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Abstract. In this paper, we construct MacDonald codes of type  over the ring 

2 2 2F uF vF  , where
2 2

2, , 0, {0,1}u u v v uv vu F     is the field of two elements and 

investigate their properties such as torsion codes and weight distributions. 
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1. INTRODUCTION  

 

 

There has been much attention research in codes over finite rings in recent years. By 

using type   simplex codes we have been constructed MacDonald codes over a ring. 

MacDonald codes are important in coding theory since they provide the Griesmer bound. In 

[1], the binary MacDonald codes were introduced and q -ary version ( 2q  ) of these over the 

finite fields were studied in [2].  

Motivated by the importance of the MacDonald codes which have been defined over 

several finite commutative rings [3-7], in this paper, we construct MacDonald codes over the 

ring 2 2 2F uF vF   of type  , where 
2u u , 

2v v , 20, {0,1}uv vu F   and we study 

torsion code weight distributions. We describe their properties such as Hamming, Lee and 

Bachoc weight distributions. 

 

 

2. PRELIMINARIES  

 

 

In [6], A. Dertli and Y. Cengellenmis introduced the finite ring 

 

2 2 2 2[ , ]R F uF vF F u v    2 2/ , ,u u v v uv vu    

 

The ring R is a commutative ring of 8 elements which are {0, 1,u , v , 1 ,a u 

1 ,b v  a b u v   , 1 }ab u v   , where 
2u u , 

2v v , 0uv vu    and 2 {0,1}F  . The 

element 1 is unit. Addition and multiplication operation over R  are given in Tables 1-2. 

A linear code C over R  of length n  is an R -submodule of nR .  The elements of a 

linear code are called codewords. There are three well known different weights for codes over 

R , namely Hamming, Lee and Bachoc weights. 
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Table 1. Addition operation. 

+ 0 1 u v a b a+b ab 

0 0 1 u v a b a+b ab 

1 1 0 a b u v ab a+b 

u u a 0 a+b 1 ab v b 

v v b a+b 0 ab 1 u a 

a a u 1 ab 0 a+b b v 

b b v ab 1 a+b 0 a u 

a+b a+b ab v u b a 0 1 

ab ab a+b b a v u 1 0 

 

Table 2. Multiplication operation. 
 · 0 1 u v a b a+b ab 

0 0 0 0 0 0 0 0 0 

1 0 1 u v a b a+b ab 

u 0 u 0 0 0 0 u 0 

v 0 v 0 v v 0 v 0 

a 0 a 0 v ab ab v ab 

b 0 b u 0 ab b u ab 

a+b 0 a+b u v v u a+b 0 

ab 0 ab 0 0 ab ab 0 ab 

 

The Hamming weight ( )Hwt x of a codeword 1(x x , 2x , ... , ) n

nx R  is the number of 

non-zero coordinates. The minimum weight ( )Hwt C  of a code C  is the smallest weight 

among all its nonzero codewords. 

The Lee weight for the codeword 1 2( ,..., ), n

nx x x x R   is defined by 

1

( ) ( )
n

L L i
i

wt x wt x


  where,           

                  

 

0, if   0

1, if  = ,   or  1  
( )

 2, if 1 , 1   or   

3, if  1

i

i

L i

i

i

x

x u v u v
wt x

x u v u v

x




 
 

   
 

 

  

The Bachoc weight for the codeword 1(x x , 2x , ..., ) n

nx R  is defined by 

1

( ) ( )
n

B B i
i

wt x wt x


   where,  

 

 

0,  if 0 

( ) 1,  if   =1 

 2,  if , , 1 , 1 ,   or 1

i

B i i

i

x

wt x x

x u v u v u v u v




 
      

 

 

The minimum Lee weight ( )Lwt C  and the minimum Bachoc weight ( )Bwt C  of code 

C  are defined analogously. 

For 1(x x , 2x , ..., 1 2), ( , ,..., ) n

n nx y y y y R  ,  ( , )H i id x y i x y   is called 

Hamming distance between x ,
ny R  and it is denoted by ( , ) ( )H Hd x y wt x y  . The 
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minimum Hamming distance between distinct pairs of codewords of a code C  is called the 

minimum distance of C and denoted by ( )Hd C  or shortly Hd . 

The Lee distance and Bachoc distance between x  and y nR  is defined by 

 

1

1

( , ) ( ) ( )

( , ) ( ) ( )

n

L L L i i

i

n

B B B i i

i

d x y wt x y wt x y

d x y wt x y wt x y





   

   





 

respectively. 

