  
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 Since 
 0
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 Now from (3.26) and (3.27), we get (3.25c).  

 

Corollary 3.12: Establish the integrals for 0a   
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 Differentiating (3.25b), with respect to a and using (3.25a), we get second order 

homogeneous linear differential equation  
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 Letting 0a  into the u integral and in (3.25b), we get readily the initial conditions  
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 Solving (3.30) together with initial conditions (3.31), we get the solution  
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 Now by the definitions of u and v from (3.24), we get the integrals (3.28) and (3.29).  
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4. CONCLUSION 

 

 

We established certain new definite integrals of k Bessel function of first kind. We 

also derived the Laplace transform of k Bessel function and used it to inverstigate some new 

propertoes of k Bessel function of first kind. We found that all these definite integrals do 

dollow the classical Bessel function as special cases. 
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