ORIGINAL PAPER

MACDONALD CODES OVER THE RING $F_2 + uF_2 + vF_2$

RABIA DERTLI¹, SENOL EREN¹

Manuscript received: 07.11.2019; Accepted paper: 20.03.2020; Published online: 30.06.2020.

Abstract. In this paper, we construct MacDonald codes of type α over the ring $F_2 + uF_2 + vF_2$, where $u^2 = u, v^2 = v, uv = vu = 0, F_2 = \{0,1\}$ is the field of two elements and investigate their properties such as torsion codes and weight distributions.

Keywords: MacDonald codes, weight distributions, rings.

1. INTRODUCTION

There has been much attention research in codes over finite rings in recent years. By using type α simplex codes we have been constructed MacDonald codes over a ring. MacDonald codes are important in coding theory since they provide the Griesmer bound. In [1], the binary MacDonald codes were introduced and q-ary version ($q \ge 2$) of these over the finite fields were studied in [2].

Motivated by the importance of the MacDonald codes which have been defined over several finite commutative rings [3-7], in this paper, we construct MacDonald codes over the ring $F_2 + uF_2 + vF_2$ of type α , where $u^2 = u$, $v^2 = v$, uv = vu = 0, $F_2 = \{0,1\}$ and we study torsion code weight distributions. We describe their properties such as Hamming, Lee and Bachoc weight distributions.

2. PRELIMINARIES

In [6], A. Dertli and Y. Cengellenmis introduced the finite ring

$$R = F_2 + uF_2 + vF_2 = F_2[u, v] / \langle u^2 - u, v^2 - v, uv - vu \rangle$$

The ring *R* is a commutative ring of 8 elements which are $\{0, 1, u, v, a = 1+u, b = 1+v, a+b = u+v, ab = 1+u+v\}$, where $u^2 = u$, $v^2 = v$, uv = vu = 0 and $F_2 = \{0,1\}$. The element 1 is unit. Addition and multiplication operation over *R* are given in Tables 1-2.

A linear code C over R of length n is an R-submodule of R^n . The elements of a linear code are called codewords. There are three well known different weights for codes over R, namely Hamming, Lee and Bachoc weights.

¹ University of Ondokuz Mayıs, Faculty of Arts and Science, Department of Mathematics, Samsun, Turkey. E-mail: <u>rabia.alim06@gmail.com</u>; <u>seren@omu.edu.tr</u>.

Table 1. Addition operation.												
+	0	1	и	v	a	b	a+b	ab				
0	0	1	и	v	a	b	a+b	ab				
1	1	0	a	b	и	v	ab	a+b				
и	и	a	0	a+b	1	ab	v	b				
v	ν	b	a+b	0	ab	1	и	a				
а	а	и	1	ab	0	a+b	b	v				
b	b	v	ab	1	a+b	0	a	и				
a+b	a+b	ab	v	и	b	a	0	1				
ab	ab	a+b	b	a	v	и	1	0				

Table 1. Addition operation.

Table 2. Multiplication operation.

•	0	1	и	v	a	b	a+b	ab
0	0	0	0	0	0	0	0	0
1	0	1	и	v	a	b	a+b	ab
и	0	и	0	0	0	0	и	0
v	0	v	0	v	v	0	v	0
а	0	a	0	v	ab	ab	v	ab
b	0	b	и	0	ab	b	и	ab
a+b	0	a+b	и	v	v	и	a+b	0
ab	0	ab	0	0	ab	ab	0	ab

The Hamming weight $wt_H(x)$ of a codeword $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ is the number of non-zero coordinates. The minimum weight $wt_H(C)$ of a code *C* is the smallest weight among all its nonzero codewords.

