MACDONALD CODES OVER THE RING $F_{2}+u F_{2}+\nu F_{2}$

RABIA DERTLI ${ }^{1}$, SENOL EREN 1

Manuscript received: 07.11.2019; Accepted paper: 20.03.2020;
Published online: 30.06.2020.

Abstract

In this paper, we construct MacDonald codes of type α over the ring $F_{2}+u F_{2}+v F_{2}$, where $u^{2}=u, v^{2}=v, u v=v u=0, F_{2}=\{0,1\}$ is the field of two elements and investigate their properties such as torsion codes and weight distributions.

Keywords: MacDonald codes, weight distributions, rings.

1. INTRODUCTION

There has been much attention research in codes over finite rings in recent years. By using type α simplex codes we have been constructed MacDonald codes over a ring. MacDonald codes are important in coding theory since they provide the Griesmer bound. In [1], the binary MacDonald codes were introduced and q-ary version ($q \geq 2$) of these over the finite fields were studied in [2].

Motivated by the importance of the MacDonald codes which have been defined over several finite commutative rings [3-7], in this paper, we construct MacDonald codes over the ring $F_{2}+u F_{2}+v F_{2}$ of type α, where $u^{2}=u, v^{2}=v, u v=v u=0, F_{2}=\{0,1\}$ and we study torsion code weight distributions. We describe their properties such as Hamming, Lee and Bachoc weight distributions.

2. PRELIMINARIES

In [6], A. Dertli and Y. Cengellenmis introduced the finite ring

$$
R=F_{2}+u F_{2}+v F_{2}=F_{2}[u, v] /\left\langle u^{2}-u, v^{2}-v, u v-v u\right\rangle
$$

The ring R is a commutative ring of 8 elements which are $\{0,1, u, v, a=1+u$, $b=1+v, a+b=u+v, a b=1+u+v\}$, where $u^{2}=u, v^{2}=v, u v=v u=0$ and $F_{2}=\{0,1\}$. The element 1 is unit. Addition and multiplication operation over R are given in Tables 1-2.

A linear code C over R of length n is an R-submodule of R^{n}. The elements of a linear code are called codewords. There are three well known different weights for codes over R, namely Hamming, Lee and Bachoc weights.

[^0]Table 1. Addition operation.

+	0	1	u	v	a	b	$a+b$	$a b$
0	0	1	u	v	a	b	$a+b$	$a b$
1	1	0	a	b	u	v	$a b$	$a+b$
u	u	a	0	$a+b$	1	$a b$	v	b
v	v	b	$a+b$	0	$a b$	1	u	a
a	a	u	1	$a b$	0	$a+b$	b	v
b	b	v	$a b$	1	$a+b$	0	a	u
$a+b$	$a+b$	$a b$	v	u	b	a	0	1
$a b$	$a b$	$a+b$	b	a	v	u	1	0

Table 2. Multiplication operation.

\cdot	0	1	u	v	a	b	$a+b$	$a b$
0	0	0	0	0	0	0	0	0
1	0	1	u	v	a	b	$a+b$	$a b$
u	0	u	0	0	0	0	u	0
v	0	v	0	v	v	0	v	0
a	0	a	0	v	$a b$	$a b$	v	$a b$
b	0	b	u	0	$a b$	b	u	$a b$
$a+b$	0	$a+b$	u	v	v	u	$a+b$	0
$a b$	0	$a b$	0	0	$a b$	$a b$	0	$a b$

The Hamming weight $w t_{H}(x)$ of a codeword $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R^{n}$ is the number of non-zero coordinates. The minimum weight $w t_{H}(C)$ of a code C is the smallest weight among all its nonzero codewords.