The minimum Lee and Bachoc distance between distinct pairs of codewords of a code 

C  are called the minimum distance of C  and denoted by ( )Ld C  and ( )Bd C  or shortly Ld  

and Bd , respectively. If C  is a linear code, then 

 

( ) ( )

( ) ( )

( ) ( )

H H

L L

B B

d C wt C

d C wt C

d C wt C







 

 

Given 1(x x , ..., 1), ( ,..., ) n

n nx y y y R  , their scalar product is defined by, 

1 1 ... n nxy x y x y   . Two words ,x y  are called orthogonal if 0xy  . For the code C  over R , 

its dual C
 is defined as follows,    0, .C x xy y C      If C  C

, we say that the codes 

C is self-orthogonal and if C C  we say that the code is self-dual. 

If H  is a code over R , then 1H  (resp. 2 3,H H ) is a binary code. It is obtained that, 

1 2 3(1 )H u v H uH vH      with 

 

1 2

2 2

3 2

{ : , , (1 ) }

{ : , , (1 ) }

{ : , , (1 ) }

n

n

n

H x y z F u v x uy vz H

H y x z F u v x uy vz H

H z x y F u v x uy vz H

       

       

       

 

 

In [8], it was shown that the ring R  has three maximal ideals. These are 1m   a 

{0 , a , v , 21 },u v m   b  {0 ,b u ,1 }u v  and 3m  {0, , , }.u v u v u v    Morever 

1 2 3 {0}m m m   . 

The following map: 

                        

1 2 3: / / /R R m R m R m   
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1 2 3( ( ), ( ), ( ))a a a a    

 

is an isomorphism where these maps : /i iR R m   are canonical homomorphisms for 

1,2,3i  . It is easy to see that / iR m  is isomorphic to 2F , for 1,2,3i  . The map 
1 
 is a 

ring isomorphism by the generalized Chinese Remainder Theorem and R  is isomorphic to 

1 2 3/ / /R m R m R m  
3

2F .  This map can be extended from nR  to 
3

2

nF  in the following 

way. The Gray map   from nR  to 
3

2

nF  is defined as: 

 
3

2: n nR F 
 

 

( , , )x uy vz x x y x z     
 

is an isomorphism where 2, , nx y z F , [8]. From the definition of the Gray map and the Lee 

weights, we have the following Lemma. 

 

Lemma 1. If a code C  is a self-dual, so is ( )C . The minimum Lee weight of C  is equal to 

the minimum Hamming weight of ( )C .  Thus a code 31 2[ ,8 4 2 , ]
kk k

LC n d  over R  of length 

n , 31 28 4 2
kk k

codewords with minimum Lee distance of Ld gives rise to binary code 

1 2 3( ) [3 ,3 2 , ]H LC n k k k d d     .  

 

Definition1. For each 1 i n  ,  let ( )( ( ))H LA i A i  be the number of  codewords of Hamming 

(Lee) weight i in .C  Then (0), (1),..., ( )H H HA A A n   (0),..., ( )L LA A n  is called the Hamming 

(Lee) weight distribution of ,C  [1]. 

 

 

3. MACDONALD CODES OF TYPE   

 

 

In this section we will study the MacDonald codes of types   over R  and also we 

study the properties of their images under the Gray map. 

A type   simplex code kS
 is a linear code over R  constructed inductively by the 

following generator matrix. 

Let kG
 be 

32 kk  matrix over R  defined inductively by  

              

1 1 1 1

0...0 1...1 ... ... ( )...( )
; 2

...
k

k k k k

u u ab ab
G k

G G G G



   

   

 
  
                             (3.1)

 

 

where 1 [0 1 ( )( )]G u va b a b ab   . 

We will now construct the MacDonald codes by using the generator matrices of 

simplex codes. For 1 1t k   , let ,k tG  be the matrix obtained from kG
 by deleting columns 

corresponding to the columns of tG
, i.e. 
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,

0
\k t k

t

G G
G

 



 
  
                                                          (3.2)

 

 

where  \A B  denotes the matrix obtained from the matrix A  by deleting the matrix B  and 

0  in (3.2) is a 
3( ) 2 tk t   zero matrix. The code ,k tM   was generated by the matrix ,k tG  is the 

punctured code of kS
 and is called a MacDonald code. (i.e The MacDonald codes are 

obtained by deleting some columns of the generator matrices kG
 of the simplex code kS

). 

 

3.1. PROPERTIES 

 

The code ,k tM   is a code of length 
3 32 2k tn    and dimension 3k . 

 

Lemma 2. The torsion code of ,k tM   is binary linear 
3 3 3 1 3 1[2 2 , ,2 2 ]k t k tk     code with 

weight distribution 
3 1 3 1 2 3(0) 1, (2 2 ) [2 2 ]k t k k t

H HA A          and 
3 1(2 ) [2 1].k k t

HA      

 

Proof: Since the torsion code of ,k tM   is the set of codewords obtained by replacing u  by 1  in 

all u -linear combination of the rows of the matrix u . ,k tG  (where ,k tG  is defined in (3.2)).  