The Lee weight for the codeword $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ is defined by $wt_L(x) = \sum_{i=1}^n wt_L(x_i)$ where,

$$wt_{L}(x_{i}) = \begin{cases} 0, & \text{if } x_{i} = 0 \\ 1, & \text{if } x_{i} = u, v \text{ or } 1 + u + v \\ 2, & \text{if } x_{i} = 1 + u, 1 + v \text{ or } u + v \\ 3, & \text{if } x_{i} = 1 \end{cases}$$

The Bachoc weight for the codeword $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ is defined by $wt_B(x) = \sum_{i=1}^n wt_B(x_i)$ where,

$$wt_B(x_i) = \begin{cases} 0, \text{ if } x_i = 0\\ 1, \text{ if } x_i = 1\\ 2, \text{ if } x_i = u, v, 1+u, 1+v, u+v \text{ or } 1+u+v \end{cases}$$

The minimum Lee weight $wt_L(C)$ and the minimum Bachoc weight $wt_B(C)$ of code C are defined analogously.

For $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$, $d_H(x, y) = |\{i | x_i \neq y_i\}|$ is called Hamming distance between $x, y \in \mathbb{R}^n$ and it is denoted by $d_H(x, y) = wt_H(x - y)$. The The Lee distance and Bachoc distance between x and $y \in \mathbb{R}^n$ is defined by

$$d_{L}(x, y) = wt_{L}(x - y) = \sum_{i=1}^{n} wt_{L}(x_{i} - y_{i})$$
$$d_{B}(x, y) = wt_{B}(x - y) = \sum_{i=1}^{n} wt_{B}(x_{i} - y_{i})$$

respectively.

The minimum Lee and Bachoc distance between distinct pairs of codewords of a code C are called the minimum distance of C and denoted by $d_L(C)$ and $d_B(C)$ or shortly d_L and d_B , respectively. If C is a linear code, then

$$d_{H}(C) = wt_{H}(C)$$
$$d_{L}(C) = wt_{L}(C)$$
$$d_{B}(C) = wt_{B}(C)$$

Given $x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in \mathbb{R}^n$, their scalar product is defined by, $xy = x_1y_1 + ... + x_ny_n$. Two words x, y are called orthogonal if xy = 0. For the code C over \mathbb{R} , its dual C^{\perp} is defined as follows, $C^{\perp} = \{x \mid xy = 0, \forall y \in C\}$. If $C \subseteq C^{\perp}$, we say that the codes C is self-orthogonal and if $C = C^{\perp}$ we say that the code is self-dual.

If H is a code over R, then H_1 (resp. H_2, H_3) is a binary code. It is obtained that, $H = (1+u+v)H_1 + uH_2 + vH_3$ with

$$H_{1} = \{x : \exists y, z \in F_{2}^{n}, (1+u+v)x + uy + vz \in H\}$$
$$H_{2} = \{y : \exists x, z \in F_{2}^{n}, (1+u+v)x + uy + vz \in H\}$$
$$H_{3} = \{z : \exists x, y \in F_{2}^{n}, (1+u+v)x + uy + vz \in H\}$$

In [8], it was shown that the ring *R* has three maximal ideals. These are $m_1 = \langle a \rangle = \{0, a, v, 1+u+v\}, m_2 = \langle b \rangle = \{0, b, u, 1+u+v\}$ and $m_3 = \langle u+v \rangle = \{0, u+v, u, v\}$. Morever $m_1 \cap m_2 \cap m_3 = \{0\}$.

The following map:

$$\varphi: R \to R / m_1 \times R / m_2 \times R / m_3$$

Rabia Dertli and Senol Eren

$$a \mapsto (\varphi_1(a), \varphi_2(a), \varphi_3(a))$$

is an isomorphism where these maps $\varphi_i : R \to R/m_i$ are canonical homomorphisms for i = 1, 2, 3. It is easy to see that R/m_i is isomorphic to F_2 , for i = 1, 2, 3. The map φ^{-1} is a ring isomorphism by the generalized Chinese Remainder Theorem and R is isomorphic to $R/m_1 \times R/m_2 \times R/m_3 \cong F_2^3$. This map can be extended from R^n to F_2^{3n} in the following way. The Gray map φ from R^n to F_2^{3n} is defined as:

$$\varphi : R^n \to F_2^{3n}$$
$$x + uy + vz \mapsto (x, x + y, x + z)$$

is an isomorphism where $x, y, z \in F_2^n$, [8]. From the definition of the Gray map and the Lee weights, we have the following Lemma.