The Lee weight for the codeword $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R^{n}$ is defined by $w t_{L}(x)=\sum_{i=1}^{n} w t_{L}\left(x_{i}\right)$ where,

$$
w t_{L}\left(x_{i}\right)=\left\{\begin{array}{c}
0, \text { if } x_{i}=0 \\
1, \text { if } x_{i}=u, v \text { or } 1+u+v \\
2, \text { if } x_{i}=1+u, 1+v \text { or } u+v \\
3, \text { if } x_{i}=1
\end{array}\right.
$$

The Bachoc weight for the codeword $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R^{n}$ is defined by $w t_{B}(x)=\sum_{i=1}^{n} w t_{B}\left(x_{i}\right)$ where,

$$
w t_{B}\left(x_{i}\right)=\left\{\begin{array}{c}
0, \text { if } x_{i}=0 \\
1, \text { if } x_{i}=1 \\
2, \text { if } x_{i}=u, v, 1+u, 1+v, u+v \text { or } 1+u+v
\end{array}\right.
$$

The minimum Lee weight $w t_{L}(C)$ and the minimum Bachoc weight $w t_{B}(C)$ of code C are defined analogously.

For $\quad x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in R^{n}, \quad d_{H}(x, y)=\left|\left\{i \mid x_{i} \neq y_{i}\right\}\right| \quad$ is called Hamming distance between $x, y \in R^{n}$ and it is denoted by $d_{H}(x, y)=w t_{H}(x-y)$. The
minimum Hamming distance between distinct pairs of codewords of a code C is called the minimum distance of C and denoted by $d_{H}(C)$ or shortly d_{H}.

The Lee distance and Bachoc distance between x and $y \in R^{n}$ is defined by

$$
\begin{aligned}
& d_{L}(x, y)=w t_{L}(x-y)=\sum_{i=1}^{n} w t_{L}\left(x_{i}-y_{i}\right) \\
& d_{B}(x, y)=w t_{B}(x-y)=\sum_{i=1}^{n} w t_{B}\left(x_{i}-y_{i}\right)
\end{aligned}
$$

respectively.
The minimum Lee and Bachoc distance between distinct pairs of codewords of a code C are called the minimum distance of C and denoted by $d_{L}(C)$ and $d_{B}(C)$ or shortly d_{L} and d_{B}, respectively. If C is a linear code, then

$$
\begin{aligned}
& d_{H}(C)=w t_{H}(C) \\
& d_{L}(C)=w t_{L}(C) \\
& d_{B}(C)=w t_{B}(C)
\end{aligned}
$$

Given $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in R^{n}$, their scalar product is defined by, $x y=x_{1} y_{1}+\ldots+x_{n} y_{n}$. Two words x, y are called orthogonal if $x y=0$. For the code C over R, its dual C^{\perp} is defined as follows, $C^{\perp}=\{x \mid x y=0, \forall y \in C\}$. If $C \subseteq C^{\perp}$, we say that the codes C is self-orthogonal and if $C=C^{\perp}$ we say that the code is self-dual.

If H is a code over R, then H_{1} (resp. H_{2}, H_{3}) is a binary code. It is obtained that, $H=(1+u+v) H_{1}+u H_{2}+v H_{3}$ with

$$
\begin{aligned}
& H_{1}=\left\{x: \exists y, z \in F_{2}^{n},(1+u+v) x+u y+v z \in H\right\} \\
& H_{2}=\left\{y: \exists x, z \in F_{2}^{n},(1+u+v) x+u y+v z \in H\right\} \\
& H_{3}=\left\{z: \exists x, y \in F_{2}^{n},(1+u+v) x+u y+v z \in H\right\}
\end{aligned}
$$

In [8], it was shown that the ring R has three maximal ideals. These are $m_{1}=\langle a\rangle$ $=\{0, a, v, 1+u+v\}, m_{2}=\langle b\rangle=\{0, b u, 1+u+v\}$ and $m_{3}=\langle u+v\rangle=\{0, u+v, u, v\}$. Morever $m_{1} \cap m_{2} \cap m_{3}=\{0\}$.

