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Abstract. In this study, an analysis of the dynamic behavior of the delay prey-predator 

population model is presented. The delay parameter is selected as the value of the 

bifurcation; and the bifurcation value of the coexistence equilibrium point of the system is 

calculated. 
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1. INTRODUCTION  

 

 

Lotka-Volterra model is one of the first continuous prey-predator population models, 

it is frequently used in the dynamic studies of population models [1, 2]. To have a deep 

knowledge of the dynamics of population models requires stability and bifurcation analysis of 

the system. To answer the question of “How does the system's dynamics change when a 

parameter of the system changes?” is important. Hopf bifurcation analysis is related to the 

investigation of the change in the topological structure of the system together with the 

changing parameter in continuous systems [3-5]. Most authors have tried the stability and 

Hopf-Bifurcations analysis of population models with delay [6-14]. Because one factor in 

creating more realistic models in population dynamics is that the population includes the past 

status. The time mentioned as the delay time; refers to the fact that the rate of change of the 

population depends not only on the current population but also on the past population. 

 

 

2. METHODS 

 

 

Let's consider a modified Lotka –Volterra model with delay effect as follows:  
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where all parameters are positive, a ; the maximum growth rate of the prey population, 
1

b
; the 

maximum growth rate of the predator population, e is the death rate of the predator when 

there is no prey. ( )x t  is the prey population in time t , ( )y t  is the predator population at time 

t .   is the delay parameter. 

If the equilibrium point definition is considered [15], then we get the equilibrium point 

(0,0) , (1,0) ( ,a abe)ve be  of system (1). We will do our analysis for the positive 

equilibrium point E2 = ( ,a abe)be   where the prey and predator population coexists. 

With the linearization of the system at a point (x, y), we reach  
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If the system (2) is written in a different form, then we get as follows:     
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From  
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                          (4) 

 

we have the following the characteristic equation of the system (3): 
 

                                2

1 2 1 2( ) 0A A e B B                                                 (5) 

 

where the coefficient 
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Theorem 1: In case of 0   and 1 2A abe a  , 
2 0A  , 1B a abe  , 2 ( )B e a abe  , if 

1 1 0A B   and 2 2 0A B  , then the equilibrium point 2E  is locally asymptotic stable. 

 

Proof: If  the state 0  in the equation  (5) is considered, then we get that 

 

                                2

1 1 2 2( ) 0A B A B                                                       (7) 
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such that 
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are the coefficients evaluated at the equilibrium point 2 ( , )E be a abe  . Also, if certain 

coefficient totals are calculated, then we have 
 

                                    
1 1

2 2 (1 )

A B abe

A B ea be

 

  
                                                            (9) 

 

From Routh-Hurwitz criterion (see [16-18]), if 1 1 0A B   and 2 2 0A B  ,  then  all 

the roots of the equation (7) are complex conjugate or negative real numbers with negative 

real part. So, 2E  is locally asymptotic stable. 

 

Teorem 2: In case of 0   and 1 2A abe a  , 
2 0A  , 1B a abe  , 2 ( )B e a abe  ,  if 

2 2 2 2

1 2 1 2 22 0 0A A B ve A B     , then 2E  is locally asymptotic stable. 

 

Proof: Let be 0   and 1 2A abe a  , 
2 0A  , 1B a abe  , 2 ( )B e a abe  . In (7), for 

iw  , we get   

 

                   2

1 2 1 2( )[coswt isinwt ] 0w A wi A B wi B       .                               (10)       

 

By seperating the real and imaginary parts, we can write                    
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                                             (11)                                                                 

and it is equivalent to 

                      4 2 2 2 2 2

1 2 1 2 2( 2 ) (A ) 0w A A B w B                                              (12)                   

 

If 2 2

1 2 12 0A A B    and 2 2

2 2A 0B  , then the equation (7) can not have a purely 

imaginary root iw . Therefore, the real part of all the eigenvalues of the equation (7) is 

negative for all 0  . Consequently, 2E  is locally asymptotic stable. 

 

Remark 1. For all 0   and values given in (8), if 1 1 0,A B  2 2 0A B  , 
2 2

1 2 12 0A A B    and 2 2

2 2 0A B  , then 2E  is locally asymptotic stable. 

 

Remark 2. For all 0   and values given in (8), if any one of the expressions 2 2

1 2 12A A B   

or 2 2

2 2A B  are negative such that 1 1 0,A B  2 2 0A B  , then there is a single pair of purely 

imaginary root 0i w , for the equation (7).  

Remark 3. k  corresponding to 0w  can be found as follows: 
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from (11). 

 

Teorem 3. If 2 2

1 2 12 0A A B    and 2 2

2 2 0A B   such that 1 1 0,A B  2 2 0A B  , then 

Hopf bifurcation is available at 0  . 

 

Ispat:  It is possible to calculate the following the value for 0    
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from (13). The  is local asymptotic stable since 1 1 0,A B  2 2 0A B   is valid. If

0
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  , then 2E  will remain stable for 0  . Differentiating (5) according to  , 

we get  
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With the necessary arrangements, we have 
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From there, we have 
0

Re( )
0i w

d

d





   (transversality condition), since 

2 2

1 2 12 0A A B   . Consequently, Hopf bifurcation occurs with transversality condition at 

0w w , 0  .  

 

 

3. RESULTS AND DISCUSSION 

 

 

Now, we can give the following example to support the theoretical results obtained. 

 

Example 1:  Let’s consider the delay prey-predator system as follows: 
 

0.7 (1 ) ( ) ( )

0.667 0.5

dx
x x x t y t

dt

dy
xy y

dt

     

 

 

 

with parameter 0,5e  , 1.5b   and 0,7a  . In this continuous population model, let’s find 

the positive coexistence equilibrium point and the bifurcation value 0 . 

 

Solution: (0.75,0.175)  is the coexistence equilibrium point of the system. We get   

 

1 1

2 2

0,525

( )
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A B abe

A B e a abe

 



  



 

and 
2 2

1 2 1

2 2

2 2

2 0,091875 0

0,00765625 0

A A B

A B

   

   
 

 

from (8) and (9). Also from (12), we have  
 

4 20,091875 0,00765625 0w w   . 

 

From there, if  the roots are calculated, then we get  
 

1 20,22997, 0,22997w w     1 0,38048i w i   and 1 0,38048i w i    

 

Here, we calculate as  
 

2 1 1 0,02625,B A B   2 2 0,A B     
2

1 0,030625,B  2

2 0,00765625B   

 

and from (13), we get for 0k  ,
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So, we say that 2E  locally asymptotic stability at [0 , 3.288083474)  and Hopf  

bifurcation occurs 0 3,288083474   . 

 

 

4. CONCLUSION 
 

 

In this study, the hopf bifurcation analysis of the coexistence equilibrium point of a 

delay prey-predator model is presented. We conclude that the behavior the coexistence 

equilibrium point of the system (1) varies from stability to instability at 

0 3,288083474.    
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