Lemma 1. If a code *C* is a self-dual, so is $\varphi(C)$. The minimum Lee weight of *C* is equal to the minimum Hamming weight of $\varphi(C)$. Thus a code $C = [n, 8^{k_1} 4^{k_2} 2^{k_3}, d_L]$ over *R* of length n, $8^{k_1} 4^{k_2} 2^{k_3}$ codewords with minimum Lee distance of d_L gives rise to binary code $\varphi(C) = [3n, 3k_1 + 2k_2 + k_3, d_H = d_L]$.

Definition1. For each $1 \le i \le n$, let $A_H(i)(A_L(i))$ be the number of codewords of Hamming (Lee) weight i in C. Then $\{A_H(0), A_H(1), ..., A_H(n)\}$ ($\{A_L(0), ..., A_L(n)\}$) is called the Hamming (Lee) weight distribution of C, [1].

3. MACDONALD CODES OF TYPE α

In this section we will study the MacDonald codes of types α over R and also we study the properties of their images under the Gray map.

A type α simplex code S_k^{α} is a linear code over *R* constructed inductively by the following generator matrix.

Let G_k^{α} be $k \times 2^{3k}$ matrix over *R* defined inductively by

$$G_{k}^{\alpha} = \begin{bmatrix} 0...0 & 1...1 & u...u & ... & (ab)...(ab) \\ G_{k-1}^{\alpha} & G_{k-1}^{\alpha} & G_{k-1}^{\alpha} & ... & G_{k-1}^{\alpha} \end{bmatrix}; \ k \ge 2$$
(3.1)

where $G_{1}^{\alpha} = [0 \, 1 \, u \, v \, a \, b \, (a+b)(ab)]$.

We will now construct the MacDonald codes by using the generator matrices of simplex codes. For $1 \le t \le k-1$, let $G_{k,t}^{\alpha}$ be the matrix obtained from G_k^{α} by deleting columns corresponding to the columns of G_t^{α} , i.e.

$$G_{k,t}^{\alpha} = \left[G_{k}^{\alpha} \setminus \frac{0}{G_{t}^{\alpha}} \right]$$
(3.2)

where $[A \setminus B]$ denotes the matrix obtained from the matrix A by deleting the matrix B and 0 in (3.2) is a $(k-t) \times 2^{3t}$ zero matrix. The code $M_{k,t}^{\alpha}$ was generated by the matrix $G_{k,t}^{\alpha}$ is the punctured code of S_k^{α} and is called a MacDonald code. (i.e The MacDonald codes are obtained by deleting some columns of the generator matrices G_k^{α} of the simplex code S_k^{α}).

3.1. PROPERTIES

The code $M_{k,t}^{\alpha}$ is a code of length $n = 2^{3k} - 2^{3t}$ and dimension 3k.

Lemma 2. The torsion code of $M_{k,t}^{\alpha}$ is binary linear $[2^{3k} - 2^{3t}, k, 2^{3k-1} - 2^{3t-1}]$ code with weight distribution $A_H(0) = 1, A_H(2^{3k-1} - 2^{3t-1}) = [2^{k-2} + 2^{k+t-3}]$ and $A_H(2^{3k-1}) = [2^{k-t} - 1]$.

Proof: Since the torsion code of $M_{k,t}^{\alpha}$ is the set of codewords obtained by replacing u by 1 in all u-linear combination of the rows of the matrix $u \cdot G_{k,t}^{\alpha}$ (where $G_{k,t}^{\alpha}$ is defined in (3.2)).