The following map:

$$
\varphi: R \rightarrow R / m_{1} \times R / m_{2} \times R / m_{3}
$$

$$
a \mapsto\left(\varphi_{1}(a), \varphi_{2}(a), \varphi_{3}(a)\right)
$$

is an isomorphism where these maps $\varphi_{i}: R \rightarrow R / m_{i}$ are canonical homomorphisms for $i=1,2,3$. It is easy to see that R / m_{i} is isomorphic to F_{2}, for $i=1,2,3$. The map φ^{-1} is a ring isomorphism by the generalized Chinese Remainder Theorem and R is isomorphic to $R / m_{1} \times R / m_{2} \times R / m_{3} \cong F_{2}^{3}$. This map can be extended from R^{n} to $F_{2}^{3 n}$ in the following way. The Gray map φ from R^{n} to $F_{2}^{3 n}$ is defined as:

$$
\begin{gathered}
\varphi: R^{n} \rightarrow F_{2}^{3 n} \\
x+u y+v z \mapsto(x, x+y, x+z)
\end{gathered}
$$

is an isomorphism where $x, y, z \in F_{2}^{n}$, [8]. From the definition of the Gray map and the Lee weights, we have the following Lemma.

Lemma 1. If a code C is a self-dual, so is $\varphi(C)$. The minimum Lee weight of C is equal to the minimum Hamming weight of $\varphi(C)$. Thus a code $C=\left[n, 8^{k_{1}} 4^{k_{2}} 2^{k_{3}}, d_{L}\right]$ over R of length $n, 8^{k_{1}} 4^{k_{2}} 2^{k_{3}}$ codewords with minimum Lee distance of d_{L} gives rise to binary code $\varphi(C)=\left[3 n, 3 k_{1}+2 k_{2}+k_{3}, d_{H}=d_{L}\right]$.

Definition1. For each $1 \leq i \leq n$, let $A_{H}(i)\left(A_{L}(i)\right)$ be the number of codewords of Hamming (Lee) weight i in C. Then $\left\{A_{H}(0), A_{H}(1), \ldots, A_{H}(n)\right\}\left(\left\{A_{L}(0), \ldots, A_{L}(n)\right\}\right)$ is called the Hamming (Lee) weight distribution of C, [1].

3. MACDONALD CODES OF TYPE α

In this section we will study the MacDonald codes of types α over R and also we study the properties of their images under the Gray map.

A type α simplex code S_{k}^{α} is a linear code over R constructed inductively by the following generator matrix.

Let G_{k}^{α} be $k \times 2^{3 k}$ matrix over R defined inductively by

$$
G_{k}^{\alpha}=\left[\begin{array}{ccccc}
0 \ldots 0 & 1 \ldots 1 & u_{1} \ldots u & \ldots & (a b) \ldots(a b) \tag{3.1}\\
G_{k-1}^{\alpha} & G_{k-1}^{\alpha} & G_{k-1}^{\alpha} & \ldots & G_{k-1}^{\alpha}
\end{array}\right] ; k \geq 2
$$

where $G_{1}^{\alpha}=[01$ uva $b(a+b)(a b)]$.
We will now construct the MacDonald codes by using the generator matrices of simplex codes. For $1 \leq t \leq k-1$, let $G_{k, t}^{\alpha}$ be the matrix obtained from G_{k}^{α} by deleting columns corresponding to the columns of G_{t}^{α}, i.e.

$$
\begin{equation*}
G_{k, t}^{\alpha}=\left[G_{k}^{\alpha} \backslash \frac{0}{G_{t}^{\alpha}}\right] \tag{3.2}
\end{equation*}
$$

where $[A \backslash B]$ denotes the matrix obtained from the matrix A by deleting the matrix B and 0 in (3.2) is a $(k-t) \times 2^{3 t}$ zero matrix. The code $M_{k, t}^{\alpha}$ was generated by the matrix $G_{k, t}^{\alpha}$ is the punctured code of S_{k}^{α} and is called a MacDonald code. (i.e The MacDonald codes are obtained by deleting some columns of the generator matrices G_{k}^{α} of the simplex code S_{k}^{α}).

