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Abstract.  This paper is devoted to generate new numerical solutions of the 

generalized equal width wave (GEW) equation with Subdomain finite element method based 

on quartic B-splines  over finite elements. Accuracy and efficiency of the proposed method is 

demonstrated by employing propagation of single solitary wave. 2L  and L  error norms are 

used to measure differences between the analytical and numerical solutions and also, three 

invariants I1; I2 and I3 have been calculated to determine the conservation properties of the 

presented algorithm. Fourier stability analysis of the linearized scheme shows that it is 

unconditionally stable. Numerical experiments prove the correctness and durableness of the 

method which can be further used for solving such problems. 

Keywords: GEW equation, Subdomain, Quartic B-spline, Finite element method, 

Solitary waves, Soliton.  

 

 

1. INTRODUCTION  

 

 

The nonlinear physical phenomena are related to the nonlinear evolution equations 

(NLEEs), which are appeared in many areas of scientific and engineering fields such as 

hydrodynamics, plasma physics, optical fibers, fluid dynamics, nonlinear optics, quantum 

mechanics, solid state physics, mathematical biology and chemical kinematics, chemical 

physics, geochemistry etc [1]. To better understand these nonlinear phenomena, it is important 

to explore their exact solutions. But exact solutions of these equations are commonly not 

derivable, particularly when the nonlinear terms are contained. In so far as only limited 

classes of these equations are solved by analytical means, numerical solutions of these 

nonlinear partial differential equations are very operable to examine physical phenomena. In 

this paper, we investigate an important nonlinear wave equation, the generalized equal width 

wave equation, of the form 

 

 0,p

t x xxtU U U U      (1.1)                                                                  

 

where p  is a positive integer   and are positive parameters, t is time, x  is the space 

coordinate and ( , )U x t  is the wave amplitude. Physical boundary conditions have need for

0U   as x  . Boundary  
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and initial conditions are selected 

 

 ( ,0) ( ) ,U x f x a x b     (1.3) 

 

where ( )f x is a localized disturbance inside the considered interval and will be determined 

later. In the fluid problems as known, the quantity U indicates the wave amplitude of the 

water surface or a alike physical cardinality. In the plasma treatments, U is the negative of the 

electrostatic potential [2]. This equation has a lot of implementations in physical situations for 

example unidirectional waves propagating in a water channel, long waves in near-shore 

zones, and many others [3]. For 1p  , Eq.(1.1) is reduced to the EW equation as an important 

equation in the study of non-linear dispersive waves since it defines a large number of 

important physical phenomena [4-7]. Another special case of the GEW is obtained when 

2p  . This corresponds to the modified equal width wave (MEW) equation [8-14]. In the 

literature, there are limited number of papers on the GEW equation. Hamdi et al. [15] derived 

exact solitary wave solutions of the GEW equation. Evans and Raslan [16] considered the 

GEW equation by using the collocation method based on quadratic B-splines to obtain the 

numerical solutions of the single solitary wave, interaction of solitary waves and birth of 

solitons. The GEW equation solved numerically by a cubic B-spline collocation method by 

Raslan [17]. The homogeneous balance method was used to construct exact travelling wave 

solutions of generalized equal width equation by Taghizadeh et al. [18]. The equation was 

solved numerically by a meshless method based on a global collocation with standard types of 

radial basis functions (RBFs) in [3]. Quintic B-spline collocation method with two different 

linearization techniques and a lumped Galerkin method based on cubic B-spline functions 

were employed to obtain the numerical solutions of the GEW equation by Karakoc and 

Zeybek, [2, 19] respectively. In this work, we have built Subdomain finite element method for 

the GEW equation using quartic B-spline functions.  

The rest of the paper can be summarized briefly as follows: the approximate method 

for the solution of Eq.(1.1) is proposed in the next section. Section 3 contains a lineear 

stability analysis of the algorithm followed by Section 4 which belongs to numerical 

experiments of traveling single solitary wave with different initial and boundary conditions. 