We prove by induction with respect to k and t. For k = 2 and t = 1 the result holds. Suppose the result holds for k-1 and $1 \le t \le k-2$. Then for k and $1 \le t \le k-1$ the matrix $u.G_{k,t}^{\alpha}$ takes the form, $u.G_{k,t}^{\alpha} = \left[u.G_{k}^{\alpha} \setminus \frac{0}{u.G_{t}^{\alpha}}\right]$. Each non-zero codeword of $u.M_{k,t}^{\alpha}$ has Hamming weight either $2^{3k-1} - 2^{3t-1}$ or 2^{3k-1} and the dimension of the torsion code of $M_{k,t}^{\alpha}$ is k, then there will be $2^{k-2} + 2^{k+t-3}$ codewords of Hamming weight $2^{3k-1} - 2^{3t-1}$ and the number of codewords with Hamming weight 2^{3k-1} is $2^{k-t} - 1$.

Remark 1. Each of the first k-t rows of (3.2) has total number of units 2^{4k-t-4} and total number of non-zero divisors $3 \cdot 2^{4k-t-3}$ and the last *t* rows has total number of units $2^{3k+t-4} - 2^{4t-4}$ and total number of non-zero divisors $3 \cdot (2^{3k+t-3} - 2^{4t-3})$.

Remark 2. Let $j \in R$ and let c be a codeword in the code C. We denote $w_j(c) = |\{k : c_k = j\}|.$

Lemma 3. Let $c \in M_{k,t}^{\alpha}$, $c \neq 0$. If at least one component of *t* elements is a unit then there are eight type of codewords.

I.
$$w_0(t) = w_1(t) = w_u(t) = w_v(t) = w_a(t) = w_b(t) = w_{a+b}(t) = w_{ab}(t) = 2^{3k-3} - 2^{3t-3}$$

II.
$$w_1(t) = w_u(t) = w_v(t) = w_a(t) = w_b(t) = w_{a+b}(t) = w_{ab}(t) = 2^{3k-3}$$
, $w_0(t) = 2^{3k-3} - 2^{3t}$

III.
$$w_1(t) = w_v(t) = w_a(t) = w_b(t) = w_{a+b}(t) = w_{ab}(t) = 2^{3k-3}, w_0(t) = w_u(t) = 2^{3k-3} - 2^{3t-1}$$

$$IV \cdot w_{1}(t) = w_{u}(t) = w_{a}(t) = w_{b}(t) = w_{a+b}(t) = w_{ab}(t) = 2^{3k-3}, w_{0}(t) = w_{v}(t) = 2^{3k-3} - 2^{3t-1}$$

$$V \cdot w_{1}(t) = w_{u}(t) = w_{v}(t) = w_{a}(t) = w_{b}(t) = w_{a+b}(t) = 2^{3k-3}, w_{0}(t) = w_{ab}(t) = 2^{3k-3} - 2^{3t-1}$$

$$VI \cdot w_{1}(t) = w_{u}(t) = w_{b}(t) = w_{a+b}(t) = 2^{3k-3}, w_{0}(t) = w_{a}(t) = w_{v}(t) = w_{ab}(t) = 2^{3k-3} - 2^{3t-2}$$

$$VII \cdot w_{1}(t) = w_{v}(t) = w_{a}(t) = w_{a+b}(t) = 2^{3k-3}, w_{0}(t) = w_{u}(t) = w_{b}(t) = w_{ab}(t) = 2^{3k-3} - 2^{3t-2}$$

$$VIII \cdot w_{1}(t) = w_{a}(t) = w_{b}(t) = w_{ab}(t) = 2^{3k-3}, w_{0}(t) = w_{u}(t) = w_{b}(t) = 2^{3k-3} - 2^{3t-2}$$

$$VIII \cdot w_{1}(t) = w_{a}(t) = w_{b}(t) = w_{ab}(t) = 2^{3k-3}, w_{0}(t) = w_{u}(t) = w_{v}(t) = w_{ab}(t) = 2^{3k-3} - 2^{3t-2}$$