3.1. PROPERTIES

The code $M_{k, t}^{\alpha}$ is a code of length $n=2^{3 k}-2^{3 t}$ and dimension $3 k$.
Lemma 2. The torsion code of $M_{k, t}^{\alpha}$ is binary linear [$2^{3 k}-2^{3 t}, k, 2^{3 k-1}-2^{3 t-1}$] code with weight distribution $A_{H}(0)=1, A_{H}\left(2^{3 k-1}-2^{3 t-1}\right)=\left[2^{k-2}+2^{k+t-3}\right]$ and $A_{H}\left(2^{3 k-1}\right)=\left[2^{k-t}-1\right]$.

Proof: Since the torsion code of $M_{k, t}^{\alpha}$ is the set of codewords obtained by replacing u by 1 in all u-linear combination of the rows of the matrix $u . G_{k, t}^{\alpha}$ (where $G_{k, t}^{\alpha}$ is defined in (3.2)).
We prove by induction with respect to k and t. For $k=2$ and $t=1$ the result holds. Suppose the result holds for $k-1$ and $1 \leq t \leq k-2$. Then for k and $1 \leq t \leq k-1$ the matrix $u . G_{k, t}^{\alpha}$ takes the form, $u \cdot G_{k, t}^{\alpha}=\left[u \cdot G_{k}^{\alpha} \backslash \frac{0}{u \cdot G_{t}^{\alpha}}\right]$. Each non-zero codeword of $u \cdot M_{k, t}^{\alpha}$ has Hamming weight either $2^{3 k-1}-2^{3 t-1}$ or $2^{3 k-1}$ and the dimension of the torsion code of $M_{k, t}^{\alpha}$ is k, then there will be $2^{k-2}+2^{k+t-3}$ codewords of Hamming weight $2^{3 k-1}-2^{3 t-1}$ and the number of codewords with Hamming weight $2^{3 k-1}$ is $2^{k-t}-1$.

Remark 1. Each of the first $k-t$ rows of (3.2) has total number of units $2^{4 k-t-4}$ and total number of non-zero divisors $3.2^{4 k-t-3}$ and the last t rows has total number of units $2^{3 k+t-4}-2^{4 t-4}$ and total number of non-zero divisors 3. $\left(2^{3 k+t-3}-2^{4 t-3}\right)$.

Remark 2. Let $j \in R$ and let c be a codeword in the code C. We denote $w_{j}(c)=\left|\left\{k: c_{k}=j\right\}\right|$.

Lemma 3. Let $c \in M_{k, t}^{\alpha}, c \neq 0$. If at least one component of t elements is a unit then there are eight type of codewords.
I. $w_{0}(t)=w_{1}(t)=w_{u}(t)=w_{v}(t)=w_{a}(t)=w_{b}(t)=w_{a+b}(t)=w_{a b}(t)=2^{3 k-3}-2^{3 t-3}$
II. $w_{1}(t)=w_{u}(t)=w_{v}(t)=w_{a}(t)=w_{b}(t)=w_{a+b}(t)=w_{a b}(t)=2^{3 k-3}, w_{0}(t)=2^{3 k-3}-2^{3 t}$
III. . $w_{1}(t)=w_{v}(t)=w_{a}(t)=w_{b}(t)=w_{a+b}(t)=w_{a b}(t)=2^{3 k-3}, w_{0}(t)=w_{u}(t)=2^{3 k-3}-2^{3 t-1}$
$I V . w_{1}(t)=w_{u}(t)=w_{a}(t)=w_{b}(t)=w_{a+b}(t)=w_{a b}(t)=2^{3 k-3}, w_{0}(t)=w_{v}(t)=2^{3 k-3}-2^{3 t-1}$
$V . w_{1}(t)=w_{u}(t)=w_{v}(t)=w_{a}(t)=w_{b}(t)=w_{a+b}(t)=2^{3 k-3}, w_{0}(t)=w_{a b}(t)=2^{3 k-3}-2^{3 t-1}$
$V I . w_{1}(t)=w_{u}(t)=w_{b}(t)=w_{a+b}(t)=2^{3 k-3}, w_{0}(t)=w_{a}(t)=w_{v}(t)=w_{a b}(t)=2^{3 k-3}-2^{3 t-2}$
VII. $w_{1}(t)=w_{v}(t)=w_{a}(t)=w_{a+b}(t)=2^{3 k-3}, w_{0}(t)=w_{u}(t)=w_{b}(t)=w_{a b}(t)=2^{3 k-3}-2^{3 t-2}$