We prove by induction with respect to k  and t . For 2k   and 1t   the result holds. Suppose 

the result holds for 1k   and 1 2t k   . Then for k  and 1 1t k    the matrix ,. k tu G  takes 

the form, 
,

0
\. .

.
k t k

t

u G u G
u G

 



 
  
 

. Each non-zero codeword of ,. k tu M   has Hamming weight 

either 3 1 3 12 2k t   or 3 12 k  and the dimension of the torsion code  of ,k tM   is k , then there will 

be 2 32 2k k t    codewords  of Hamming weight 3 1 3 12 2k t   and the number of codewords 

with  Hamming weight 3 12 k  is 2 1k t  .       

 

Remark 1. Each of the first k t  rows of (3.2) has total number of units 4 42 k t   and total 

number of non-zero divisors 
4 3 3.2 k t 

 and the last t  rows has total number of units 
3 4 4 42 2k t t    and total number of non-zero divisors 

3 3 4 33.(2 2 )k t t   .     

 

Remark 2. Let j R  and let c  be a codeword in the code C . We denote 

 ( ) :j kw c k c j  .       

 

Lemma 3. Let ,k tc M  , 0c  . If at least one component of t  elements is a unit then there are 

eight type of codewords.       

 

 I .  
3 3 3 3

0 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2k t

u v a b a b abw t w t w t w t w t w t w t w t  

           

 

 II .  
3 3

1( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 k

u v a b a b abw t w t w t w t w t w t w t 

       , 
3 3 3

0 ( ) 2 2k tw t     

 

 III .  
3 3

1( ) ( ) ( ) ( ) ( ) ( ) 2 k

v a b a b abw t w t w t w t w t w t 

      , 
3 3 3 1

0( ) ( ) 2 2k t

uw t w t       
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 IV .  
3 3

1( ) ( ) ( ) ( ) ( ) ( ) 2 k

u a b a b abw t w t w t w t w t w t 

      , 
3 3 3 1

0( ) ( ) 2 2k t

vw t w t       

 

 V .  
3 3

1( ) ( ) ( ) ( ) ( ) ( ) 2 k

u v a b a bw t w t w t w t w t w t 

      , 
3 3 3 1

0( ) ( ) 2 2k t

abw t w t       

 

 VI .  
3 3

1( ) ( ) ( ) ( ) 2 k

u b a bw t w t w t w t 

    , 
3 3 3 2

0( ) ( ) ( ) ( ) 2 2k t

a v abw t w t w t w t         

 

 VII .  
3 3

1( ) ( ) ( ) ( ) 2 k

v a a bw t w t w t w t 

    , 
3 3 3 2

0( ) ( ) ( ) ( ) 2 2k t

u b abw t w t w t w t         

 

 VIII . 
3 3

1( ) ( ) ( ) ( ) 2 k

a b abw t w t w t w t     , 
3 3 3 2

0( ) ( ) ( ) ( ) 2 2k t

u v a bw t w t w t w t  

       

 

Otherwise: 

 

 I .  
3 1 3 1

0( ) ( ) ( ) ( ) 2 2k t

u v abw t w t w t w t         

 

 II .  
3 2 3 2

0( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2k t

u v a b a b abw t w t w t w t w t w t w t  

          

 

 III .  
3 1( ) ( ) ( ) 2 k

u v abw t w t w t    ,  
3 1 3

0( ) 2 2k tw t     

 

 IV .  
3 2( ) ( ) ( ) ( ) 2 k

u a a b abw t w t w t w t 

    ,  
3 2 3 1

0( ) ( ) 2 2k t

vw t w t       

 

 V .  
3 2( ) ( ) 2 k

v a bw t w t 

  ,  
3 2 3 1

0( ) ( ) 2 2k t

uw t w t       

 

 VI .  
3 2( ) ( ) ( ) ( ) 2 k

u v a bw t w t w t w t     ,  
3 2 3 1

0( ) ( ) 2 2k t

abw t w t       

 

 VII .  
3 2( ) ( ) ( ) ( ) ( ) ( ) 2 k

u v a b a b abw t w t w t w t w t w t 

      , 
3 2 2 1

0( ) 2 2k tw t      

 

 VIII . 
3 2( ) ( ) ( ) 2 k

a b abw t w t w t    , 
3 2 3 1

0( ) ( ) ( ) 2 2k t

u vw t w t w t        

 