$$VIII \cdot w_{1}(t) = w_{a}(t) = w_{b}(t) = w_{ab}(t) = 2^{3k-3}, w_{0}(t) = w_{u}(t) = w_{v}(t) = w_{a+b}(t) = 2^{3k-3} - 2^{3t-2}$$

$$VIII \cdot w_{1}(t) = w_{a}(t) = w_{b}(t) = w_{ab}(t) = 2^{3k-3}, w_{0}(t) = w_{u}(t) = w_{v}(t) = w_{a+b}(t) = 2^{3k-3} - 2^{3t-2}$$

$$VIII \cdot w_{1}(t) = w_{a}(t) = w_{b}(t) = w_{ab}(t) = 2^{3k-3}, w_{0}(t) = w_{u}(t) = w_{v}(t) = w_{a+b}(t) = 2^{3k-3} - 2^{3t-2}$$

$$VIII \cdot w_{1}(t) = w_{a}(t) = w_{b}(t) = w_{ab}(t) = 2^{3k-3}, w_{0}(t) = w_{u}(t) = w_{v}(t) = w_{a+b}(t) = 2^{3k-3} - 2^{3t-2}$$

$$VIII \cdot w_{1}(t) = w_{a}(t) = w_{b}(t) = w_{ab}(t) = 2^{3k-3}, w_{0}(t) = w_{u}(t) = w_{u}(t) = w_{a+b}(t) = 2^{3k-3} - 2^{3t-2}$$

$$VIII \cdot w_{1}(t) = w_{a}(t) = w_{b}(t) = w_{ab}(t) = 2^{3k-3}, w_{0}(t) = w_{u}(t) = w_{u}(t) = w_{a+b}(t) = 2^{3k-3} - 2^{3t-2}$$

$$VIII \cdot w_{1}(t) = w_{a}(t) = w_{a}(t) = w_{a}(t) = 2^{3k-3} - 2^{3t-2}$$

$$VIII \cdot w_{1}(t) = w_{a}(t) = w_{b}(t) = w_{a}(t) = 2^{3k-3} + 2^{3t-2}$$

$$VIII \cdot w_{1}(t) = w_{1}(t) = w_{1}(t) = w_{1}(t) = w_{1}(t) = w_{1}(t) = 2^{3k-3} - 2^{3t-2}$$

$$VIII \cdot w_{1}(t) = w_{1}(t) = w_{1}(t) = w_{1}(t) = 0$$

$$I \cdot w_{0}(t) = w_{u}(t) = w_{v}(t) = w_{ab}(t) = 2^{3k-1} - 2^{3t-1}$$

$$II \cdot w_{0}(t) = w_{u}(t) = w_{v}(t) = w_{a}(t) = w_{b}(t) = w_{a+b}(t) = w_{ab}(t) = 2^{3k-2} - 2^{3t-2}$$

$$III \cdot w_{u}(t) = w_{v}(t) = w_{ab}(t) = 2^{3k-1}, \quad w_{0}(t) = 2^{3k-1} - 2^{3t}$$

$$IV \cdot w_{u}(t) = w_{a}(t) = w_{a+b}(t) = w_{ab}(t) = 2^{3k-2}, \quad w_{0}(t) = w_{v}(t) = 2^{3k-2} - 2^{3t-1}$$

$$V \cdot w_{v}(t) = w_{a+b}(t) = 2^{3k-2}, \quad w_{0}(t) = w_{u}(t) = 2^{3k-2} - 2^{3t-1}$$

$$VI \cdot w_{u}(t) = w_{v}(t) = w_{a}(t) = w_{b}(t) = 2^{3k-2}, \quad w_{0}(t) = w_{ab}(t) = 2^{3k-2} - 2^{3t-1}$$

$$VII \cdot w_{u}(t) = w_{v}(t) = w_{a}(t) = w_{b}(t) = w_{a+b}(t) = w_{ab}(t) = 2^{3k-2} - 2^{3t-1}$$

$$VIII \cdot w_{u}(t) = w_{v}(t) = w_{ab}(t) = 2^{3k-2}, \quad w_{0}(t) = w_{u}(t) = 2^{3k-2} - 2^{3t-1}$$