 

 

2.  QUARTIC B-SPLINES AND ANALYSIS OF THE SUBDOMAIN METHOD 

 

 

To analyze the numerical behavior of the Eq.(1.1), the solution domain is constrained 

on a closed interval [ , ]a b . Prenter [20] defined following quartic B-spline functions ( )m x  

( 2, 1,..., , 1)m N N      at the points 
mx  which generate a basis over the domain [ , ]a b   by 
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  (2.1) 

 

The numerical solution  ),( txU N   is written in terms of the quartic B-splines as  

 

                                                 
1

2

( , ) ( ) ( ),
N

N j j

j m

U x t x t 


 

                                                    (2.2) 

 

in which parameters  )(tj   are procured using boundary and weighted residual conditions. 

The nodal values  


mmm UUU ,,   and  


mU   at the knots  
mx   are got from trial function (2.2) and 

quartic B-splines  (2.1)  in the following form 

 

                                       
2

3

2 1 1

4
2 1 1

12
2 1 1

24
2 1 1

( , ) 11 11 ,

( 3 3 ),

( ),

( 3 3 ).

N m m m m m m
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m m m m mh

m m m m mh

U x t U

U

U

U

   

   

   

   

  



  



  



  

    

    

   

    

                                 (2.3) 

 

Finite element method pertains to the family of weighted residual methods and one of 

these standard method is Subdomain method [21]. In this method, we separate the physical 

region into a number of non-overlapping subdomains. Each weight function is taken as unity 

over a specific subdomain and set equal to zero over other the other parts. For one-

dimensional problems the weight function is, 

 

                                            










.,...,2,1
,,0

],,[,1
)(

1
nm

otherwise

xxx
xW

mm

m                          (2.4) 

 

In weighted residual method 

 

                                                 
1

( ) ( ) 0
m

m

b x

m
a x
W R x dx R x dx



                                               (2.5) 

 

can be written. This implies that the average of the residual over each of n  subdomains is 

forced to be zero [22]. When Subdomain finite element method is applied to Eq.(1.1)  with 

weight function  (2.4)  we obtain the weak form of Eq.(1.1)  as 

 

                                   
1

1.( ) 0.
m

m

x
p

t x xxt
x

U U U U dx 


                                             (2.6) 

 

Implementing the transformation  mh x x     into weak form  (2.6)  and integrating  

  (2.6) term by term with some manupulation by parts, brings along 
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           (2.7) 

 

where the dot typifies differentiation with respect to  t   and 

 

                                     2 1 1( 11 11 ) p

m m m m mZ           .                                               (2.8) 

 

Changing the time derivative     with the forward difference approximation  

t

nn




 
1   and the parameter     by the Crank-Nicolson equality  ),( 1

2
1  nn    then 

system  (2.7)  turn into the following matrix system: 
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where 
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       (2.10) 

 

The system  (2.9)  composes of N  linear equations including  )4( N   unknown 

parameters. We need four additional limitations to find a unique solution of this system. 

Executing the boundary conditions  (1.2)  to the system  (2.9)  we remove the parameters  

2 1, , ,N     and  1N    from the system (2.9)  which then becomes a matrix equation for the  

N   unknowns  d    ),...,,( 110 N   of the form  .1 nn NdMd    A lumped form of  mZ   is 

computed as   pUU mm

2

1
  and 

 

                                
p

mmmmmpmZ )122212(
2

2112   


 .                             (2.11) 

 

The resulting system is solved by a modified form of well known Thomas algorithm 

[23] and in this solution procedure an inner iteration is also implemented at each time step to 

decrease the non-linearity. In an effort to solve this system, it is necessary to obtain the initial 

parameters  0   by using the initial condition  )()0,( xfxU    and following derivatives at 

the boundaries; 

 

.0)0,()0,(,0)0,()0,(

,0)0,()0,(),0,()0,(








bUaUbUaU

bUaUxUxU

NNNN

NNmmN  

 

So, a new  NN    dimensional solvable matrix is obtained for  m
0

  parameters. 
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3. STABILITY ANALYSIS 

 

 

In this section, to demonstrate the stability analysis of the numerical method, we have 

used Fourier method based on Von-Neumann theory and presume that the quantity  pU   in 

the nonlinear term a local constant such as  mZ   [24] .   If we put the Fourier mode 

 
ijkhnn

j eg  

 

into scheme (2.9)  and the necessary operations are performed, following growth factor is 

obtained  

,
iba

iba
g




  

where 
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Since  || g   is  1, the von Neumann necessary criterion is provided so our linearized 

scheme is unconditionally stable. 