Theorem 1. The Hamming, Lee and Bachoc weight distributions of ,k tM   are:       

  

(1) (0) 1HA 
 

 
3 3(7.2 ) (2 1).(2 1).(2 1)k k t k t k t

HA             

           
3 1 3 1 3(2 2 ) 3.(2 1)k t k t

HA              

         
3 1(2 ) 3.(2 1)k k t

HA            

 
3 2(3.2 ) 3.(2 1).(2 1)k k t k t

HA                   

3 2 3 2 1 2(3.(2 2 )) 3.(2 2 1)k t k t k

HA                
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3 3 3 3 3.( )(7.(2 2 )) 2 .(2 1).(2 1).(2 1)k t k t t t t

HA               

 
3 3 3 1 3 2 2 2 1 3(7.2 2 ) 3.[2 .(2 1) 2 (2 3.2 4) 5.2 1]k t k t t k k k k t

HA                            

 
3 2 3 1(3.2 2 ) 3.2k t k

HA                 

 
3 3 3 2 1 1 1 2(7.2 3.2 ) 3.[(2 1).(2 1).(2 1).2 2 1]k t k k k k

HA                   

 

(2) (0) 1LA                

 
3 1(3.2 ) (2 1).(2 1).(2 1)k k t k t k t

LA                

       
3 1 3 1 3(2 2 ) 3.(2 1)k t k t

LA                 

    
3 1(2 ) 3.(2 1)k k t

LA                

 
3 3(2 2 )k t

LA    
1 23.(2 2 1)k t k               

  
3 3 1(2 2 )) 3.2k t k

LA             

 
3(2 ) 3.(2 1).(2 1)k k t k t

LA               

    
3 1 3 1 3.( )(3.(2 2 )) 2 .(2 1).(2 1).(2 1)k t k t t t t

LA                 

 
3 1 3 1 1 1 2(3.2 2 ) 3.[(2 1).(2 1).(2 1).2 2 1]k t k k k k

LA                    

 
3 1 3 1 3 2 2 2 1 3(3.2 2 ) 3.[2 .(2 1) 2 (2 3.2 4) 5.2 1]k t k t t k k k k t

LA                     

 

(3) (0) 1BA                

 

 
3 3(13.2 ) (2 1).(2 1).(2 1)k k t k t k t

BA                     

 

 
3 3 3(2 2 ) 3.(2 1)k t k t

BA                   

 

 
3(2 ) 3.(2 1)k k t

BA                

 

 
3 1(3.2 ) 3.(2 1).(2 1)k k t k t

BA                    

 
3 1 3 1 1 2(3.(2 2 )) 3.(2 2 1)k t k t k

BA                      

 
3 3 3 3 3.( )(13.(2 2 )) 2 .(2 1).(2 1).(2 1)k t k t t t t

BA                

 
3 3 3 3 2 2 2 1 3(13.2 2 ) 3.[2 .(2 1) 2 (2 3.2 4) 5.2 1]k t k t t k k k k t

BA                           
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3 1 3(3.2 2 ) 3.2k t k

BA               

 
3 3 3 1 1 1 1 2(13.2 3.2 ) 3.[(2 1).(2 1).(2 1).2 2 1]k t k k k k

BA                   

 

Proof: By Lemma 3, each non-zero codeword of ,k tM  has Hamming weight either 

 
3 3 3 1 3 1 3 1 3 2 3 2 3 2 3 3 3 3 3 3 3 1 3 2 3 17.2 ,2 2 ,2 ,3.2 ,3.(2 2 ),7.(2 2 ),7.2 2 ,3.2 2k k t k k k t k t k t k t                  

 

or   
3 3 3 27.2 3.2k t   

 

and Lee weight either    
 

3 1 3 1 3 1 3 1 3 3 3 3 1 3 3 1 3 1 3 1 33.2 ,2 2 ,2 ,2 2 ,2 2 ,2 ,3.(2 2 ),3.2 2k k t k k t k t k k t k t             or 
3 1 3 13.2 2k t   

 

and  Bachoc weight either  
 

3 3 3 3 3 3 1 3 1 3 1 3 3 3 3 3 3 3 3 1 313.2 ,2 2 ,2 ,3.2 ,3.(2 2 ),13.(2 2 ),13.2 2 ,3.2 2k k t k k k t k t k t k t             
 or 

 

 
3 3 3 113.2 3.2k t  . 

 

CONCLUSION 
 

 

In this paper, it was studied the MacDonald codes and some of their properties over 

the finite ring  . The results can be extended to more general rings like           , 

where   is a prime number,                   and                , where 

  is a prime number,   
                                    . MacDonald codes 

of type   can be studied, as well. 
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