Theorem 1. The Hamming, Lee and Bachoc weight distributions of $M_{k,t}^{\alpha}$ are:

(1)
$$A_{H}(0) = 1$$

 $A_{H}(7.2^{3k-3}) = (2^{k-t} - 1).(2^{k-t} - 1).(2^{k-t} - 1)$
 $A_{H}(2^{3k-1} - 2^{3t-1}) = 3.(2^{k+t-3} + 1)$
 $A_{H}(2^{3k-1}) = 3.(2^{k-t} - 1)$
 $A_{H}(3.2^{3k-2}) = 3.(2^{k-t} - 1).(2^{k-t} - 1)$
 $A_{H}(3.(2^{3k-2} - 2^{3t-2})) = 3.(2^{k+t-1} - 2^{k-2} + 1)$

$$\begin{split} A_{ll}(7,(2^{3k-3}-2^{3t-3})) &= 2^{3(k-l)}, (2^{t}-1), (2^{t}-1), (2^{t}-1) \\ A_{ll}(7,2^{3k-3}-2^{3t-1}) &= 3, [2^{3k-2t}, (2^{t}-1)-2^{k}(2^{2k-2}-3,2^{k-1}+4)-5,2^{k+t-3}-1] \\ A_{ll}(3,2^{3k-2}-2^{3t-1}) &= 3, 2^{k} \\ A_{ll}(7,2^{3k-3}-3,2^{3t-2}) &= 3, [(2^{k-1}-1),(2^{k-1}-1),(2^{k-1}-1),2+2^{k-2}+1] \\ (2) A_{L}(0) &= 1 \\ A_{L}(3,2^{3k-1}) &= (2^{k-t}-1), (2^{k-t}-1), (2^{k-t}-1) \\ A_{L}(2^{3k-1}-2^{3t-1}) &= 3, (2^{k+t-3}+1) \\ A_{L}(2^{3k-1}-2^{3t-1}) &= 3, (2^{k+t-3}+1) \\ A_{L}(2^{3k}-2^{3t}) &= 3, (2^{k+t-1}-2^{k-2}+1) \\ A_{L}(2^{3k}-2^{3t-1})) &= 3, 2^{k} \\ A_{L}(2^{3k}-2^{3t-1})) &= 2^{3(k-t)}, (2^{t}-1), (2^{t}-1), (2^{t}-1) \\ A_{L}(3,2^{3k-1}-2^{3t-1})) &= 2^{3(k-t)}, (2^{t}-1), (2^{t}-1), (2^{t}-1) \\ A_{L}(3,2^{3k-1}-2^{3t-1})) &= 3, [2^{3k-2}, (2^{t}-1)-2^{k}(2^{2k-2}-3,2^{k-1}+4)-5,2^{k+t-3}-1] \\ (3) A_{ll}(0) &= 1 \\ A_{ll}(3,2^{3k-1}) &= 3, (2^{k-t}-1), (2^{k-t}-1), (2^{k-t}-1) \\ A_{ll}(3,2^{3k-1}) &= 3, (2^{k+t-3}+1) \\ A_{ll}(3,2^{3k-1}) &= 3, (2^{k+t-3}+1) \\ A_{ll}(3,2^{3k-1}-2^{3t}) &= 3, (2^{k+t-3}+1) \\ A_{ll}(3,2^{3k-1}-2^{3t}) &= 3, (2^{k+t-1}-2^{k-2}+1) \\ A_{ll}(3,2^{3k-1}-2^{3t}) &= 3, (2^{k+t-1}-2^{k-2}+1) \\ A_{ll}(3,2^{3k-1}-2^{3t-1}) &= 3, (2^{k+t-1}-2^{k-2}+1) \\ A_{ll}(3,2^{3k-1}-2^{3t-1}) &= 3, (2^{k+t-1}-1), (2^{k-t}-1) \\ A_{ll}(3,2^{3k-1}-2^{3t-1}) &= 3, (2^{k+t-1}-2^{k-2}+1) \\ A_{ll}(3,2^{k-1}-2^{k-1}-2^{k-1})) &= 3, (2^{k+t-1}-2^{k-2}+1) \\ A_{ll}(3$$