 

 

4.  NUMERICAL RESULTS AND DISCUSSION 

 

 

The purpose of this section is to examine the deduced algorithm using different test 

problems concerned with the dispersion of single solitary waves. To see the difference 

between numerical solution and analytic solution, we have used the error norms defined as 

follows 
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The exact solution of GEW equation is given in [3, 19] as 

 

p xctx
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h
ppc

txU )](
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[sec
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which corresponds to a solitary wave of amplitude  ,2

)2)(1(p ppc




  speed  c  , width  

2

p
  and 

initially centered at  .0x   The conservation properties of the GEW equation concerned with 

mass, momentum and energy are confirmed by finding the following three invariants [2, 16, 

17].  
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4.1.  DISPERSION OF A SINGLE SOLITARY WAVE 

 

 

For the numerical simulations of the movement of single solitary wave, three sets of 

parameters have been taken and discussed. 

For the first set, we choose the parameters 2p , 5.0c , 1.0h , t  2.0 , 1 , 

3  and 0x 30  through the interval  ]80,0[   to compare with that of previous papers [2, 

19]. These parameters stand for the motion of a single solitary wave with amplitude  0.1   and 

the algorithm is run to time  20t   over the solution region. A comparison with exact 

solution as well as the calculated values in [2, 19] has been done and listed in Table (1) at  

20t . Fig. 1 depicts the numerical solutions at different time levels at .20,10,0t  The 

quantile of error at discoint times are plotted in Fig. 2.  
 

Table 1.  Values of the invariants and comparison of the error norms for single solitary wave with p=2, 

c=0.5, h=0.1, ∆t=0.2, µ=1 and ε=3 at t=20. 

 

Method 
1I  2I  3I  2L  L  

Exact 3.1415961 2.6666667 1.3333333 0.0000000 0.0000000 

Present  0t   3.1415963 2.6666625 1.3333283 0.0000000 0.0000000 

5t   3.1374227 2.6611036 1.3277747 0.0074320 0.0052489 

10t   3.1332986 2.6556033 1.3222912 0.0190058 0.0130097 

15t   3.1292124 2.6501590 1.3168748 0.0346782 0.0232969 

20t   3.1251634 2.6447698 1.3115241 0.0544214 0.0360834 

Cubic Gal. [2] 3.1589605 2.6902580 1.3570299 0.0380303 0.0262900 

Quintic Coll. First 

Scheme [19] 

3.1253043 2.6445829 1.3113394 0.0513210 0.0341675 

Quintic Coll. 

Second Scheme [19] 

3.1416722 2.6669051 1.3335718 0.0167509 0.0102639 
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Figure 1. Motion of single solitary wave for p=2, 

c=0.5, h=0.1, ∆t=0.2, µ=1, ε=3  over the interval 

[0,80] at t=0,10,20. 

 
Figure 2. Error graph for p=2, c=0.5, h=0.1, ∆t=0.2, 

µ=1, ε=3 at t=20. 

 

For our second experiment, if the parameters are taken ,3p ,3.0c ,1.0h  

,2.0t  ,3  1 , 0x 30   with interval  ]80,0[   the solitary wave has amplitude  .0.1   

The experiment is carried out for times up to .20t   Table (2)  represents a comparison of 

the values of the invariants and error norms obtained by the present method with those 

obtained in [2,19] at  .20t   Fig. (3) displays the motion of the solitary wave at time leves  

.20,10,0t   The aberration of error at discrete times are depicted in Fig. (4). 