VIII . $w_{1}(t)=w_{a}(t)=w_{b}(t)=w_{a b}(t)=2^{3 k-3}, w_{0}(t)=w_{u}(t)=w_{v}(t)=w_{a+b}(t)=2^{3 k-3}-2^{3 t-2}$

Otherwise:
I. $w_{0}(t)=w_{u}(t)=w_{v}(t)=w_{a b}(t)=2^{3 k-1}-2^{3 t-1}$
$I I . w_{0}(t)=w_{u}(t)=w_{v}(t)=w_{a}(t)=w_{b}(t)=w_{a+b}(t)=w_{a b}(t)=2^{3 k-2}-2^{3 t-2}$
III. $w_{u}(t)=w_{v}(t)=w_{a b}(t)=2^{3 k-1}, \quad w_{0}(t)=2^{3 k-1}-2^{3 t}$
$I V . w_{u}(t)=w_{a}(t)=w_{a+b}(t)=w_{a b}(t)=2^{3 k-2}, \quad w_{0}(t)=w_{v}(t)=2^{3 k-2}-2^{3 t-1}$
$V . w_{v}(t)=w_{a+b}(t)=2^{3 k-2}, \quad w_{0}(t)=w_{u}(t)=2^{3 k-2}-2^{3 t-1}$
$V I . \quad w_{u}(t)=w_{v}(t)=w_{a}(t)=w_{b}(t)=2^{3 k-2}, \quad w_{0}(t)=w_{a b}(t)=2^{3 k-2}-2^{3 t-1}$
$V I I . w_{u}(t)=w_{v}(t)=w_{a}(t)=w_{b}(t)=w_{a+b}(t)=w_{a b}(t)=2^{3 k-2}, w_{0}(t)=2^{3 k-2}-2^{2 t+1}$

VIII . $w_{a}(t)=w_{b}(t)=w_{a b}(t)=2^{3 k-2}, w_{0}(t)=w_{u}(t)=w_{v}(t)=2^{3 k-2}-2^{3 t-1}$