 $A_B(3.2^{3k-1}-2^{3t})=3.2^k$

$$A_{B}(13.2^{3k-3} - 3.2^{3t-1}) = 3.[(2^{k-1} - 1).(2^{k-1} - 1).(2^{k$$

Proof: By Lemma 3, each non-zero codeword of $M_{k,t}^{\alpha}$ has Hamming weight either

$$7.2^{3k-3}, 2^{3k-1} - 2^{3t-1}, 2^{3k-1}, 3.2^{3k-2}, 3.(2^{3k-2} - 2^{3t-2}), 7.(2^{3k-3} - 2^{3t-3}), 7.2^{3k-3} - 2^{3t-1}, 3.2^{3k-2} - 2^{3t-1}$$

or

$$7.2^{3k-3} - 3.2^{3t-2}$$

and Lee weight either

$$3 \cdot 2^{3k-1}, 2^{3k-1} - 2^{3t-1}, 2^{3k-1}, 2^{3k} - 2^{3t}, 2^{3k} - 2^{3t-1}, 2^{3k}, 3 \cdot (2^{3k-1} - 2^{3t-1}), 3 \cdot 2^{3k-1} - 2^{3t}$$
 or $3 \cdot 2^{3k-1} - 2^{3t-1}$

and Bachoc weight either

$$13.2^{3k-3}, 2^{3k} - 2^{3t}, 2^{3k}, 3.2^{3k-1}, 3.(2^{3k-1} - 2^{3t-1}), 13.(2^{3k-3} - 2^{3t-3}), 13.2^{3k-3} - 2^{3t}, 3.2^{3k-1} - 2^{3t}$$
 or

$$13.2^{3k-3} - 3.2^{3t-1}$$
.

CONCLUSION

In this paper, it was studied the MacDonald codes and some of their properties over the finite ring R. The results can be extended to more general rings like $F_p + uF_p + vF_p$, where p is a prime number, $u^2 = u, v^2 = v, uv = vu = 0$ and $F_p + v_1F_p + \dots + v_kF_p$, where p is a prime number, $v_i^2 = v_i, v_iv_j = v_jv_i = 0, i \neq j, i = 1, \dots, k, j = 1, \dots, k$. MacDonald codes of type β can be studied, as well.

REFERENCES

- [1] MacDonald, J., *IBM Journal of Res and Dev.*, **4**, 43, 1960.
- [2] Patel, A., *IEEE Trans. Inf. Theory*, **21**, 106, 1975.
- [3] Al-Ashker, M.M., Journal of the Islamic University of Gaza, 2, 47, 2005.
- [4] Al-Ashker, M.M., *The Islamic University Journal, Series of Natural Studies and Engineering*, **18**, 1, 2010.
- [5] Colbourn, C.J., Gupta, M., On Quaternary MacDonald codes, *Proceeding of the International Conference on Information Technology Coding and Computing*, 212-215, 2003.
- [6] Dertli, A., Cengellenmis, Y., International Journal of Algebra, 5, 985, 2011.
- [7] Cengellenmis, Y., Al-Ashker, M.M., *IUG Journal for Natural and Engineering Studies*, **20**, 1, 2012.
- [8] Dertli, A., Cengellenmis, Y., Eren, S., Palestine Journal of Mathematics, 4, 547, 2015.