 

Table 2.  Values of the invariants and comparison of the error norms for single solitary wave with p=3, 

c=0.3, h=0.1, ∆t=0.2, µ=1 and ε=3 at t=20. 

Method 
1I  2I  3I  2L  L  

Present  0t   2.8043580 2.4639124 0.9855618 0.0000000 0.0000000 

5t   2.8009794 2.4589310 0.9805878 0.0057707 0.0045666 

10t   2.7976460 2.4540202 0.9756990 0.0154171 0.0111684 

15t   2.7973553 2.4491772 0.9708921 0.0288633 0.0212993 

20t   2.7911063 2.4444001 0.9661645 0.0460246 0.0333820 

Cubic Gal. [2] 2.8187398 2.4852249 0.0070200 0.0165563 0.0137045 

Quintic Coll. First 

Scheme [19] 

2.8043570 2.4639086 0.9855602 0.0080147 0.0053823 

Quintic Coll. 

Second Scheme [19] 

2.8042943 2.4637495 0.9854011 0.0070855 0.0048047 

 

 
Figure 3. Motion of single solitary wave for p=3, 

c=0.3, h=0.1, ∆t=0.2, µ=1, ε=3  over the interval 

[0,80] at t=0,10,20. 

 
Figure 4. Error graph for p=3, c=0.3, h=0.1, ∆t=0.2, 

µ=1, ε=3 at t=20. 
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For the final treatment, we select the parameters  ,4p  ,2.0c  ,1.0h  ,2.0t    

,3  1 , 0x 30   over the interval  ]80,0[   to enable comparison with those of earlier 

papers [2,19]. So solitary wave has amplitude  0.1   and the simulations are performed to time  

20t   to get the error norms  2L   and  L   and the numerical invariants  21, II   and  .3I   

Table (3)  displays a comparison of the values of the invariants and error norms obtained by 

the present method with those obtained by other methods [2,19]. The behaviours of solutions 

for values  2.0,1.0,2.0,4  thcp   at times  10,0t   and 20  are shown in Figure (5). 

Error distributions at time 20t  are drawn graphically in Figure (6).  
 

Table 3.  Values of the invariants and comparison of the error norms for single solitary wave with p=4, 

c=0.2, h=0.1, ∆t=0.2, µ=1 and ε=3 at t=20. 

 

Method 
1I  2I  3I  2L  L  

Present  0t   2.6220516 2.3561965 0.7853952 0.0000000 0.0000000 

5t   2.6195341 2.3522596 0.7814646 0.0050342 0.0041635 

10t   2.6170567 2.3483875 0.7776117 0.0130014 0.0103774 

15t   2.6146144 2.3445730 0.7738285 0.0238590 0.0185860 

20t   2.6122055 2.3408135 0.7701119 0.0375343 0.0287549 

Cubic Gal. [2] 2.6327833 2.3730032 0.8023383 0.0089061 0.0082199 

Quintic Coll. First 

Scheme [19] 

2.6220508 2.3561901 0.7853939 0.0042169 0.0029795 

Quintic Coll. Second 

Scheme [19] 

2.6219284 2.3559327 0.7851364 0.0033908 0.0024703 

 

 

 
Figure 5. Motion of single solitary wave for p=4, 

c=0.2, h=0.1, ∆t=0.2, µ=1, ε=3  over the interval 

[0,80] at t=0,10,20. 

 
Figure 6. Error graph for p=4, c=0.2, h=0.1, ∆t=0.2, 

µ=1, ε=3 at t=20. 
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CONCLUSION 

 

 

In this study, solitary-wave solutions of the GEW equation have been successfully 

obtained by using Subdomain method based on quartic B-splines. To prove the performance 

and accuracy of the numerical method 2L , L  error norms and the invariant quantities 1I , 2I  

and  3I  have been calculated. The obtained numerical results predicate that our error norms 

are as small as required and they are smaller than existing numerical calculations or too close 

to the result in literature. Therefore, our numerical technique is suitable for getting numerical 

solutions of partial differential equations. 
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