Theorem 1. The Hamming, Lee and Bachoc weight distributions of $M_{k, t}^{\alpha}$ are:
(1) $A_{H}(0)=1$
$A_{H}\left(7 \cdot 2^{3 k-3}\right)=\left(2^{k-t}-1\right) \cdot\left(2^{k-t}-1\right) \cdot\left(2^{k-t}-1\right)$
$A_{H}\left(2^{3 k-1}-2^{3 t-1}\right)=3 .\left(2^{k+t-3}+1\right)$
$A_{H}\left(2^{3 k-1}\right)=3 .\left(2^{k-t}-1\right)$
$A_{H}\left(3.2^{3 k-2}\right)=3 .\left(2^{k-t}-1\right) .\left(2^{k-t}-1\right)$
$A_{H}\left(3 \cdot\left(2^{3 k-2}-2^{3 t-2}\right)\right)=3 \cdot\left(2^{k+t-1}-2^{k-2}+1\right)$
$A_{H}\left(7 \cdot\left(2^{3 k-3}-2^{3 t-3}\right)\right)=2^{3 \cdot(k-t)} \cdot\left(2^{t}-1\right) \cdot\left(2^{t}-1\right) \cdot\left(2^{t}-1\right)$
$A_{H}\left(7.2^{3 k-3}-2^{3 t-1}\right)=3 \cdot\left[2^{3 k-2 t} \cdot\left(2^{t}-1\right)-2^{k}\left(2^{2 k-2}-3.2^{k-1}+4\right)-5.2^{k+t-3}-1\right]$
$A_{H}\left(3.2^{3 k-2}-2^{3 t-1}\right)=3.2^{k}$
$A_{H}\left(7.2^{3 k-3}-3 \cdot 2^{3 t-2}\right)=3 \cdot\left[\left(2^{k-1}-1\right) \cdot\left(2^{k-1}-1\right) \cdot\left(2^{k-1}-1\right) \cdot 2+2^{k-2}+1\right]$
(2) $A_{L}(0)=1$
$A_{L}\left(3 \cdot 2^{3 k-1}\right)=\left(2^{k-t}-1\right) \cdot\left(2^{k-t}-1\right) \cdot\left(2^{k-t}-1\right)$
$A_{L}\left(2^{3 k-1}-2^{3 t-1}\right)=3 \cdot\left(2^{k+t-3}+1\right)$
$A_{L}\left(2^{3 k-1}\right)=3 \cdot\left(2^{k-t}-1\right)$
$A_{L}\left(2^{3 k}-2^{3 t}\right)=3 \cdot\left(2^{k+t-1}-2^{k-2}+1\right)$
$\left.A_{L}\left(2^{3 k}-2^{3 t-1}\right)\right)=3.2^{k}$
$A_{L}\left(2^{3 k}\right)=3 \cdot\left(2^{k-t}-1\right) \cdot\left(2^{k-t}-1\right)$
$A_{L}\left(3 \cdot\left(2^{3 k-1}-2^{3 t-1}\right)\right)=2^{3 \cdot(k-t)} \cdot\left(2^{t}-1\right) \cdot\left(2^{t}-1\right) \cdot\left(2^{t}-1\right)$
$A_{L}\left(3 \cdot 2^{3 k-1}-2^{3 t}\right)=3 \cdot\left[\left(2^{k-1}-1\right) \cdot\left(2^{k-1}-1\right) \cdot\left(2^{k-1}-1\right) \cdot 2+2^{k-2}+1\right]$
$A_{L}\left(3.2^{3 k-1}-2^{3 t-1}\right)=3 \cdot\left[2^{3 k-2 t} \cdot\left(2^{t}-1\right)-2^{k}\left(2^{2 k-2}-3.2^{k-1}+4\right)-5.2^{k+t-3}-1\right]$
(3) $A_{B}(0)=1$

$$
\begin{aligned}
& A_{B}\left(13 \cdot 2^{3 k-3}\right)=\left(2^{k-t}-1\right) \cdot\left(2^{k-t}-1\right) \cdot\left(2^{k-t}-1\right) \\
& A_{B}\left(2^{3 k}-2^{3 t}\right)=3 \cdot\left(2^{k+t-3}+1\right) \\
& A_{B}\left(2^{3 k}\right)=3 \cdot\left(2^{k-t}-1\right) \\
& A_{B}\left(3 \cdot 2^{3 k-1}\right)=3 \cdot\left(2^{k-t}-1\right) \cdot\left(2^{k-t}-1\right) \\
& A_{B}\left(3 \cdot\left(2^{3 k-1}-2^{3 t-1}\right)\right)=3 \cdot\left(2^{k+t-1}-2^{k-2}+1\right) \\
& A_{B}\left(13 \cdot\left(2^{3 k-3}-2^{3 t-3}\right)\right)=2^{3 \cdot(k-t)} \cdot\left(2^{t}-1\right) \cdot\left(2^{t}-1\right) \cdot\left(2^{t}-1\right) \\
& A_{B}\left(13 \cdot 2^{3 k-3}-2^{3 t}\right)=3 \cdot\left[2^{3 k-2 t} \cdot\left(2^{t}-1\right)-2^{k}\left(2^{2 k-2}-3 \cdot 2^{k-1}+4\right)-5 \cdot 2^{k+t-3}-1\right]
\end{aligned}
$$

$$
\begin{aligned}
& A_{B}\left(3 \cdot 2^{3 k-1}-2^{3 t}\right)=3 \cdot 2^{k} \\
& A_{B}\left(13 \cdot 2^{3 k-3}-3 \cdot 2^{3 t-1}\right)=3 \cdot\left[\left(2^{k-1}-1\right) \cdot\left(2^{k-1}-1\right) \cdot\left(2^{k-1}-1\right) \cdot 2+2^{k-2}+1\right]
\end{aligned}
$$

Proof: By Lemma 3, each non-zero codeword of $M_{k, t}^{\alpha}$ has Hamming weight either

$$
7 \cdot 2^{3 k-3}, 2^{3 k-1}-2^{3 t-1}, 2^{3 k-1}, 3 \cdot 2^{3 k-2}, 3 \cdot\left(2^{3 k-2}-2^{3 t-2}\right), 7 \cdot\left(2^{3 k-3}-2^{3 t-3}\right), 7 \cdot 2^{3 k-3}-2^{3 t-1}, 3 \cdot 2^{3 k-2}-2^{3 t-1}
$$

or

$$
7.2^{3 k-3}-3.2^{3 t-2}
$$

and Lee weight either

$$
3.2^{3 k-1}, 2^{3 k-1}-2^{3 t-1}, 2^{3 k-1}, 2^{3 k}-2^{3 t}, 2^{3 k}-2^{3 t-1}, 2^{3 k}, 3 .\left(2^{3 k-1}-2^{3 t-1}\right), 3.2^{3 k-1}-2^{3 t} \text { or } 3.2^{3 k-1}-2^{3 t-1}
$$

and Bachoc weight either

$$
13 \cdot 2^{3 k-3}, 2^{3 k}-2^{3 t}, 2^{3 k}, 3 \cdot 2^{3 k-1}, 3 \cdot\left(2^{3 k-1}-2^{3 t-1}\right), 13 \cdot\left(2^{3 k-3}-2^{3 t-3}\right), 13 \cdot 2^{3 k-3}-2^{3 t}, 3 \cdot 2^{3 k-1}-2^{3 t}
$$

or

$$
13.2^{3 k-3}-3.2^{3 t-1}
$$

CONCLUSION

In this paper, it was studied the MacDonald codes and some of their properties over the finite ring R. The results can be extended to more general rings like $F_{p}+u F_{p}+v F_{p}$, where p is a prime number, $u^{2}=u, v^{2}=v, u v=v u=0$ and $F_{p}+v_{1} F_{p}+\cdots+v_{k} F_{p}$, where p is a prime number, $v_{i}^{2}=v_{i}, v_{i} v_{j}=v_{j} v_{i}=0, i \neq j, i=1, \ldots, k, j=1, \ldots, k$. MacDonald codes of type β can be studied, as well.

REFERENCES

[1] MacDonald, J., IBM Journal of Res and Dev., 4, 43, 1960.
[2] Patel, A., IEEE Trans. Inf. Theory, 21, 106, 1975.
[3] Al-Ashker, M.M., Journal of the Islamic University of Gaza, 2, 47, 2005.
[4] Al-Ashker, M.M., The Islamic University Journal, Series of Natural Studies and Engineering, 18, 1, 2010.
[5] Colbourn, C.J., Gupta, M., On Quaternary MacDonald codes, Proceeding of the International Conference on Information Technology Coding and Computing, 212-215, 2003.
[6] Dertli, A., Cengellenmis, Y., International Journal of Algebra, 5, 985, 2011.
[7] Cengellenmis, Y., Al-Ashker, M.M., IUG Journal for Natural and Engineering Studies, 20, 1, 2012.
[8] Dertli, A., Cengellenmis, Y., Eren, S., Palestine Journal of Mathematics, 4, 547, 2015.

[^0]: ${ }^{1}$ University of Ondokuz Mayıs, Faculty of Arts and Science, Department of Mathematics, Samsun, Turkey. E-mail: rabia.alim06@gmail.com; seren@omu.edu.tr.

